

July 30, 2009

Office of the Chancellor

TO: Dr. Craig Foltz, Ph.D. ATST Program Director Acting Director, Division of Astronomical Sciences National Science Foundation

AUG - 8

- FROM: Virginia S. Hinshaw Chancellor
- SUBJECT: Acceptance of the Final Environmental Impact Statement for the Advanced Technology Solar Telescope, Haleakala, Maui, Hawai'i

With this memorandum, I accept the Final Environmental Impact Statement for the Advanced Technology Solar Telescope (ATST), Haleakala, Maui, Hawai'i, as satisfactory fulfillment of the requirements of Chapter 343, Hawai'i Revised Statues.

Should the project be built, the National Science Foundation and/or its agents should perform the mitigation measures proposed in the environmental impact statement, or the alternative, and at least equally effective mitigation measures at the discretion of the permitting agencies. The mitigation measures are listed in the attached documents.

Attachment: CD with documents

c: Katherine Kealoha, Esq., Director Office of Environmental Quality Control

National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230

VOLUME I of IV

FINAL ENVIRONMENTAL IMPACT STATEMENT

Advanced Technology Solar Telescope Haleakalā, Maui, Hawaiʻi

July 2009

FINAL ENVIRONMENTAL IMPACT STATEMENT

Advanced Technology Solar Telescope

This Final Environmental Impact Statement (FEIS) addresses the proposed development of the Advanced Technology Solar Telescope ("proposed ATST Project") within the 18.166-acre University of Hawai'i Institute for Astronomy Haleakalā High Altitude Observatory site at the summit of Haleakalā, Maui, Hawai'i. The proposed ATST Project is a project proposed by the National Solar Observatory that is being considered for funding by the National Science Foundation.

This FEIS is also prepared to evaluate the potential environmental effects associated with issuing a National Park Service Special Use Permit, pursuant to 36 Code of Federal Regulations §5.6 to operate commercial vehicles on the Haleakalā National Park Road during the construction and operation of the proposed ATST Project.

This FEIS is a joint Federal and State of Hawai'i document prepared in compliance with the National Environmental Policy Act, Council on Environmental Quality NEPA Implementing Regulations, the National Science Foundation's NEPA-implementing regulations, the National Park Service Director's Order 12 Conservation Planning, Environmental Impact Analysis and Decision Making, and the State of Hawai'i Chapter 343 Hawai'i Revised Statutes, Title 11 Chapter 200 Hawai'i Administrative Rules, and Hawai'i Administrative Rules 13-5-31.

As the responsible official of the applicant agency, I hereby acknowledge that this FEIS for the proposed ATST Project and all ancillary documents were prepared under my direction or supervision and the information submitted, to the best of my knowledge, fully addresses document content requirements.

July 2009

Date

Dr. Craig Foltz, Ph.D. ATST Program Director Acting Director, Division of Astronomical Sciences National Science Foundation, 4201 Wilson Boulevard, Room 1045 Arlington, VA 22230 Telephone: 703-292-4909, Fax: 703-292-9034

FINAL ENVIRONMENTAL IMPACT STATEMENT for the ADVANCED TECHNOLOGY SOLAR TELESCOPE

DATE:	July 2009
LEAD AGENCY:	National Science Foundation, Division of Astronomical Sciences
PROJECT AGENCIES:	Association of Universities for Research in Astronomy National Solar Observatory University of Hawai'i Institute for Astronomy

PROPOSED ACTION

The proposed ATST Project is an applicant action by the National Science Foundation (NSF) for the development of the Advanced Technology Solar Telescope ("proposed ATST Project") within the 18.166-acre University of Hawai'i Institute for Astronomy (IfA) Haleakalā High Altitude Observatory (HO) site at the summit of Haleakalā, County of Maui, Hawai'i. HO is located on State of Hawai'i land within the Conservation District, in a place known as Kolekole to be under the control and management of the IfA for scientific purposes. The primary goals of the proposed ATST Project are to understand solar magnetic activities and variability, both because the Sun serves as a key resource for understanding the underpinnings of astrophysics and our understanding of magnetic plasmas, and because activity on the Sun drives space weather.

LOCATION:	State of Hawai'i land within the Conservation District on Pu'u (hill) Kolekole, near the summit of Haleakalā, Maui, Hawai'i.
FOR FURTHER INFORMATION:	National Science Foundation, Division of Astronomical Sciences Dr. Craig Foltz, ATST Program Director 4201 Wilson Boulevard, Room 1045, Arlington, VA 22230 Telephone: 703-292-4909
ABSTRACT:	NSF's Final Environmental Impact Statement (FEIS) addresses the environmental impacts associated with the construction and operation of the proposed ATST Project. The impacts were analyzed under three alternatives, two action alternatives located within HO: the Mees Alternative (the Preferred Alternative) and the Reber Circle Alternative, and a No-Action Alternative. Under the No-Action Alternative, NSF would not fund the construction or operation of the proposed ATST Project. The purpose of the proposed ATST Project is to understand solar magnetic activities and variability, both because the Sun serves as a key resource for understanding the underpinnings of astrophysics and our understanding of magnetic plasmas, and because activity on the Sun drives space weather. Space weather creates hazards for communications to and from satellites as well as for astronauts and air travelers. Furthermore, and perhaps most importantly, the variability in solar energy induced by solar activity affects the Earth's climate.

ENVIRONMENTAL IMPACT STATEMENT ORGANIZATION

VOLUME I

ENVIRONMENTAL IMPACT STATEMENT

EXECUTIVE SUMMARY: Briefly describes the proposed ATST Project, environmental and socioeconomic consequences, and mitigation measures.

SECTION 1.0: INTRODUCTION

Provides a general description of the proposed ATST Project and its purpose and need. Also describes the project location, the role of Federal, State and County agencies and authorities, and public disclosure and involvement.

SECTION 2.0: PROJECT DESCRIPTION AND ALTERNATIVES

Describes the proposed ATST Project at both the preferred and alternative sites and the No-action Alternative.

SECTION 3.0: DESCRIPTION OF AFFECTED ENVIRONMENT

Describes the existing environment at and near the Haleakalā High Altitude Observatories site and describes the environment within the Haleakalā National Park road corridor.

SECTION 4.0: ENVIRONMENTAL CONSEQUENCES, CUMULATIVE EFFECTS, AND MITIGATION

Summarizes the environmental consequences of the proposed ATST Project based on the findings of Section 3.0, the cumulative environmental effects, and mitigation. The summaries take into consideration past, present, and reasonably foreseeable future actions within or near the proposed ATST Project.

SECTION 5.0: NOTIFICATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES

Describes details of all notifications, public involvement opportunities, and consulted parties for the proposed ATST Project conducted during the pre-assessment period, public scoping meetings, Federal, State and County agency meetings, and Section 106 consultation meetings with Native Hawaiian organizations and other interested parties. Section 106 notification, public involvement, and consultation are also described in this section.

SECTION 6.0: UNRESOLVED ISSUES

Describes three unresolved issues that are in significant stages of development and the status of each.

SECTION 7.0 REFERENCES

Lists all references used in this Environmental Impact Statement.

SECTION 8.0: ACRONYMS, ABBREVIATIONS AND TERMINOLOGY, INDEX

Lists the definition of acronyms, abbreviations and terminology, and an index for this Environmental Impact Statement.

SECTION 9.0: LIST OF PREPARERS

Lists all persons, firms, or agencies who participated in preparing this Environmental Impact Statement.

SECTION 10.0: LIST OF FEIS RECIPIENTS

Provides a list of agencies, organizations and persons who received the FEIS.

VOLUME II

SURVEY AND ASSESSMENT REPORTS

Volume II contains survey and assessment reports that were conducted in the surrounding environment at and near HO, which provide detailed and/or focused information relative to key environmental effects and topics addressed in Volume I and other relevant documentation used in producing this EIS, as follows:

- Appendix A: Archaeological Field Inspection, January 2006
- *Appendix B:* Archaeological Recovery Plans:
 - (1) Data Recovery Plan for Site 50-50-11-5443 (Reber Circle), December 2005
 - (2) "Science City" Preservation Plan, March 2006
- Appendix C: (1) Updated Arthropod Inventory and Assessment, December 2005
 - (2) Supplemental Arthropod Sampling, March 2007
 - (3) Arthropod Inventory and Assessment, HALE and HO, July 2009 (New)
- Appendix D: ATST Hazardous Materials and Hazardous Waste Management Program, April 2006
- Appendix E: Botanical Survey, December 2005 and July 2009 (New)
- *Appendix F:* (1) Cultural and Historical Compilation of Resources Evaluation and Traditional Practices Assessment, January 2006
 - (2) Supplemental Cultural Impact Assessment, May 2007
- *Appendix G:* Geological Setting at Primary and Alternative Advanced Technology Solar Telescope Sites, Haleakalā High Altitude Observatories, November 2005
- *Appendix H:* Movement of Hawaiian Petrels Near USAF Facilities Near the Summit of Haleakalā, Maui Island, Fall 2004 and Spring 2005
- Appendix I: Petrel Monitoring Plan, 2006
- *Appendix J:* Proposed ATST Project and Alternatives Supplementary Documentation:
 - (1) Sites Evaluated for Science Criteria
 - (2) Supplemental Discussion of the Constraints of Solar Science Development
 - (3) Haleakalā vs. La Palma Dust Comparison
 - (4) Supplemental Description of ATST Equipment and Infrastructure
- Appendix K: Soils Investigation Report, May 2005
- Appendix L: Stormwater Management Plan for Haleakalā High Altitude Observatories, March 2006
- Appendix M: U. S. Fish and Wildlife Service, Section 7, Informal Consultation Document, March 2007
- Appendix N: Haleakalā Visitor Survey, November 2007
- Appendix O: ATST Site Survey Working Group Final Report, October 6, 2004
- *Appendix P:* Federal Highway Administration, Haleakalā Highway, Haleakalā National Park, Pavement Drainage Condition Investigation, Distress Identification and Recommendations Report #HALA 3-2-2009. Rev. April 2009.
- Appendix Q. Study of Vibration due to Construction Activities on Haleakalā, July 8, 2009 (New)
- Appendix R: New Viewshed Study (New)

VOLUME III

PUBLIC SCOPING MEETINGS COMMENTS AND REPONSES and MEETING TRANSCRIPTS (2005, 2006, 2008)

Volume III contains public comments received during the scoping process and were also included in the Draft Environmental Impact Statement (DEIS) published in September 2006.

Meeting Transcripts were requested by the public at various meetings and from comments received during the EIS process. Volume III also contains the meeting transcripts made from the Public Scoping Meetings, National Historic Preservation Act Section 106 Formal Consultation Meetings, and the DEIS Public Comment Meetings.

The Appendices in Volume III are as follows:

- Appendix A: Public Scoping Meetings Comments
- *Appendix B:* Transcripts Public Scoping Meetings:
 - (1) Cameron Center, July 12, 2005
 - (2) Kula Community Center, July 13, 2005
 - (3) Mayor Hannibal Tavares Community Center, July 14, 2005

Appendix C: Transcripts – Section 106 Consultation Meetings:

- (1) Mayor Hannibal Tavares Community Center, March 28, 2006
- (2) Paukūkalo Community Center, May 1, 2006,
- (3) University of Hawai'i Institute for Astronomy, Maikalani Facility, June 16, 2008
- (4) University of Hawai'i Institute for Astronomy, Maikalani Facility, June 17, 2008
- (5) University of Hawai'i Institute for Astronomy, Maikalani Facility, August 27, 2008, Afternoon session
- (6) University of Hawai'i Institute for Astronomy, Maikalani Facility, August 27, 2008, Evening session

Appendix D: Transcripts – DEIS Public Comment Meetings:

- (1) Cameron Center, September 27, 2006
- (2) Mayor Hannibal Tavares Community Center, September 28, 2006
- (3) Kula Community Center, September 29, 2006

VOLUME IV

PUBLIC COMMENTS AND REPONSES TO DEIS (SEPTEMBER 2006) and SDEIS (MAY 2009)

SDEIS PUBLIC HEARING TRANSCRIPTS (JUNE 2009)

FACILITATOR'S NOTES SECTION 106 CONSULTATION MEETINGS (JUNE 2009)

Volume IV contains the following comments and responses, transcripts, and notes:

Appendix A:	Matrix of Comments and Responses on the DEIS
	Copies of Public Comments to the DEIS
	Matrix of comments and responses to the DEIS transcripts
	made during the Public Comment Meetings

Appendix B:Matrix of Comments and Responses on the SDEIS
Copies of Public Comments to the SDEIS
Matrix of comments and responses to the SDEIS transcripts
made during the Public Comment Meetings

Appendix C: Transcripts – SDEIS Public Comment Hearings:

- (1) Cameron Center, June 3, 2009
- (2) Mayor Hannibal Tavares Community Center, June 4, 2009
- Appendix D: Facilitator's Notes, Section 106 Consultation Meetings, June 8, 9, and 10, 2009

SECTION

EXECUTIVE SUMMARY

ES-1	

ES-1.0	INTRODUCTION	<i>ES-1</i>
ES-1.1	Proposed ATST Project Location	ES-2
ES-1.2	Land Ownership	ES-2
ES-1.3	Identification of Agencies Proposing the Action	ES-2
ES-1.4	Project Summary	ES-3
ES-1.5	Current Environmental Setting for Proposed ATST Project	ES-4
ES-1.6	Compliance with Government Agencies	ES-5
ES-1.7	State of Hawai'i Land Use Conformity	ES-6
ES-1.8	County of Maui Community Plan	ES-7
ES-1.9	Agency Notification and Collaboration	ES-7
ES-1.10	Draft and Supplemental Draft Environmental Impact Statement Public Involvement	ES-7

ES-2.0 **PROPOSED ATST PROJECT AND ALTERNATIVES ES-7** IntroductionES-7 ES-2.1 ES-2.2 ES-2.3 Alternatives Eliminated from Further Consideration......ES-8 ES-2.4 Description of the Proposed ATST Project at the Preferred Mees SiteES-8 ES-2.4.1 ES-2.4.2 ES-2.4.3 ES-2.4.4 Telescope Operation Activities......ES-13 ES-2.5 ES-2.5.1 ES-2.5.2 Potential Use of MSO and Airglow Atmosphere FacilitiesES-15 ES-2.5.3 ES-2.5.4 ES-2.6 No-Action AlternativeES-16

ES-3.0	DESCRIP	TION OF AFFECTED ENVIRONMENT	<i>ES-16</i>
ES-3.1	Land Use a	nd Existing Activities	ES-17
	ES-3.1.1	Land Use for the Proposed ATST Project	ES-17
	ES-3.1.2	Existing Activities	ES-17
ES-3.2	Cultural, H	istoric, and Archeological Resources	ES-18
	ES-3.2.1	Cultural Resources	ES-18
	ES-3.2.2	Historic Resources	ES-19
	ES-3.2.3	Archeological Resources	ES-20
	ES-3.2.4	National Historic Preservation Act, Section 106 Regulatory Compliance	
ES-3.3	Biological Resources		ES-21
	ES-3.3.1	Botanical Resources	ES-22
	ES-3.3.2	Endangered, Threatened, Listed, or Proposed Plant Species	ES-22

SECTION

PAGE

	ES-3.3.3	Faunal Resources		ES-22
		ES-3.3.3.1 End	angered, Threatened, Listed or Proposed Avifaunal	
			Vesper Bat Species	
			er Native and Introduced Fauna	
			rtebrate Resources	
ES-3.4	Topography	, Geology, and Soils	3	ES-24
	ES-3.4.1			
	ES-3.4.2	0,		
	ES-3.4.3			
ES-3.5	Visual Reso	urces and View Plan	ne	ES-25
ES-3.6	Visitor Use	and Experience		ES-25
ES-3.7	Water Reso	arces		ES-26
	ES-3.7.1	Surface Water		ES-26
	ES-3.7.2	Groundwater		ES-26
ES-3.8	Hazardous	Aaterials and Solid	Waste	ES-26
	ES-3.8.1	Solid Waste		ES-27
	ES-3.8.2	Hazardous Mater	als	ES-27
ES-3.9	Infrastructu	e and Utilities		ES-28
	ES-3.9.1	Wastewater and S	olid Waste Disposal	ES-28
	ES-3.9.2	Stormwater and I	Drainage System	ES-28
	ES-3.9.3			
	ES-3.9.4		Systems	
	ES-3.9.5	Roadways and Tr	affic	ES-29
ES-3.10	Noise			ES-29
ES-3.11	Climatolog	and Air Quality		ES-29
	ES-3.11.1	Climatology		ES-29
	ES-3.11.2	Air Quality		ES-30
ES-3.12	Socioecono	nics and Environme	ntal Justice	ES-30
	ES-3.12.1	Resident Populati	on and Housing	ES-30
	ES-3.12.2		nomy, and Income	
	ES-3.12.3			ES-31
	ES-3.12.4		stice and Protection of Children from	
			ealth or Safety Risks	
ES-3.13	Public Serv			
	ES-3.13.1			
	ES-3.13.2			
	ES-3.13.3			
	ES-3.13.4		lities	
	ES-3.13.5		es	
ES-3.14	Natural Haz	ards		ES-33

ES-4.0 ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND MITIGATION

	MITIGATION	<i>ES-34</i>
ES-4.1	Land Use and Existing Activities	ES-35
ES-4.2	Cultural, Historic, and Archeological Resources	ES-36

SECTION

PAGE

ES-4.3	Biological R	esources	ES-37
ES-4.4	Topography,	, Geology, and Soils	ES-39
ES-4.5	Visual Resou	urces and View Planes	ES-39
ES-4.6	Visitor Use a	and Experience	ES-40
ES-4.7		Irces	
ES-4.8		Aterials and Solid Waste	
ES-4.9		e and Utilities	
ES-4.10			
ES-4.11			
ES-4.12	Socioeconon	nics and Environmental Justice	ES-44
ES-4.13	Public Servio	ces and Facilities	ES-45
ES-4.14	Natural Haza	ards	ES-46
ES-4.15	Summary of	Potential Impacts Resulting from the Proposed ATST Project	ES-46
ES-4.16	Other Requir	red Analyses	ES-52
ES-4.17	Cumulative 1	Impacts to the Affected Environment	ES-53
	ES-4.17.1	Summary of Past Actions	
	ES-4.17.2	Summary of Present Actions	
	ES-4.17.3	Reasonably Foreseeable Future Actions	
	ES-4.17.4	Land Use and Existing Activities	
	ES-4.17.5	Cultural, Historic, and Archeological Resources	
	ES-4.17.6	Biological Resources	ES-55
	ES-4.17.7	Topography, Geology, and Soils	ES-56
	ES-4.17.8	Visual Resources and View Plane	ES-56
	ES-4.17.9	Visitor Use and Experience	ES-57
	ES-4.17.10	Water Resources	
	ES-4.17.11	Hazardous Materials and Solid Waste	ES-58
	ES-4.17.12	Infrastructure and Utilities	ES-58
	ES-4.17.13	Noise	
	ES-4.17.14	Air Quality	
	ES-4.17.15	Socioeconomics and Environmental Justice	ES-60
	ES-4.17.16	Public Services and Facilities	ES-61
	ES-4.17.17	Natural Hazards	
	ES-4.17.18	Summary of Intensities and Impacts	ES-62
ES-4.18	Mitigation		ES-62

NOTIFICATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES **ES-68** *ES-5.0* ES-5.1 ES-5.1.1 Pre-Assessment Notification......ES-69 ES-5.1.2 Pre-Assessment Public Scoping Meetings Pursuant to NEPA and OEQC Guidance......ES-69 ES-5.1.3 Additional Public MeetingsES-70 ES-5.1.4 ES-5.1.5 ES-5.2 The Section 106 Consultation Process Pursuant to the National Historic PreservationES-71 Section 106 Consultation ChronologyES-71 ES-5.2.1

<u>SECTI</u>	<u>ON</u>		PAGE
	ES-5.2.2	Addressing Adverse Effects	ES-76
ES-5.3	Consultat	ion Under the Endangered Species Act	
<u>ES-6.0</u>	UNRES	OLVED ISSUES	<u>ES-78</u>
List of F	igures		X
List of T	ables		xiv
1.0	INTROL	DUCTION	1-1
1.1	Project Lo	ocation	
1.2	5	nership	
1.3		tion of Agencies Proposing the Action	
	1.3.1	Identification of Federal Agency	
	1.3.2	Identification of Accepting Authority	
1.4	Project Su	ımmary	1-9
	1.4.1	Need for the Project	
	1.4.2	Purpose of the Project	
15	1.4.3	ATST Education and Public Outreach	
1.5		nvironmental Setting for Proposed ATST Project	
	1.5.1 1.5.2	Local and Regional Perspective Reference to Related Existing or Planned Projects in Region	
1.6		ce With Government Agencies	
1.0	1.6.1	Federal National Environmental Policy Act	
	1.6.2	State of Hawai'i Environmental Laws	
	1.6.3	Department of Land and Natural Resources	
	1.6.4	Approvals and Permits	
1.7	State of H	lawai'i Land Use Conformity	
	1.7.1	Chapter 343, Hawai'i Revised Statutes, Environmental Impact Statements	
	1.7.2 1.7.3	State Land Use Law, Chapter 205, Hawai'i Revised Statutes Coastal Zone Management Act, Chapter 205A, Hawai'i Revised Statutes	
	1.7.3	Hawai'i State Plan, Chapter 226, Hawai'i Revised Statutes	
	1.7.5	Department of Health Environmental Planning Office	
	1.7.6	Department of Land and Natural Resources	
1.8	County of	Maui Community Plan	1-29
1.9	Agency N	lotification and Collaboration	1-30
1.10	Public Di	sclosure and Involvement	1-32
	1.10.1 1.10.2	Draft and Supplemental Draft Environmental Impact Statement Public Involv Section 106 Public Involvement	
<u>2.0</u>	PROPOS	SED ATST PROJECT AND ALTERNATIVES	<u>2-1</u>
2.1	Introducti	on	
2.2	Site Selec	tion	
	2.2.1	Site Selection Chronology	

SECTION

2.3	Alternativ	ves Eliminated From Further Consideration		
	2.3.1 2.3.2	Site Selection in Detail Response to Public Comment Regarding Alternative Siting on Haleakalā		
	2.3.3 2.3.4	La Palma, Canary Islands, Spain		
	2.3.4	Big Bear Lake, California Summary of Site Selection Process		
2.4		on of the Proposed ATST Project at the Mees Site		
	2.4.1	Features of Infrastructural Design		
	2.4.2			
	2.4.3	Construction Activities		
	2.4.4	Telescope Operation Activities		
2.5	Description	on of the Proposed ATST Project at the Reber Circle Site	2-41	
	2.5.1	Features of Infrastructural Design		
	2.5.2			
2.6	No-Actio	n Alternative		
<u>3.0</u>	DESCR	IPTION OF AFFECTED ENVIRONMENT	<u>3-1</u>	
3.1	Land Use	•		
	3.1.1	Land Use for the Proposed ATST Project		
	3.1.2	Existing Activities		
3.2				
	3.2.1	Cultural Resources		
		Historic Resources		
2.2				
3.3	e			
	5.5.5			
		3.3.3.2 Other Native and Introduced Fauna		
		3.3.3.3 Invertebrate Resources	3-40	
3.4	Topograp	hy, Geology, and Soils	3-43	
	3.4.1	Topography	3-44	
	3.4.2	Geology		
	3.4.3	Soils		
3.5	Visual Re	esources and View Planes	3-45	
3.6	Visitor U	se and Experience	3-47	
3.7	Water Re	sources	3-48	
	3.7.1	3.7.1 Surface Water		
	3.7.2	Groundwater		
3.8	Hazardou	s Materials and Solid Waste	3-53	
2.4.2 Potential Use of the Mees Solar Observatory Facility 2.4.3 Construction Activities 2.4.4 Telescope Operation Activities 2.5 Description of the Proposed ATST Project at the Reber Circle Site 2.5.1 Features of Infrastructural Design 2.5.2 Potential Use of Existing MSO and Airglow Atmospheric Facilities 2.5.3 Construction Activities 2.5.4 Telescope Operation Activities 2.6 No-Action Alternative 3.0 DESCRIPTION OF AFFECTED ENVIRONMENT 3.1 Land Use and Existing Activities 3.1.2 Existing Activities 3.1.3 Land Use for the Proposed ATST Project 3.1.4 Land Use for the Proposed ATST Project 3.1.2 Existing Activities 3.2.3 Archeological Resources 3.2.4 Historic Resources 3.2.3 Archeological Resources 3.3.4 Botanical Resources 3.3.5 Faunal Resources 3.3.1 Botanical Resources 3.3.3 Intuctive and Introduced Fauna 3.3.3 Inture Resources 3.3.4 Topography.	3-53			

SECTION

 3.9 Infrastructure and Utilities	. 3-53
3.9.2 Stormwater and Drainage System. 3.9.3 Electrical Systems. 3.9.4 Communications Systems. 3.9.5 Roadways and Traffic 3.10 Noise. 3.10.1 Fundamentals of Noise 3.11 Climatology and Air Quality 3.11.1 Climatology	. 3-55
3.10.1 Fundamentals of Noise 3.11 Climatology and Air Quality 3.11.1 Climatology 3.11.2 Air Quality 3.12 Socioeconomics and Environmental Justice	. 3-56 . 3-56 . 3-56
 3.11 Climatology and Air Quality	. 3-59
3.11.1 Climatology	. 3-59
3.11.2 Air Quality 3.12 Socioeconomics and Environmental Justice	. 3-61
3.12 Socioeconomics and Environmental Justice	. 3-61
3.12.1 Socioeconomics	. 3-63 . 3-64 . 3-66
3.13 Public Services and Facilities	. 3-70
3.13.1Police Protection3.13.2Fire Protection3.13.3Schools3.13.4Recreational Facilities3.13.5Healthcare Services	. 3-70 . 3-71 . 3-71
3.14 Natural Hazards	. 3-72

4.0 ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND MITIGATION

4.1	Land Use	and Existing Activities	
	4.1.1	Methodology for Impact Assessment	
	4.1.2	Evaluation of Potential Impacts for the Preferred Mees Site	
	4.1.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.1.4	No-Action Alternative	
	4.1.5	Summary of Impacts to Land Use and Existing Activities	
4.2	Cultural,	Historic, and Archeological Resources	
	4.2.1	Methodology for Impact Assessment	
	4.2.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.2.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.2.4	Evaluation of Potential Impacts for the No-Action Alternative	
	4.2.5	Summary of Impacts on Cultural, Historic, and Archeological Resources	4-19
4.3	Biologica	ll Resources	
	4.3.1	Methodology of Impact Assessment	
	4.3.2	Evaluation of Potential Impacts for the Preferred Mees Site	
	4.3.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.3.4	No-Action Alternative	

PAGE

4-1

SECTION

	4.3.5	Summary of Impacts on Biological Resources	4-34
4.4	Topograp	hy, Geology, and Soils	4-36
	4.4.1	Methodology of Impact Assessment	4-36
	4.4.2	Evaluation of Potential Impacts at the Mees Site	4-37
	4.4.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.4.4	No-Action Alternative	
	4.4.5	Summary of Impacts on Topography, Geology, and Soils	
4.5	Visual Re	sources and View Planes	4-40
	4.5.1	Impact Assessment Methodology	
	4.5.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.5.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.5.4	No-Action Alternative	
	4.5.5	Summary of Impacts on Visual Resources and View Planes	
4.6	Visitor Us	se and Experience	
	4.6.1	Methodology for Impacts Assessment	
	4.6.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.6.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.6.4	No-Action Alternative	
	4.6.5	Summary of Impacts on Visitor Use and Experience	
4.7	Water Res	sources	
	4.7.1	Methodology of Impact Assessment	
	4.7.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.7.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.7.4	No-Action Alternative	
	4.7.5	Summary of Impacts on Water Resources	
4.8		s Materials and Solid Waste	
	4.8.1	Methodology of Impact Assessment	
	4.8.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.8.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.8.4 4.8.5	No-Action Alternative	
		Summary of Impacts from Hazardous Materials and Solid Waste	
4.9		ture and Utilities	
	4.9.1	Methodology of Impact Assessment	
	4.9.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.9.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.9.4	No-Action Alternative Summary of Impacts on Infrastructure and Utilities	
4.10	4.9.5 Noise	Summary of impacts on infrastructure and Otifities	
4.10			
	4.10.1	Methodology of Impact Assessment	
	4.10.2 4.10.3	Evaluation of Potential Impacts at the Preferred Mees Site Evaluation of Potential Impacts at the Reber Circle Site	
	4.10.3	No-Action Alternative	
	4.10.4	Summary of Impacts on Noise	
4.11		ty	
1.1.1	4.11.1	Methodology of Impact Assessment	
	4.11.1 4.11.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.11.2	Evaluation of Potential Impacts at the Reber Circle Site	
		Dramation of rotential impacts at the Reber Chere Dite	

SECTION

	4.11.4	No-Action Alternative	
	4.11.5	Summary of Impacts on Air Quality	4-148
4.12	Socioecon	omics and Environmental Justice	4-149
	4.12.1	Methodology of Impact Assessment	4-150
	4.12.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.12.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.12.4	No-Action Alternative	
	4.12.5	Summary of Impacts on Socioeconomics and Environmental Justice	
4.13	Public Ser	vices and Facilities	4-155
	4.13.1	Methodology of Impact Assessment	4-155
	4.13.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.13.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.13.4	No-Action Alternative	
	4.13.5	Summary of Impacts on Public Services and Facilities	
4.14	Natural Ha	azards	4-159
	4.14.1	Methodology of Impact Assessment	4-159
	4.14.2	Evaluation of Potential Impacts at the Preferred Mees Site	
	4.14.3	Evaluation of Potential Impacts at the Reber Circle Site	
	4.14.4	No-Action Alternative	
	4.14.5	Summary of Impacts From Natural Hazards	
4.15	Summary	of Potential Impacts Resulting From the Proposed ATST Project	
4.16	•	uired Analyses	
	4.16.1	Relationship Between Local Short-Term Uses of the Environment	
	4.10.1	and Long-Term Productivity	4-167
	4.16.2	Irreversible and Irretrievable Commitments of Resources	
	4.16.3	Unavoidable Adverse Impacts	
		4.16.3.1 Unavoidable Adverse Short-Term Impacts	
		4.16.3.2 Unavoidable Adverse Long-Term Impacts	
4.17	Cumulativ	re Impacts to the Affected Environment	
	4.17.1	Past Actions at HO and Adjacent Neighbors	4-170
	4.17.2	Present Actions at HO and Adjacent Neighbors	
	4.17.3	Reasonably Foreseeable Future Actions at HO and Adjacent Neighbors	
	4.17.4	Land Use and Existing Activities	
	4.17.5	Cultural, Historic, and Archeological Resources	
	4.17.6	Biological Resources	
	4.17.7	Topography, Geology, and Soils	
	4.17.8	Visual Resources and View Planes	
	4.17.9	Visitor Use and Experience	4-194
	4.17.10	Water Resources	
	4.17.11	Hazardous Materials and Solid Waste	4-199
	4.17.12	Infrastructure and Utilities	4-202
	4.17.13	Noise	4-210
	4.17.14	Air Quality	
	4.17.15	Socioeconomics and Environmental Justice	
	4.17.16	Public Services and Facilities	
	4.17.17	Natural Hazards	
	4.17.18	Summary of Intensities of Impacts	
4.18	Mitigation	1	4-227

SECTION

<u>5.0</u>	NOTIFI	CATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES	<i>5-1</i>
5.1.	EIS Process.		5-1
	5.1.1	Pre-Assessment Notification	
	5.1.2	Pre-assessment Public Scoping Meetings Pursuant to NEPA and OEQC Guidar	
	5.1.3	Additional Public Meetings	
	5.1.4	Publication of the Draft Environmental Impact Statement	
	5.1.5	Publication of the Supplemental Draft Environmental Impact Statement	5-18
5.2	The Section	106 Consultation Process Pursuant to the National Historic Preservation Act	5-25
	5.2.1	Section 106 Consultation Chronology	5-30
	5.2.2	Addressing Adverse Effects	
5.3	Consultation	Under the Endangered Species Act	5-95
<u>6.0</u>	UNRES	SOLVED ISSUES	<u>6-1</u>
7.0	REFER	RENCES	7-1
<u>8.0</u>	ACRON	YMS, ABBREVIATIONS AND TERMINOLOGY, INDEX	<u>8-1</u>
8.1	Acronym	S	8-1
8.2	Abbrevia	tions and Terminology	8-5
8.3			
<u>9.0</u>	LIST OI	F PREPARERS	<u>9-1</u>
10.0	LIST OI	F FEIS RECIPIENTS	10-1

LIST OF FIGURES

FIGURE

PAGE

SECTION 1.0: INTRODUCTION

1-1	Proposed ATST Project Location on Island of Maui, Hawai'i	1-3
1-2	Haleakalā High Altitude Observatory Site Aerial Showing Existing Facilities.	1-3
1-3	Haleakalā High Altitude Observatory Site, Department of Energy, and Federal Aviation Administration Properties	1-4
1-4	Aerial Showing Mees Site and Reber Circle Site Locations.	1-4
1-5	Haleakalā High Altitude Observatory Site Tax Map Key.	1-5
1-6	Haleakalā High Altitude Observatory Site and Adjacent Properties	1-6
1-7	Primary Agencies for the Proposed ATST Project	1-8
1-8	The Impact of Atmospheric Seeing and Correction by Adaptive Optics Techniques	1-12
1-9	Coronal Phenomena.	1-14
1-10	Massive Eruptions on the Sun.	1-14
1-11	"Little Torches" on the Sun	1-18
1-12	State of Hawai'i Conservation District Subzones	1-28

SECTION 2.0: PROPOSED ATST PROJECT AND ALTERNATIVES

2-1	ATST Test Tower at Haleakalā High Altitude Observatory Site.	2-6
2-2	HO Infiltration Basin Site – Eliminated From Consideration.	2-7
2-3	Roque de los Muchachos Observatory, Canary Island, La Palma, Spain	2-9
2-4	ATST Test Tower at Roque de los Muchachos Observatory	2-10
2-5	Big Bear Solar Observatory and Test Tower	2-15
2-6	Proposed ATST Project at the Mees Site.	2-19
2-7	Aerial Rendering of Proposed ATST Project	2-19
2-8	Grading/Leveling Footprint	2-22
2-9	Most Efficient Soil Placement Plan for Stormwater, Erosion Control, and Water Catchment	2-24
2-10	M3 Engineering, Inc. Drawing of Proposed Foundation System for Telescope and Enclosure	2-25
2-11	Diagram of Caissons on Rock Layer	2-25
2-12	Proposed ATST Facility Section Drawing Showing Depth of Foundations in Relation to Building and Natural Rock	2-26
2-13	Alternative Construction Staging Area Configuration.	2-28
2-14	Staging Area in Close Proximity to Proposed Construction Site.	2-29
2-15	Existing HALE Entrance Station and Proposed Widened Shoulder.	2-33
2-16	Proposed ATST Construction Schedule.	2-35
2-17	Site Plan Showing Wastewater and Grounding Systems.	2-39
2-18	Site Layout of Proposed ATST Project at the Reber Circle Site.	2-42
2-19	Aerial Rendering of Proposed ATST Project at the Reber Circle Site	2-42
2-20	Excavation Footprint for the Reber Circle Site.	2-45

FIGURE

LIST OF FIGURES

PAGE

SECTION 3.0: DESCRIPTION OF AFFECTED ENVIRONMENT

3-1	Existing Access to HO.	3-4
3-2	Sign at Entrance to HO	3-5
3-3	Crater Historic District Map	3-8
3-4	Set-aside "Area A" and East and West Ahu Locations at HO	3-13
3-5	East- and West-facing Ahu	3-14
3-6	Petrel Burrows Near Summit of Haleakalā.	3-36
3-7	Petrel Burrows In and Around HO Property.	3-37
3-8	Current Distribution of Nēnē on Maui.	3-38
3-9	Topography for Island of Maui, Hawaiʻi	3-44
3-10	Current View of HO from Pu'u Ula'ula	3-46
3-11	Hydrologic Features.	3-49
3-12	Existing Stormwater Runoff Patterns at HO	3-51
3-13	Per Capita Personal Income.	3-66

SECTION 4.0: ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND MITIGATION

Mage Site Viewshed Applysis 45	0
Reber Circle Site Viewshed Analysis4-59	9
Viewpoint Locations4-60	0
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1)4-62	2
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Mees Site Rendering4-62	3
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1)4-64	4
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Reber Circle Site Rendering4-62	5
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Mees Site Pier Construction Rendering	6
View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Reber Circle Site Pier Construction Rendering	7
View from Park Road (Viewpoint 2)4-66	8
View from Park Road (Viewpoint 2) and Mees Site Rendering	9
View from Park Road (Viewpoint 2)4-70	0
View from Park Road (Viewpoint 2) and Reber Circle Site Rendering4-7	1
View from Park Road (Viewpoint 3)4-72	2
View from Park Road (Viewpoint 3) and Mees Site Rendering	3
View from Park Road (Viewpoint 4)4-74	4
View from Park Road (Viewpoint 4) and Mees Site Rendering4-7	5
View from Park Road at Entrance to Hosmer Grove (Viewpoint 5)4-70	6
	View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1)

LIST OF FIGURES

FIGURE

PAGE

4-12b	View from Park Road at Entrance to Hosmer Grove (Viewpoint 5) and Mees Site Rendering	4-77
4-13a	View from Paliku Cabin (Viewpoint 6).	4-78
4-13b	View from Paliku Cabin (Viewpoint 6) and Mees Site Pier Construction Rendering	4-79
4-14a	View from Paliku Cabin (Viewpoint 6).	4-80
4-14b	View from Paliku Cabin (Viewpoint 6) and Reber Circle Site Pier Construction Rendering	4-81
4-15a	View from Kula Highway, below Holy Ghost Church (Viewpoint 7).	4-82
4-15b	View from Kula Highway, below Holy Ghost Church (Viewpoint 7), and Mees Site Rendering	4-83
4-16a	View from 'A'apueo Drive, Kula (Viewpoint 8).	4-84
4-16b	View from 'A'apueo Drive, Kula (Viewpoint 8), and Mees Site Rendering.	4-85
4-17a	View from Lower Piiholo Road, Olinda (Viewpoint 9).	4-86
4-17b	View from Lower Piiholo Road, Olinda (Viewpoint 9), and Mees Site Rendering	4-87
4-18a	View from Pukalani Terrace Shopping Center (Viewpoint 10).	4-88
4-18b	View from Pukalani Terrace Shopping Center (Viewpoint 10) and Mees Site Rendering.	4-89
4-19a	View from Kahikinui (Viewpoint 11).	4-90
4-19b	View from Kahikinui (Viewpoint 11) and Mees Site Rendering.	4-91
4-20a	View from Kaupo (Viewpoint 12).	4-92
4-20b	View from Kaupo (Viewpoint 12) and Mees Site Rendering.	4-93
4-21a	View from Keonekai, Kihei (Viewpoint 13).	4-94
4-21b	View from Keonekai, Kihei (Viewpoint 13), and Mees Site Rendering.	4-95
4-22a	View from Keonekai, Kihei (Viewpoint 13).	4-96
4-22b	View from Keonekai, Kihei (Viewpoint 13), and Reber Circle Site Rendering.	4-97
4-23a	View from Lipoa Parkway, Kihei (Viewpoint 14).	4-98
4-23b	View from Lipoa Parkway, Kihei (Viewpoint 14), and Mees Site Rendering.	4-99
4-24a	View from Mokulele and Pi'ilani Highways, Kihei (Viewpoint 15)	4-100
4-24b	View from Mokulele and Pi'ilani Highways, Kihei (Viewpoint 15), and Mees Site Rendering	4-101
4-25a	View from Ma'alaea Harbor (Viewpoint 16).	4-102
4-25b	View from Ma'alaea Harbor (Viewpoint 16) and Mees Site Rendering.	4-103
4-26a	View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17)	4-104
4-26b	View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17), and Mees Site Rendering	4-105
4-27a	View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17)	4-106
4-27b	View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17), and Reber Circle Site	
	Rendering.	
4-28	Impulse and Non-impulse Construction Noise Contours.	4-139
4-29	TMK Maps Showing Haleakalā Ranch and HALE Land	4-205

SECTION 5.0: NOTIFICATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES

5-1	Federal Register Notice of Intent, June 23, 2005.	5-2
5-2	Office of Environmental Quality Control Environmental Announcement, June 23, 2005	5-3

LIST OF FIGURES

FIGURE

5-3	Public Scoping Meetings Notification: Maui Weekly, June 30 to July 6, 2005 Issue	5-9
5-4	Public Scoping	
5-5	Informal Community Meeting Notification: Maui News Public Notice, March 23, 2006	
5-6	Informal Community Meeting Notification: Haleakalā Times Community Calendar, March 15 to 28, 2006 Issue.	5-10
5-7	Federal Register Notice of DEIS, September 6, 2006.	
5-8	Office of Environmental Quality Control DEIS Notice, September 8, 2006.	
5-9	DEIS Public Comment Meetings Notifications: Maui News Public Notice, March 23, 2006	
5-10	DEIS Public Comment Meetings Notification: Haleakalā Times and Maui Weekly-South Edition, September 13 to 26, 2006 Issue	5-17
5-11	Federal Register Notice of SDEIS, May 8, 2009	
5-12	Office of Environmental Quality Control DEIS Notice, May 8, 2009.	
5-13	Section 106 Meeting Notification: Maui News Public Notice,	
5-14	Section 106 Meeting Notification: Haleakalā Times, March 15 to 28, 2006 Issue and Maui Weekly-South Edition, March 16 to 22, 2005 Issue	
5-15	Section 106 Meeting Notification:	37
5-16	Section 106 Meeting Notification: Haleakalā Times, April 26 to May 9, 2006 Issue and Maui Weekly-South Edition, April 27 to May 3, 2006 Issue.	
5-17	Section 106 Resolution Proposals Status Update Postcard, June 5, 2006.	
5-18	Section 106 Meeting Notification,	5-43
5-19	Proposal Submitted by Warren Shibuya	5-49
5-20	Proposal Submitted by Maui Community College	5-57
5-21	Proposal Submitted by International Brotherhood of Electrical Workers Local 1186.	5-69
5-22	Proposal Submitted by Maui Hotel & Lodging Association.	5-71
5-23	Proposal Submitted by Maui Native Hawaiian Chamber of Commerce.	5-72
5-24	Proposal Submitted by Laborers' International Union of North America, Local 368,	5-77
5-25	Proposal Submitted by Aha Ali'i O Kapu'aiwa O Kamehameha V, Clifford Hashimoto, Ali'i Sir and Grand Master	5-79
5-26	Proposal Submitted by Hawai'i Carpenter's Union.	5-80
5-27	Proposal Submitted by Maui Economic Development Board.	5-81
5-28	Proposal Submitted by Office of Hawaiian Affairs	5-82

LIST OF TABLES

TABLE

PAGE

EXECUTIVE SUMMARY

ES-4-1	Impact SummaryES-	-47
ES-4-2	Mitigation Summary.	-63

SECTION 1.0: INTRODUCTION

1-1	Capabilities Required for Solar Observational Progress.	1-12
1-2	Facility History at Haleakalā High Altitude Observatory Site.	1-21
1-3	Existing Facility Uses at Haleakalā High Altitude Observatory Site.	1-23
1-4	Regional Scientific Events and Activities.	1-24
1-5	Anticipated Permits and Approvals Required for the Proposed ATST Project	1-26
1-6	Agency Consultation.	1-30

SECTION 2.0: PROPOSED ATST PROJECT AND ALTERNATIVES

2-1	La Palma Annual Hours of Acceptable Seeing and Sky Brightness.	2-9
2-2	Big Bear Lake Annual Hours of Acceptable Seeing and Sky Brightness.	2-14
2-3	Summary of Annual Hours of Acceptable Seeing and Sky Brightness	2-17
2-4	Anticipated Major Use of the Road for Construction of the Proposed ATST Project	2-30
2-5	Hazardous Materials	2-37

SECTION 3.0: DESCRIPTION OF AFFECTED ENVIRONMENT

3-1	Supplemental Cultural Impact Assessment Community Consultations.	3-9
3-2	Kahikinui Homestead Community Board Meeting Consultation	3-11
3-3	Maui Community College Hawaiian Studies Program Student Consultation.	3-11
3-4	Summary of Traditions Related to Haleakalā	3-16
3-5	Contributing Features of the Haleakalā Highway Historic District	3-25
3-6	Summary of HO Archeological Sites.	3-28
3-7	Summary of HALE Archeological Sites Along the Park Road Corridor.	3-29
3-8	Threatened and Endangered Species Occurring at HO	3-35
3-9	Hazardous Materials Management Plans at HO.	3-54
3-10	Haleakalā High Altitude Observatory Site Traffic Study Summary	3-58
3-11	Definitions of Acoustical Terms.	3-60
3-12	Hawai'i State, County of Maui, and Island of Maui Resident Population.	3-63
3-13	Population Projection for the Island of Maui, 2000 – 2030	3-63
3-14	Housing	3-64
3-15	Personal Income by Major Source and Earnings by Industry.	3-65

LIST OF TABLES

TABLE

3-16	Rate of Employment in Maui County	-66
3-17	Population Percentage by Race/Ethnicity	-70
3-18	Earthquake Magnitudes and Their Effects	-73

SECTION 4.0: ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND **MITIGATION**

4-1	Programmatic Monitoring for Active Preservation of Invertebrates, Flora, and Fauna at HO During and After Construction of the Proposed ATST Project	4-34
4-2	Summary of Mitigation Measures Adopted During Section 7 Consultations.	4-35
4-3	Viewpoint Location and View Description.	4-41
4-4	Summary of Impacts on Visual Resources and View Planes	4-56
4-5	Proposed ATST Project Hazardous Substance Uses.	4-122
4-6	Noise Attenuation Over Distance, Construction-Related Sources.	4-138
4-7	Impact Summary Table.	4-162
4-8	Past, Present, and Reasonably Foreseeable Future Actions Associated With HO and Adjacent Neighbors.	4-171
4-9	Intensity of Impacts from Past Actions.	4-222
4-10	Intensity of Impacts from Present Actions.	4-224
4-11	Intensity of Impacts from Reasonably Foreseeable Future Actions.	4-225
4-12	Summary of Cumulative Impacts from the Addition of the Proposed ATST Project.	4-226
4-13	Mitigation Summary.	4-227

SECTION 5.0: NOTIFICATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES

5-1	Pre-Assessment Notification Distribution List, June 2005	5-4
5-2	EISPN Distribution List, August 2005.	5-7
5-3	DEIS Distribution List, September 2006	5-13
5-4	Summary of DEIS Meeting Participants.	5-18
5-5	SDEIS Distribution List, May 2009.	5-21
5-6	Summary of SDEIS Meeting Participants.	5-24
5-7	Historic/Cultural Resource Preservation Consultation.	5-25
5-8	Section 106, Invitation to Participate Distribution List, February 15, 2006	5-32
5-9	Formal Section 106 Meeting Notification Distribution List, March 28, 2006.	5-33
5-10	OHA-Recommended List of Those Invited to Participate	5-35
5-11	Formal Section 106 Meeting Notification Distribution List, May 1, 2006.	5-36
5-12	DEIS and Resolution Proposals Status Update Distribution List, June 5, 2006	5-38
5-13	SCIA (July 4, 2007) and MCC Mitigation Proposal (November 8, 2007) Distribution List	5-40
5-14	Section 106 Consultation List as of June 2009	5-45

This page intentionally left blank.

EXECUTIVE SUMMARY

Following issuance of the Supplemental Draft Environmental Impact Statement (SDEIS) on May 8, 2009, a 45-day public comment period commenced. That comment period, during which two public hearings were held and numerous comments were submitted, ended on June 22, 2009. This FEIS reflects the changes that were made to the SDEIS in response to comments received, availability of new data, and correction of errors and omissions. Text that has been added after the SDEIS was published is made **BOLD** to help the reader identify these changes¹. Where sections have been revised to provide further clarification and analysis in response to comments on the SDEIS, a notification appears in a box at the outset of each such section.

ES-1.0 INTRODUCTION

The proposed ATST Project is an applicant action by the National Science Foundation (NSF) for the development of the Advanced Technology Solar Telescope (ATST) within the 18.166-acre University of Hawai'i (UH) Institute for Astronomy (IfA) Haleakalā High Altitude Observatory (HO) site at the summit of Haleakalā, County of Maui, Hawai'i.

The primary goals of the proposed ATST Project are to understand solar magnetic activities and variability, both because the Sun serves as a key resource for understanding the underpinnings of astrophysics and our understanding of magnetic plasmas, and because activity on the Sun drives space weather. Space weather creates hazards for communications to and from satellites, as well as for astronauts and air travelers. Furthermore, and perhaps most importantly, the variability in solar energy induced by solar activity affects the Earth's climate.

This **Final** Environmental Impact Statement (**FEIS**) is a joint Federal and State of Hawai'i document prepared in compliance with National Environmental Policy Act (NEPA), **42 U.S.C. §§ 4321**, *et seq.*, **and its implementing** regulations and guidelines. The NEPA process is **a Federal process**, separate and distinct from the State of Hawai'i environmental process to be completed by the University of Hawai'i (UH) in accordance with applicable State of Hawai'i statutes and regulations. No final action will be taken by NSF pertinent to funding the on-site construction, installation, and operation of the proposed ATST Project until the decision-making process under NEPA has been completed.

This FEIS is also prepared to evaluate the potential environmental **impacts** associated with the issuance of a Special Use Permit (SUP) by the National Park Service (NPS) pursuant to 36 Code of Federal Regulations (CFR) § 5.6 to operate commercial vehicles on the Haleakalā National Park (HALE) road during the construction and operation phases of the proposed ATST Project. In 2006, NSF issued a Draft Environmental Impact Statement (DEIS) that did not include an analysis of **the proposed ATST Project's impacts** to the Park road corridor. It is for this reason and because additional studies were prepared in response to comments on the DEIS that NSF prepared **a Supplemental Draft EIS (SDEIS)** that became public on May 8, 2009. Following a public comment period that ended on June 22, 2009, this FEIS was prepared.

¹ State of Hawai'i Dept. of Health, Office of Environmental Quality Control requirement.

ES-1.1 Proposed ATST Project Location

The proposed ATST Project would be located on State of Hawai'i land within the Conservation District on Pu'u (hill) Kolekole, near the summit of Haleakalā. Pu'u Kolekole is about 0.3 mile from the highest point, Pu'u Ula'ula (Red Hill) Overlook, which is in HALE. At an elevation of 10,023 feet, Haleakalā is one of the prime sites in the world for astronomical and space surveillance activities. The proposed ATST Project would be located within the 18.166-acre HO site at the summit of Haleakalā, County of Maui, Hawai'i, on approximately 0.86 acres of undeveloped land. The 0.86 acres includes the leveling area, buildings, and paved pads. The preferred site is east of the existing C. E. Kenneth Mees Solar Observatory (MSO) and will be referred to in the FEIS as the Mees site or "Preferred Mees site." The alternative site is a currently unutilized site within HO known as **the Reber Circle site** and will be referred to in this FEIS as the Reber Circle site. A No-Action Alternative has also been considered. These alternatives are further defined in Section 2.0-Proposed ATST Project and Alternatives.

ES-1.2 Land Ownership

In 1961, an Executive Order (EO) by Governor Quinn set aside 18.166 acres of land on the summit of Haleakalā in a place known as Kolekole to be under the control and management of the UH Institute for Astronomy (IfA) for **observatory site** purposes. The site is known as HO and it is the only such property on Haleakalā specifically designated for such purposes. UH is the recorded fee owner of the parcel identified as Tax Map Key (TMK) (2) 2-2-07-008.

The Park road corridor is owned and managed by HALE, a unit of the National Park System. The Park road corridor — specifically, a 50-foot corridor along the Park road measured from the mid-point of the road and extending out 25 feet on each side -— includes the roadway itself and the historic bridge and multiple culverts. The Park road corridor is included because a SUP is required by HALE to operate commercial vehicles within the Park.

ES-1.3 Identification of Agencies Proposing the Action

NSF serves as the lead Federal agency for review under NEPA. NSF would fund the construction of the proposed ATST Project if it were to be approved. The NSF is an independent Federal agency, which was created by Congress in 1950. The NSF's Statutory Mission is "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense."

The Association of Universities for Research in Astronomy (AURA) is a consortium of universities, and educational and other non-profit institutions that operates world-class astronomical observatories, termed "centers". Its members are comprised of 33 U.S. institutions and 7 international affiliates. AURA acts on behalf of the science communities that are served by its centers and as trustees and advocates for the centers' missions.

AURA operates the National Solar Observatory (NSO) under a cooperative agreement with NSF. The proposed ATST Project is a proposal of the NSO that is being considered for funding by the NSF. The IfA is one of several partners collaborating on the proposed ATST Project and, therefore, it is cooperating in the Federal NEPA process, as well as leading the parallel State of Hawai'i EIS process.

NSF is the agency primarily responsible for the proposed ATST Project. It assumes responsibility for preparing the FEIS in accordance with NEPA, the Council on Environmental Quality (CEQ) NEPA-Implementing Regulations (40 CFR Parts 1500-1508), and the NSF's NEPA-implementing regulations (45 CFR Part 640). While the NSF is the agency primarily responsible for the proposed ATST Project and

assumes responsibility for the FEIS in accordance with (Hawai'i Administrative Rules) HAR Title 11 Chapter 200-4(a), the accepting authority for the proposed ATST Project, pursuant to the relevant State of Hawai'i authorities, would be UH.

ES-1.4 Project Summary

Need for the Project. Since George Ellery Hale's 1908 discovery that sunspots coincide with strong magnetic fields, astronomers have become increasingly aware of the Sun's magnetic field as a complex and subtle system. The familiar 11-year sunspot cycle is just the most obvious of its many manifestations. Recent advances in ground-based instrumentation have shown that sunspots and other large-scale phenomena that affect life on Earth are intricately related to small-scale magnetic processes whose inner workings happen on scales that are too small to be observed with current ground- and space-based telescopes.

At the same time, using advances in computer science and technology, scientists have developed intriguing new theories about those small-scale processes, but they lack empirical observational data to verify the validity of their models. Scientists are positioned for a new era of discovery about the Sun and how it affects life on Earth, how distant stars work, and how to possibly control plasmas in laboratories.

To achieve observational progress in solar astronomy, a solar telescope would require the capability to obtain the sharpest visual image possible using a telescope with optics sufficiently refined to produce that level of detail. Secondly, it would also need the capability of collecting as much "useful" solar radiation as possible and delivering it to the telescope's instruments. Third, it would need to be capable of observing the widest spectrum of solar light to observe atmospheric properties from the various structures on the Sun. Neither the current MSO facility on Haleakalā nor any other current or planned ground-based or space-based solar telescope in the world has these capabilities.

Purpose of the Proposed ATST Project. A primary goal of the proposed ATST Project would be to help scientists understand the solar magnetic activities and variability that drive space weather and the hazards it creates for astronauts and air travelers, and for communications to and from satellites.

The proposed ATST Project would be unique in its ability to resolve fundamental length and time scales of the basic physical processes governing variations in solar activity. Just as fundamental problems in atomic, nuclear, and gravitational physics were revealed through earlier studies in solar physics, the proposed ATST Project would have a broad **impact** on astronomy and astrophysics, plasma physics for potential future power systems, solar-terrestrial relations and climatology and ultimately, prediction of solar activity.

Another primary objective for the proposed ATST Project would be to resolve fundamental length and time scales of the basic physical processes governing variations in solar activity associated with climate changes on Earth.

To meet this challenge, a team led by the NSO is developing the proposed ATST Project as the world's largest optical solar telescope. An unobstructed 4-meter (13-foot) diameter primary mirror combined with the latest in computer and optical technologies would give the proposed ATST Project sharper views of solar activities than any telescope on the ground, in space, or in the planning stages.

At the onset of the 21st century, fundamental physical processes that govern the behavior of the sun and many other astrophysical objectives remain elusive. The sun provides the laboratory and unique opportunity to probe cosmic magnetic fields with unprecedented resolution in space and time and to test theories of their generation, structure, and dynamics. The field of solar physics has developed rapidly during the last decade, to a point where sophisticated theories and models await critical observational tests. Existing instrumental capabilities, however, no longer are sufficient to meet this challenge. Recent incorporation of practical adaptive optics systems in astronomical telescopes, coupled with other advances in unique and powerful instrumental techniques, now promise a major advance in solar observing capabilities.

There are three primary objectives for the **proposed** ATST telescope that must be met:

- **Objective 1:** The ability to efficiently observe the solar atmosphere at or near the diffraction limit of the telescope (in other words, when turbulence in the atmosphere is minimal);
- **Objective 2:** The ability to efficiently observe the faintest outer layers of the solar atmosphere, the corona, adjacent to the very bright photosphere; and,
- **Objective 3:** The ability to observe the solar atmosphere at wavelengths from visible through midinfrared wavelengths.

The ability to address these scientific objectives defines NSF's purpose and need for the proposed ATST Project. In considering the potential funding of the proposed ATST Project, NSF has relied on the opinions of a large number of experts in the fields of astronomy, solar and space physics, as well as experienced telescope engineers and builders. In their consideration of the proposed ATST Project, these experts scrutinized the ability of the ATST design to meet the three primary science objectives in the context of an assumed satisfactory site.

ATST Education and Public Outreach. The ATST consortium provides **Education and Outreach** (E&O) on several fronts that leverages and expands existing programs within the partnering groups and creates unique opportunities offered by the **proposed ATST Project** during both its development and operation. An E&O Officer has been appointed to coordinate the efforts of the **proposed** ATST partnering organizations.

A goal is to establish several graduate student positions at the partnering universities, including UH. Thesis topics would encompass a range of innovative engineering and solar science applications relating to the proposed ATST Project. Well-established, ongoing E&O activities complement the goals of the proposed ATST Project.

Some preliminary plans for the E&O Program include internships, post-doctoral fellowships, and student programs. NSO would develop a program for internships with college students from Hawai'i, the NSO would provide opportunities for Post-doctoral candidates to participate in analysis, modeling, simulation and instrumentation efforts related to the science and engineering objectives of the proposed ATST Project and develop educational modules designed to take advantage of the new observations and insights that would be derived from science operation of the proposed ATST Project.

The proposed ATST Project would encompass materials and in-service training for a range of hands-on and computer activities in conventional school and teacher in-service settings or as informal science education offerings at science camps, museum lectures, and other venues.

ES-1.5 Current Environmental Setting for Proposed ATST Project

HO is wholly contained within Pu'u Kolekole. Geologic studies describe the HO property as an asymmetric volcanic cone whose slopes are steeper at the western and northwestern sides, while the eastern and southern slopes are gentler. Much of the northern slope — most of which is occupied by the

Air Force Maui Space Surveillance Complex (MSSC) — is flattened and has been disturbed. The central crater of Kolekole is described as a flattened bowl of ponded ankaramite lava, spatter and pyroclastic ejecta.

In addition to the facilities located at HO, two ahu (altar or shrine) are also located within the HO property. A Native Hawaiian master dry-stack mason constructed an east- and a west-facing ahu in 2005, signifying sacred ceremonial sites. The east ahu was dedicated as Pā ele Kū Ai I Ka Moku and the west ahu was dedicated as Hinala'anui. Native Hawaiians practicing cultural traditions are welcome to utilize these existing ahu sites.

In 1961, the 18.166 acres of land were designated and assigned to the **UH for observatory site** purposes, under EO 1987 by then Governor Quinn. UH IfA is responsible for managing and developing the land. Other agencies established adjacent facilities through **Executive Orders** during the same period. The history of scientific events begins in the spring of 1951 when Grote Reber conducted radio astronomy experiments at Haleakalā and extends to the most recent notable milestone; dedication of the University of Hawaii's newest telescope, the PS-1, in July 2006.

Existing uses of HO include astronomical research facilities for advanced studies of astronomy and atmospheric sciences. There are eight facilities with different primary functions at HO. These range from space surveillance to asteroid hunting to amateur astronomy.

Within the broader Maui region, there are science programs and activities sponsored by various local, State, and Federal organizations that include opportunities to conduct research in astronomy, engineering, adaptive optics, computer sciences, geology, meteorology, oceanography, physics, social sciences, and the life sciences, as well as participate in internships, work with a mentor, conduct astronomical measurements, and attend scientific talks.

Reference to Related Existing or Planned Projects in Region. Currently there are no existing projects at HO or within the areas directly adjacent to HO. Two recently completed existing projects were: 1) the U.S. Army Corps of Engineers construction of an addition to the Advanced Electro-Optical System (AEOS) structure that houses a Mirror Coating Facility (MCF) for the AEOS primary mirror. This project was completed in 2007 on behalf of the Air Force Research Laboratory (AFRL); and, 2) the Maui Television Broadcast site on Pu'u Kolekole, located near the entrance to HO, was decommissioned after the relocation of broadcast towers to the 'Ulupalakua Ranch site. All structures were removed from the site, which was returned to a natural state. This project was completed in February 2009. Currently there is only one planned action within the foreseeable future at HO. The SLR 2000, proposed to be installed on the southwestern side of the MSO, is an autonomous and eye-safe photon-counting Satellite Laser Ranging station.

No public or private projects are known to be planned for the region in which the proposed ATST Project would be constructed. The existing State Land Use District for the proposed ATST Project is designated as Conservation District, General Subzone. The 18.166 acres of HO land are within the Conservation District lands; therefore, no private projects are planned in the existing areas that constitute the General Subzone of conservation lands around the summit of Haleakalā.

ES-1.6 Compliance with Government Agencies

This FEIS is prepared pursuant to NEPA, its implementing regulations (40 CFR Parts 1500-1508), and NSF's NEPA-implementing regulations (45 CFR Part 640). It is also prepared pursuant to the State of Hawai'i Chapter 343 HRS, State Environmental Review Law, and Title 11, Chapter 200 HAR, EIS Rules, in that the proposed ATST Project may potentially meet one or more of the significance criteria for impacts on Conservation District Land. HAR 13-5-31(1) (Permit and Applications) requires an FEIS to

accompany the required Conservation District Use Application (CDUA). A copy of the FEIS will be submitted with the CDUA. A copy of the IfA's Long Range Development Plan (LRDP) will also be submitted with the CDUA per the request made by the State of Hawai'i Department of Land and Natural Resources (DLNR) Office of Conservation and Coastal Lands (OCCL).

The proposed ATST Project would require a number of State and Federal permits and approvals prior to construction, if approved. Most of those permit and approval applications that historically have needed iterative consultations, agency review, or formal concurrence, have already been initiated. The Conservation District Use Permit (CDUP) application, however, requires an appended FEIS. In addition, a SUP from HALE to operate commercial vehicles on the Park road during construction and operation of the proposed ATST Project is required.

ES-1.7 State of Hawai'i Land Use Conformity

The existing State Land Use District for the proposed ATST Project is designated as Conservation District, General Subzone. The objective of the General Subzone is to designate open space where specific conservation uses may not be defined, but where urban use would be premature. During the past few years, the OCCL within the DLNR has administered CDUPs for numerous potential uses, among them astronomical facilities on Haleakalā. The proposed ATST Project would be located in the area of the Conservation District that has been set aside for astronomical research under HAR §13-5-25: Identified land uses in the General Subzone, which is applicable from R-3 Astronomy Facilities, (D-1) Astronomy facilities under an approved management plan.

The Coastal Zone Management Area (CZMA) as defined in Chapter 205A, HRS, includes all the lands of the State. The subject parcel is not within the Special Management Area, pursuant to the County of Maui Planning Department map entitled Island of Maui Showing Special Management Area.

The Hawai'i State Plan, Chapter 226, HRS establishes a set of goals, objectives and policies that serve as long-range guidelines for the growth and development of the State. The Plan is divided into three parts, only one of which is appropriate to the proposed ATST Project: Part I-Overall Theme, Goals, Objectives and Policies. The sections of the Hawai'i State Plan Part I **that are** directly applicable to the proposed ATST Project are listed below and are discussed in Sections 2.0, 3.0, and 4.0 of this FEIS.

State of Hawai'i law requires that the government give systematic consideration to the environmental, social, and economic consequences of proposed development projects prior to allowing construction to begin. The law also assures the public the right to participate in planning projects that may affect their community. As mentioned above, the preparation of environmental documentation for the proposed ATST Project jointly serves both the Federal and State processes. The NSF **has made the DEIS and the SDEIS available** for review and comment through a public comment period and public hearings. In addition, **the DEIS and SDEIS were published** through the State Office of Environmental Quality Control's (OEQC) "The Environmental Notice" bulletin.

The DLNR is an integral part of the environmental review process for the proposed ATST Project. Since HO is on Conservation District lands, the proposed ATST Project will be subject to a permit for nonconforming use of conservation lands. The permit application process will require extensive environmental, biological, cultural, and historic review by various State agencies, followed by public hearings and **a decision by** the Board of Land and Natural Resources (BLNR).

ES-1.8 County of Maui Community Plan

The Makawao-Pukalani-Kula Community Plan includes a policy that states: "Encourage Federal, State and County cooperation in the preparation of a comprehensive Haleakalā summit master plan to promote orderly and sensitive development which is compatible with the natural and native Hawaiian cultural environment of Haleakalā National Park."

The proposed ATST Project conforms to the IfA's LRDP for HO, which is the UH contribution to any summit master plan. There are more than twenty-five separate agencies with interests and facilities in the summit area of Haleakalā. IfA has taken the lead at the summit in preparing a LRDP for the coming decade, and the proposed ATST Project was an integral part of the IfA plan. The LRDP has specific protocols and measures that ensure orderly and sensitive development that is designed to be compatible with the intended land-use and purposes for the 18.166 acres of land under the auspices of IfA.

ES-1.9 Agency Notification and Collaboration

NSF and its collaborating agencies began the process of informal consultation with Federal and State agencies in May 2005, along with State of Hawai'i elected officials, island community groups, **Native Hawaiian organizations and individuals**, and relevant commercial interests. Details about agency collaboration and consultation throughout the FEIS process can be found in Section 5.0-Notification, Public Involvement, and Consulted Parties. Numerous formal and informal consultations took place with these entities and groups to ensure full disclosure and information.

ES-1.10 Draft and Supplemental Draft Environmental Impact Statement Public Involvement

The DEIS was made public on September 8, 2006, to coincide with notification in the OEQC "Environmental Bulletin". Notification was also published in the Federal Register on September 6, 2006 (Federal Register, Vol. 71, No. 172). Three public comment meetings were held and the public was provided an opportunity to submit comments during the required 45-day public comment period.

The SDEIS was made public on May 8, 2009, and notification was published in the Federal Register and the OEQC "Environmental Bulletin". Public comment hearings on the SDEIS were held during the 45-day comment period ending June 22, 2009, during which two public hearings were held and thousands of public comments were received.

During the intervening period between publication of the DEIS, the SDEIS, and the FEIS, numerous formal and informal consultation meetings were held with native Hawaiian organizations and individuals, the interested public, and Federal and State agencies to solicit input on the proposed ATST Project's effects on cultural and historic resources.

ES-2.0 PROPOSED ATST PROJECT AND ALTERNATIVES

A detailed description of the proposed ATST Project and Alternatives is found in Section 2.0.

ES-2.1 Introduction

The proposed ATST Project includes construction, installation, and operation at HO on the island of Maui, Hawai'i. The proposed ATST Project also involves obtaining a SUP from HALE to operate commercial vehicles on the Park road. This section describes the preferred site and one alternative site, as

well as a No-Action Alternative. The proposed ATST Project would **be constructed**, **if approved**, at one of two currently unutilized sites within HO. The preferred site is near the existing MSO facility and is referred to in this FEIS as the **Preferred** Mees site **or the Mees site**. The alternative site would be at an identified and currently unutilized site within the HO boundary large enough to accommodate the telescope. This site is the previous location of a radio astronomy experiment, referred to at HO as Reber Circle and will be referred to in this FEIS as the Reber Circle site.

This section describes the development of the alternatives and process for identifying scientifically viable sites, construction activities and schedule, the final form the proposed ATST and its supporting facilities would take, and ATST operations. Furthermore, this section includes a discussion of sites considered but not carried forward for full analysis and evaluation, due to their failure to meet the purpose and need of the proposed ATST Project.

ES-2.2 Site Selection

The existing ground-based solar telescope facilities **funded** by NSF were built over a generation ago. The proposed ATST Project represents an opportunity to implement a unique astronomical resource that is expected to be useful and innovative for several decades to come. As such, the selection of the site is critically important. Thus, the site selection process was carried out with substantial solar research community oversight and input. A detailed chronology is presented for site selection.

ES-2.3 Alternatives Eliminated from Further Consideration

In order to determine which sites would meet the purpose and need of the proposed ATST Project, the Site Survey Working Group was formed. A detailed discussion of the site selection process by this group is presented, including the objective criteria and analyses that ultimately reduced the 72 candidate sites to 6, then 3, and, finally, to Haleakalā as the only **location** that would meet the scientific objects for the proposed ATST Project.

Comments were raised by the public in response to the DEIS and SDEIS regarding the viability of three other sites, 1) a third unused site at HO, 2) land within the "Saddle Area," which currently hosts other Federal, State, and private facilities, and 3) a space-based telescope. A detailed discussion is presented to explain why those choices are not viable.

ES-2.4 Description of the Proposed ATST Project at the Preferred Mees Site

The proposed ATST Project would construct and operate a reflecting Gregorian-type telescope that would deliver images of the sun and the solar corona to instrument stations mounted on the telescope and on a rotating platform located below the telescope. The facilities would include:

- 1. The observatory facility, which includes the telescope, its pier, and the rotating instrument platform,
- 2. The telescope enclosure,
- 3. The Support and Operations Building (S&O Building) adjacent to the observatory,
- 4. A utilities building attached to the S&O Building by an underground utility chase,
- 5. Parking for the facility as a whole; and,
- 6. Modifications to the existing MSO facility.

The entire facility would include approximately 43,980 square feet of new building space, within a site footprint of 0.74 acres.

ES-2.4.1 Features of Infrastructural Design

This section discusses the design features of the proposed infrastructure. Supplemental information is provided in Vol. II, Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure.

The distance between the primary mirror (M1) and the secondary mirror (M2) together with the M1 diameter and off-axis mounting, effectively establishes the swing radius and the required dimensional clearance of the telescope (in altitude and azimuth) and the size of the enclosure required to protect it. Following the identification of the Haleakalā site and the consideration of the typical variation of turbulence with height above the ground, the proposed height of the telescope — defined as the distance from ground level to the rotational center of the telescope — was established to be 28 meters (92 feet).

With the exception of the Utility Building, the rest of the proposed ATST facility would be white **due to the need** to reduce heat absorption, thus decreasing air turbulence that would degrade the seeing.

Additional facilities associated with the **proposed ATST Project** would include a grounding field consisting of a series of shallow trenches around the facility and fanning out to the south of the S&O Building, a wastewater treatment plant with a capacity of 1,000 gallons/day and an associated infiltration well, a stormwater management system including gutters, catchment drains, an underground tank and pipes connecting it to the cistern at the MSO facility, a new electrical transformer next to the Utility Building; and a diesel generator for use in case of power outages.

ES-2.4.2 Potential Use of the Mees Solar Observatory Facility

The existing MSO facility is a 45-year-old concrete block structure of approximately 5,440 square feet. The building currently houses a telescope and connecting instrument rooms as well as offices, labs, a shop, kitchen, and restrooms. Early in the feasibility investigation for the proposed ATST Project, it was suggested that utilizing some of the facilities in the existing MSO would help reduce the need to construct new building space to support some of the construction and operational requirements. The IfA, the owner of the MSO facility, agreed to this potential shared use of building space with the specific terms to be negotiated as the needs arise. This has allowed the **proposed** ATST Project to reduce the construction of new enclosed building space, with commensurate reduction in the scope, duration, material delivery, site coverage and other parameters of the project that are inherently related to its overall scope.

ES-2.4.3 Construction Activities

The proposed ATST Project construction would involve land clearing, demolition, grading/leveling, excavation, soil retention and placement, construction, remodeling of the MSO facility, paving, and other site improvements.

Land Clearing. Land clearing using bulldozers and other heavy machinery would be required. Existing vegetation is very sparse and no Federally-threatened Haleakalā silverswords ('ahinahina, or *Argyroxiphium sandwicense*) or other protected species have been identified on the site (see Section 3.0-Description of Affected Environment).

Demolition. Minimal removal of vegetation would be necessary to clear the primary site for the proposed ATST Project. Facilities to be demolished or removed at the MSO facility include the ATST test tower and foundations, tower and weather station, driveway, parking area, rock wall borders, generator and

other selective demolition at the shop/utility area; and, a facility underground cesspool. Demolition would be staged, beginning with the removal of on-site structures and continuing later with the interior work in the MSO facility after the proposed ATST structure is nearly complete. The total duration of demolition activities conducted at different times during the course of the project would be approximately two months.

Grading/Leveling. The construction of the proposed ATST Project would require grading to create a level pad at least 20 feet wider in all directions than the base level footprint of the enclosure and the S&O Building. The critical nature of the structural bearing condition requires that the level area be achieved primarily by cutting or excavating rather than by a cut and fill approach. An estimated 2,500 cubic yards of soil and rock would be removed for leveling in order to prepare the site for construction. The duration of this activity would be approximately one month.

Excavation. Excavation would include removal of rock and soil to accommodate the foundation systems of the telescope pier, the telescope enclosure, the S&O Building, the elevator and platform lift, the utility building, and the utility chase. Additional excavation would be needed in order to trench for utility lines, all of which would be installed underground. The major structural excavation is expected to follow the leveling work and is anticipated to take approximately two months to complete.

Soil Retention or Repair Measures. Soil retention would be achieved using on-site native rock to form a sloped rip-rap embankment. In some places, there is an expected requirement for over-excavation, fill, and re-compaction. Every effort would be made to utilize existing on-site soil. Any required importation of outside fill would comply with sterilization procedures and other required precautions against unintentional importation of invasive biological species.

Placement of Excess Soil and Rock. At an average volume of 20 cubic yards per truckload, approximately 250 truck trips would be necessary to relocate excess rock and soil. Native soils and rock would be spread on the hillside along the Main Observatory Road, approximately 328 feet west of the existing MSO facility. All native rock and soil removed from the site would be placed at locations within HO boundaries under supervision of a cultural monitor.

Soil Placement Area. The primary site for locating excavated material would be within the HO boundary, most likely below the Faulkes Telescope facility. The material removed in the initial site leveling and structural excavation for the proposed ATST Project would be deposited in this location to a maximum thickness of about 6 feet at the east end, tapering down to be level with the existing site at the west end of HO property near the Federal Aviation Administration (FAA) facility. This new fill would be configured to maintain the established stormwater management flow paths for HO. An alternative location for excavated material that would be more efficient from an engineering perspective would be the open area to the southwest of HO. This area would provide better erosion control for the southwest part of the cinder cone, however, use of this area would first require FAA approval.

Alternate Soil and Rock Placement Strategies. A significant percentage of the material that would be excavated from the site is expected to be in the form of large intact pieces of rock. Subject to approval by IfA, other HO tenants, and the Cultural Monitor, these large rocks may be placed at locations around the HO property. As an additional strategy for beneficial use of on-site soil material, sand and silt may be taken from the infiltration basin area to be utilized for backfill around the proposed ATST structures. This could potentially eliminate the need for imported backfill material and would also augment periodic removal of sand and silt that must be done to maintain the capacity and percolation of the infiltration basin to help reduce potential erosion.

Construction. To determine the extent of excavation and underground work required for the proposed ATST Project, a preliminary design for the telescope and enclosure foundations has been established. After presenting the overall design in public meetings and **after** publication of the DEIS, it **became** evident from subsequent descriptions of the foundations by concerned members of the community, that this aspect of the proposed ATST Project was not been well understood. Therefore, **the SDEIS further clarified the descriptions of the foundations, which is also captured in** this section of the FEIS, which provides a detailed description of the foundation in order to clarify the nature and dimensions of the proposed foundations.

The buildings would be constructed of steel, concrete, manufactured siding and roofing panels, insulation, standard utility materials, and standard interior finish materials. The foundations of the telescope and enclosure would be constructed concurrently with the excavation and concrete work required for the support facilities.

The foundations of the telescope and enclosure would be constructed concurrently with the excavation and concrete work required for the support facilities. The telescope pier would also likely be included in that early phase of work. The lower enclosure would be constructed concurrently with the steel erection and exterior construction work on the S&O Building. Following substantial completion of these activities, the on-site erection of the rotating upper enclosure would begin and would be completed over a period of approximately one year. Following this, the telescope mount would be erected, which is also anticipated to take approximately another year.

Staging. Following receipt of comments on the SDEIS from the FAA, the primary staging area has been revised to be on-site at HO. The space directly around the construction site would be utilized for staging and storage of only the essential construction facilities. Any activities requiring spaceintensive staging would take place at the material manufacturers' facilities or other off-summit locations. On-site administrative space for contractors would be limited to shared work areas in one or two common job site trailers. Only the materials and assemblies required for immediate installation would be transported to the site, with limited availability of space for advanced stockpiling or storage of future required materials.

A more efficient and cost-effective alternative area for staging would be the open area southwest of the FTF, which is approximately 0.9 acres and managed by the FAA. The majority of on-site construction materials and temporary facilities would be confined to this area. Contractors' trailers and storage containers, parking for large construction equipment and vehicles, lunch/break area for workers, roll-off dumpsters and other trash receptacles, portable toilets, and other temporary facilities typically needed for construction sites would be accommodated at this location. A large open area would be reserved for lay down and pre-assembly of large structural pieces or other staging activities that can be done away from the main site. At this time, however, the use of that area is neither approved nor allowed by the FAA. Therefore the site space around HO would likely be the primary staging area.

Construction Traffic. As a result of the public comment period that followed the publication of the DEIS and **subsequent** meetings with HALE, NSF agreed to assess the extent of construction traffic traversing through HALE. Early in the assessment process, HALE contracted with the Federal Highway Administration (FHWA) for field investigation and preparation of a study defining the current condition of the **Park** road and the extent of potential increased wear from construction traffic related to the proposed ATST Project. As a follow-up to that initial study, the FHWA recommended and later performed an additional road condition investigation. **The FHWA was contracted to perform this additional work**, which included borings of the existing pavement, Falling-weight Deflectometer testing, and more thorough assessment of the drainage structures along the Park road.

In cooperation with those studies, ATST project engineers estimated the required use of the road by large vehicles (defined by the FHWA as Class 5 or larger) during the course of construction. This information was provided to HALE and FHWA for their reference in assessing potential **impacts**. ATST Project engineers have continued to refine that estimate based on logistical planning and discussions with contractors. The number of truck and automobile trips that are anticipated to be required over the 7-year construction, integration, and commissioning phases of the proposed ATST Project is approximately 25,000. Less than 800 of the anticipated vehicle-trips would be by large trucks (FHWA class 5 and larger). The majority of the anticipated trips would be by small pick-up trucks, vans and passenger vehicles, as required for the commuting of workers, small equipment or material deliveries, and passenger car traffic for inspection and supervision.

The FHWA report also includes detailed information about the condition and anticipated future maintenance requirements of the sections of the Park road, including the roadway, culverts, and bridge. The details of these conditions are described in this section. Tables are presented describing the major use of the Haleakalā Highway for construction of the proposed ATST project. If the proposed ATST Project is approved, the SUP to be issued by HALE would **include** any mitigation measures **designed to address impacts on the Park road corridor from ATST-related** construction traffic; **such mitigation measures would likely include** any contribution to **necessary** road maintenance and repair. NSO is developing a management plan to ensure implementation of mitigation measures associated with the proposed ATST Project.

ATST Project Engineers estimated the required use of the Park road by large vehicles (defined by the FHWA as Class 5 or larger) during the course of construction. This information was provided to HALE and FHWA for reference in assessing any potential **impacts**. ATST Project Engineers have continued to refine that estimate based on logistical planning and discussions with contractors. The number of truck trips anticipated to be required over the 5-year construction phase of the proposed ATST Project is also listed and described in this section.

HALE Entrance Station Clearance. During the investigation of potential road and traffic issues, the current configuration of the existing entrance station for HALE was identified as a restriction to wide truck loads. The conveyance of large unitary pieces of the ATST telescope, the primary mirror in its protective crate, and other constituent elements of the proposed ATST Project would require truck loads of up to 32 feet 10 inches in width. The HALE entrance station currently provides one paved driving lane approximately 12 feet wide on both the entrance and exiting sides. Development by ATST engineers of alternative proposals for wider clearance, and subsequent consideration by HALE staff identified a mutually preferred option, which is to temporarily widen and improve the shoulder on the entry (uphill side) of the entrance of approximately 12 feet beyond the existing paved roadway at the widest point, and tapering back to the roadway on each end, so as to provide a widened, drivable lane capable of supporting the widest and heaviest of the anticipated ATST loads. Other requirements of the **proposed ATST** Project would include protecting underground utilities, relocating an existing light pole, upgrading utility pull boxes to withstand the anticipated loads, and other related work. This would be done outside of nēnē nesting season.

Best Management Practices. A variety of best management practices (BMPs) (required practices established in the LRDP and policies reflecting public consultation during the **NEPA** process) would be implemented during construction, in order to prevent damage to the natural **and cultural** environment.

Proposed Construction Schedule. The earliest possible construction start would be during fiscal year 2010. Excavation and construction of the foundations and pier would take place in the first year of construction (2010) and erection of the enclosure and building structures would follow in the second,

third, and fourth years (2011 to 2013). Once the enclosure is positioned, the telescope mount would be installed and the majority of the remaining work would be inside the buildings and enclosure. The optics, control systems, and instrumentation would progress toward the end of construction and into integration, testing, and commissioning of the various systems and instruments. The final phase of construction would be the verification of the science and the transition into a fully operational system by 2017). A graphic timeline is included which notes that tasks that have the potential for noise or vibration would be curtailed or restricted during 'u'au nesting and egg-incubation periods, as required by the mitigations defined by the U.S. Fish and Wildlife Service (USFWS).

ES-2.4.4 Telescope Operation Activities

During the final stages of construction, initial operation of the **proposed ATST Project** would begin. The first scientific use of the facility would mark a shift in priorities from telescope commissioning activities to early scientific observational priorities. A ramp-up of full operational support would begin during telescope integration and continue through final commissioning of the first major science instrument. As the facility is staffed for telescope operations, construction staff on site would begin to decrease. Additionally, as new instruments become operational, more facility staff would be hired to conduct operations. As with other observatories at HO, the operations staff would be drawn from available local Maui personnel to the fullest extent possible.

Shift Schedule. The proposed daily schedule for operations would be dictated by solar observing hours from sunrise to sunset. Preparing the dome and telescope for observing would begin approximately one hour before sunrise and shutdown procedures would continue until approximately one hour after sunset. Off-site staffing would work on Maui or at the NSO offices which are currently sited in Sunspot, New Mexico and Tucson, Arizona.

Transportation. During operation, ATST-related road traffic to the summit of Haleakalā is expected to be relatively minimal. There would be a van shuttle for observatory employees scheduled between the base facility in the Kula/Waiakoa area and the facility at HO, separate passenger cars driven by staff or visiting observers making a round-trip to HO, and commercial service-vehicle traffic to support the operation of ATST of vehicles up to Class 5 size. Larger commercial vehicles, Class 6 and above, would be used primarily for delivery of water, liquid nitrogen and other utility commodities.

Hazardous Materials. Operations at HO facilities sometimes require the use, handling, storage, and disposal of hazardous materials (HAZMAT) performed in compliance with 40 CFR §260-299, Solid Wastes, and the Resource Conservation and Recovery Act. A HAZMAT management plan specific to the proposed ATST Project has been prepared and is included as Vol. II, Appendix D-ATST Hazardous Materials and Hazardous Waste Management Program. Hazardous materials that would be used at the proposed facility and their uses are also shown in this section. The transportation of HAZMAT for the proposed ATST Project would be fully consistent with Title 49 CFR Parts 100-185 Hazardous Materials Regulations – Hazmat Transportation as prescribed by the Federal Department of Transportation. Only properly licensed companies and individuals would be contracted to transport HAZMAT.

Transportation of the mirror stripping, cleaning and recoating materials and the effluent from this process would occur approximately once every two years. Transportation of the heat transfer fluid concentrate would occur as needed for replenishment of the system, approximately once per year. None of the mirror coating materials or heat transfer fluids is defined as hazardous under Title 49 CFR Federal Department of Transportation. Liquid nitrogen and helium would be transported to the ATST facility on a periodic basis approximately four times per year. A table of HAZMAT that would be used is presented.

Utilities. <u>Stormwater Management</u> - Rainwater around the enclosure would be collected and utilized as a source of domestic water for observatory operations. The combined capacity of the underground holding tank and cistern (104,000 gallons total) would be adequate to capture all the rainwater flowing off of the roof and building surfaces of the existing Mees facility and the proposed ATST Project during the maximum defined 5-year rainfall event (8 inches in 24 hours). Additional rainwater would be allowed to overtop the cistern and would be distributed over a broad area of the natural cinders to maximize percolation and minimize erosion-causing run-off. An assessment of and a management plan for the existing HO surface drainage system and the infiltration basin is in Vol. II, Appendix L-Stormwater Management Plan for HO.

<u>Wastewater Management</u> - Under the Preferred Mees Site alternative, a new individual wastewater treatment plant would be installed near the MSO facility after removing the cesspool and remediation of the site. The treatment plant would have adequate capacity to process the domestic wastewater from both the proposed ATST Project and the MSO facility. The system would be installed underground in the same vicinity as the previous cesspool. This plant would utilize aeration and biologically accelerated treatment to achieve effluent standards acceptable for infiltration directly to ground. Effluent would be disposed of in an on-site infiltration well. The specification of the treatment plant and its related piping/discharge system would be based on the anticipated utilization of the facility and the applicable regulations of the State of Hawai'i Department of Health.

<u>Domestic Water Supply</u> - Appropriate systems for treatment, piping, and pumping the cistern water for use in the S&O Building would be provided. The cistern water would be used directly for the domestic fixtures of the proposed ATST Project. Water for human consumption would be provided separately through commercial bottled sources.

<u>Grounding and Lightning Protection</u> - The grounding system for the proposed ATST Project would employ several methods to achieve a safe effective electrical ground connection to the very dry, highresistance volcanic soil. A series of shallow trenches would be dug that extend peripherally around the entire facility and branch out to form a grounding field in the area to the south of the S&O Building. As an alternative to the use of conductive concrete, coke breeze, a black granular material with high electrical conductivity may be specified in the future final design of this system. This proposed system is based on best-proven practices at existing observatories and other critical facilities at high lightning risk sites.

<u>Electricity</u> - Electrical power for the proposed ATST Project would be provided by connection to the Maui Electric Company, Inc. (MECO) substation on HO. The maximum peak electrical demand of the proposed ATST Project is estimated to be 960 kilo-volt amperes (kVA). The current reserve capacity of the main power line to Haleakalā is estimated by MECO to be approximately 1,900 kVA. The ATST Project team has been in contact with MECO engineers who would incorporate the power requirements of the proposed ATST Project into their overall systems planning process, along with other potential future HO needs. A MECO-funded study has been conducted to identify economizing strategies for the proposed ATST Project, such as ice storage to reduce peak-hour power consumption.

The power line for the proposed ATST Project would generally follow the path of existing service lines in order to minimize excavation of previously undisturbed soil. The new service would utilize existing conduits and pull boxes wherever possible. All service lines would be underground and routed around identified archeological features. To provide electrical power in the event of service outages, the proposed ATST Project would include a 300 kilovolt-ampere (kVA) diesel generator to provide for safe shutdown of the telescope and enclosure and for maintaining power to critical systems.

<u>Solid Waste Management</u> - The non-hazardous solid waste (office refuse, food waste, etc.) from operation of the proposed ATST Project would be collected and transported off site regularly for proper disposal in a landfill. Recyclable material in the solid waste (office paper, cardboard, aluminum cans, etc.) would be separated out and taken to an appropriate recycling center.

<u>Communications</u> - The existing facilities at HO are currently served by a microwave link for data transmission; and the U. S. Air Force facility is served by a fiber link. Telephone service for all facilities is provided by Hawaiian Telcom, which has spare fiber lines already in place to the summit. The proposed ATST Project would require connection to those existing data/communications service lines. No upgrade to the current capacity of the lines is anticipated to be necessary.

The proposed ATST Project would require data connectivity of approximately 1 Gigabit per second and transmit data from Haleakalā to locations throughout the world via the Internet. Communications off the summit would use existing fiber optic cables owned by Hawaiian Telecom that stretch from Haleakalā to the Maui High Performance Computing Center in Kihei. Data would also be transmitted to the ATST base facility on Maui using the same fiber optic cables. The location of the Maui base facility and ATST data repository has not been determined.

ES-2.5 Description of the Proposed ATST Project at the Reber Circle Site

As an alternative to the **Preferred** Mees site, the proposed ATST Project **could be constructed** on another site within HO boundaries. This proposed site is the previous location of a radio astronomy experiment referred to as Reber Circle. The principal area of this site is currently unutilized and is the only other area identified at HO that would be large enough to accommodate the proposed ATST Project.

The site is northeast of the preferred site and about 6 meters (20 feet) higher in elevation. It is currently bounded by the two Panoramic-Survey Telescope and Rapid Response System (Pan-STARRS) facilities (PS-1 and PS-2) to the south, the Airglow facility to the south, and the Zodiacal Light facility to the southwest. The site selection process for the proposed ATST Project determined that the Reber Circle site would fulfill all the science criteria as well as **the Preferred** Mees site **would**.

ES-2.5.1 Features of Infrastructure Design

The proposed design of the telescope and instruments is the same as described for the **Preferred** Mees site. The S&O Building would have the same exterior dimensions and the same interior spaces as described for the Mees site. While the Utility Building would be located in a different spot relative to the S&O Building and Telescope enclosure, it would have the same exterior dimensions and would house the same equipment as described for the **Preferred** Mees site. A new wastewater treatment plant would be installed near the Reber Circle site and the MSO facility would continue to use the existing cesspool. All the same facilities would be constructed at the Reber Circle site as **they would at the Preferred** Mees site; however, at the Reber Circle site, a new above-ground fuel storage tank to support the back-up generator would be required.

ES-2.5.2 Potential Use of MSO and Airglow Atmosphere Facilities

The use of the Reber Circle site would likely still require modifications and use of the MSO facility. The proposed Reber Circle site proximity would be less convenient, would be more constricted by topography and adjacent structures than is the **Preferred** Mees site, and areas for additional facilities would not likely be available. **Modification of** the existing shop in the MSO facility to allow it to serve the needs of both IfA and the proposed ATST Project **would be considered**.

The long-term **impact** on the proposed ATST Project would be loss of man-hour efficiency due to the movement from one facility to the other. Other potential shared uses for the MSO facility are the same as described for the **Preferred** Mees site.

The existing UH Atmospheric Airglow instrument platform is a 57-year-old concrete block structure of approximately 300 square feet. Should the proposed ATST Project be constructed at the Reber Circle Alternative Site, the UH Atmospheric Airglow instrument platform would be removed to provide sufficient building space.

ES-2.5.3 Construction Activities

As at the **Preferred** Mees site, project construction would involve land clearing, demolition, grading/leveling, excavation, soil retention and placement, construction, staging, remodeling of the MSO facility, and paving. Most of these activities would be roughly the same in duration and quantity as at the Mees site, with the few exceptions discussed in Section 2.5.3- Construction Activities.

The construction traffic, best management practices, and the construction schedule would be approximately the same for the Reber Circle site as for the **Preferred** Mees site.

ES-2.5.4 Telescope Operation Activities

All proposed ATST operations would be the same at the Reber Circle site as at the **Preferred** Mees site.

ES-2.6 No-Action Alternative

Under the No-Action Alternative, the proposed ATST Project would not be funded, and both the Mees and the Reber Circle sites would remain available for development for other projects within the Conservation District of HO. The No-Action Alternative would limit solar astronomy to current technologies and delay critical measurements of the "reach" of the Sun's coronal magnetic field into the Sun-Earth space environment, and the measurement of the small scale evolution of magnetic fields that control the decay and evolution of sunspots. Since existing instrumental capabilities at facilities such as the MSO facility no longer are sufficient to take this next step toward understanding the fundamental physical processes that govern the behavior of the Sun, and because no facilities capable of observing the magnetic phenomena in the solar atmosphere at the required level of detail, knowledge of the direct impacts of solar activity on life on Earth would not be forthcoming.

ES-3.0 DESCRIPTION OF AFFECTED ENVIRONMENT

A detailed description of the affected environment may be found in Section 3.0.

This section is an overview of the baseline physical, biological, social, and economic conditions that occur within the relevant Region of Influence (ROI) for each resource potentially affected by the proposed ATST Project, as well as other areas. These baseline conditions are referred to as the affected environment. This section is organized by resource area. The ROI is defined at the beginning of each resource section as it applies to that resource. For example, the ROI for geology may be relatively contained to the Hakeakalā High Altitude Observatories (HO) complex; however, the ROI for air quality or socioeconomics may be much larger.

The affected environment of the proposed ATST Project is on land that was designated and assigned to the University of Hawai'i in 1961 for scientific purposes by Governor Quinn's Executive Order (EO) 1987. The 18.166 acres of land assigned to UH is located on State of Hawai'i land within a Conservation

District. The property boundaries for HO are wholly within Pu'u Kolekole near the summit of Haleakalā. The EO land is about one quarter mile from the highest point in Haleakalā National Park, which is known as Pu'u Ula'ula Overlook. The Kolekole cinder cone lies just to the southwest of the topographic apex of the Southwest Rift Zone of Haleakalā. The rift zone forms a spine separating the Kula Forest Reserve from the Kahikinui Forest Reserve, both of which are pristine lands along the rift zone.

The affected environment of the proposed ATST Project also includes portions of HALE. The primary area affected by the proposed ATST Project includes the Park road corridor, the historic bridge and multiple culverts. The Park road corridor is included because a SUP is required by HALE to operate commercial vehicles within the Park and because impacts related to ATST construction and operation related traffic may occur.

ES-3.1 Land Use and Existing Activities

The Region of Influence (ROI) for determining the affected environment for this section includes HO, the adjacent FAA facilities, and the HALE Park road corridor. The objective of the Conservation District in which HO is located is to conserve, protect, and preserve the important natural resources of the State through appropriate management and use in order to promote their long-term sustainability and the public health, safety, and welfare. In accordance with Title 13 Chapter 5, HAR, a Conservation District Use Application would need to be submitted if the proposed ATST Project were to be located within HO. The proposed ATST Project is a land use that falls within the intended purpose behind the conveyance of the HO area to the UH pursuant to the Governor Quinn's EO 1987. This area of the Conservation District has been set aside for "…Haleakalā High Altitude Observatory site purposes only." Other consistent land uses for HO include the many facilities conducting astronomical research and advanced space surveillance that already exist within HO.

ES-3.1.1 Land Use for the Proposed ATST Project

The proposed ATST Project **qualifies as** an identified use in the General Subzone and would be consistent with the objectives of the General Subzone of the land. It would be in close proximity to other previously developed facilities for **astronomical research** and advanced space surveillance. No changes to the identified land use within HO would occur. Subdivision of land would not be utilized to increase the intensity of land use in the Conservation District.

The Park road corridor is part of HALE, the purposes of which are further reflected in a key provision of the **National Park Service** Organic Act **of 1916**, **which is** "to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as would leave them unimpaired for the enjoyment of future generations." The Park road corridor traverses through HALE toward the summit.

ES-3.1.2 Existing Activities

Haleakalā Highway (State Route 37) is a 37-mile road that begins at the Kahului Airport in central Maui and continues as Haleakalā Highway at the Kula Highway junction, becoming State Route 377 until the junction with Kekaulike Avenue in upper Kula. At the Kekaulike Avenue junction it becomes Haleakalā Crater Road (State Route 378) until the entrance to HALE. The Park road corridor is a 10.6 mile stretch of road that begins at the entrance to HALE and ends at the summit of Haleakalā. Along this entire course, the highway climbs from sea level to approximately 10,000 feet, attaining this height in a shorter distance than any other road in the world (NPS, 2008b, p. 2).

Existing access in and out of HO is exclusively via HALE and then through the entrance to the HO

complex just past Pu'u 'Ula'ula. There is no general public access to HO and "AUTHORIZED ENTRY ONLY" is posted on the sign located at the entrance to the facilities. Native Hawaiians, however, are welcome at any time to enter HO for cultural and traditional practices, as the sign also indicates.

The HO area of the Conservation District is set aside for "...Haleakalā High Altitude Observatory site purposes only." Presently, the HO facilities located within HO observe the Sun, provide a worldclass telescope for education and research outreach to students all over the world, use lasers to measure the distance to satellites, track and catalogue man-made objects, track asteroids and other natural potential space threats to Earth, as well as obtain detailed images of spacecraft. It is a principal site for optical and infrared surveillance, inventory and tracking of space debris, and active laser illumination of objects launched into Earth's orbit.

The FAA operates and maintains a rectangular 2.96-acre property along the southwest boundary of HO, which is referred to as the Haleakalā Peripheral Hi Site. This property was originally granted to the Civil Aeronautics Authority (predecessor to the FAA) in 1957 through an Executive Order from the Governor of the Territory of Hawai'i. The site is dedicated to remote air/ground interisland and trans-Pacific communications to and from aircraft.

An unimproved access road known as Skyline Drive originates 0.5 miles southwest of HO at the Saddle Area. Its entire length is located on State land within the Forest Reserve. There are sections of this trail that have a steep grade and soft cinder roadbed that would only support smaller vehicles with four-wheel drive and not standard construction truck traffic

ES-3.2 Cultural, Historic, and Archeological Resources

Cultural, historic, and archeological resources were evaluated within the ROI and include resources within both HO and relevant areas within HALE, including the Park road corridor. All of the areas within the ROI are also within the boundaries of the Crater Historic District, which is listed on both the State Inventory of Historic Places SIHP (SIHP 50-50-11-12-1739) and on the National Register of Historic Places (NRHP) listed in November 1, 1974.

ES-3.2.1 Cultural Resources

A number of traditional cultural practices are conducted within the ROI. These practices require silence and solace and may also require uninterrupted view plane and sacred space. The sign at the entrance to HO states that Native Hawaiians are welcome to enter to conduct their traditional cultural practices within HO. The NPS also supports the perpetuation of traditional cultural practices within areas of HALE, as appropriate under NPS policy.

Initial Cultural Resource Assessments. A cultural resource report entitled "Cultural Resources Evaluation for the Summit of Haleakalā" was prepared in 2003 for the entire HO property and appended to the LRDP. The 2003 report concluded "Kolekole, known as the summit of Haleakalā, or 'Science City' as it is sometimes referred to, is a very sacred place for the Kanaka Maoli (Native Hawaiian), past and present." For the proposed ATST Project, a cultural resources study entitled "Cultural and Historical Compilation of Resources Evaluation and Traditional Practices Assessment" was conducted in 2006 as part of the environmental compliance process. These reports were used to prepare the initial DEIS.

Supplemental Cultural Impact Assessment. As a result of specific concerns **raised** by the commenting public to the cultural and historical evaluation included in the DEIS, Cultural Surveys Hawai'i, Inc. was

commissioned to conduct a Supplemental Cultural Impact Assessment (SCIA) for the proposed ATST Project. The SCIA contains considerable additional historical perspective on Haleakalā. It discusses, in great detail, the **symbolism** of the mountain, the mountain's role in the history of Maui Island as a living entity, as well as the **mountain's archeological** record. **The results of the SCIA describe the cultural significance of Haleakalā, including** its spiritual sacredness and the cultural relationship of Hawaiians to Haleakalā as a whole and to the summit area in particular.

Haleakalā Summit as a Traditional Cultural Property. Haleakalā is considered a significant traditional cultural resource and is eligible for listing on the National Register of Historic Places (NRHP) under two of the four criteria. It is considered a "Traditional Cultural Property" (TCP) and is eligible under Criterion "A" for its association with Native Hawaiian cultural traditions, beliefs, customs, and practices. This is reflected in the number of known uses, oral history, *mele* and legends surrounding Haleakalā. The term "Traditional Cultural Property" is used in the NRHP to identify a property "that is eligible for inclusion in the NRHP because of its association with cultural practices or beliefs of a living community that, (a) are rooted in that community's history, and (b) are important in maintaining the continuing cultural identity of the community". The summit is also eligible under Criterion "C" because it is an example of a resource type, a natural summit, a source for both traditional materials and sacred uses." Over eighty (80) members of the Maui community were contacted to obtain information on the traditions and customs associated with Haleakalā.

In recognition of the cultural importance of Haleakalā, Native Hawaiian stonemasons erected the West and East *ahu* (altar or shrine) for ceremonial use by Kanaka Maoli at HO in 2005 and 2006, respectively. Each *ahu* represents a sacred ceremonial site.

Summary of Haleakalā in Native Hawaiian Traditional Cultural Practices. Traditional cultural practices and sacred sites located within the ROI include:

- 1. Gathering of plants
- 2. Traditional hunting practices
- 3. Collecting for basalt and tools
- 4. Pōhaku Pālaha The Piko of East Maui
- 5. Traditional Birth and Burial Practices
- 6. Haleakalā as a Sacred Mountain
- 7. Ceremonial Practices, e.g., honoring the solstice or equinox
- 8. Astronomy
- 9. Travel

ES-3.2.2 Historic Resources

The cultural resources investigation conducted during fall 2005 identified historic resources at the HO site. Its historic significance is summarized below. The National Park Service (NPS) has evaluated its resources within that portion of the ROI that includes the Park corridor and those are described below.

HO Site. The 2005 field investigation identified one eligible historic site within the ROI, identified as the Reber Circle site. The site is the location of the former Reber radio telescope, constructed in 1952. This site remnant lies at the peak of Pu'u Kolekole. The site was designated by the State Inventory of Historic Places as Site 5443 and qualifies for significance under State historic preservation guidelines and is eligible for listing on the NRHP under Criterion "A" because of its association with mid-20th century scientific studies at Haleakalā, and under Criterion "D" for its potential to yield important

information in the construction and history of the former telescope. The Reber Circle site is located on the peak of Pu'u Kolekole and also has the potential to yield important pre-contact information.

HALE Park Road Corridor. The historic roadway has been evaluated by the NPS and Historic American Engineering Record and determined eligible for listing in the NRHP as an historic cultural landscape with contributing historic features. The applicable eligibility criteria include Criterion "A" for its development of the National Park System, the development of early NPS landscape architectural design styles, and the craftsmanship of the Civilian Conservation Corps and Criterion "C" for its association with rustic, Park design that characterized early NPS development during the 1930s. Historic features of the roadway include: 1 bridge, 11 box culverts, and original culverts with mortared stone headwalls. In addition, the Park road corridor is within the boundaries of the Crater Historic District. The contributing features of the Park road corridor include natural systems and features, spatial organization, land use, buildings and structures, circulation, topography, views and vistas, and archeological sites associated with the cultural landscape.

ES-3.2.3 Archeological Resources

Archeological Resources at HO. Numerous archeological sites have been recorded on the slopes and in the crater of Haleakalā, including, temporary shelters, cairns, platforms with presumed religious purposes, adze quarries and workshops, caves, and trails. These are all remnants of the very elaborate spiritual and cultural life that the Kanaka Maoli focused around Haleakalā. These resources are considered eligible for listing on the NRHP under Criterion "A" for its association with Native Hawaiian cultural traditions, beliefs, customs, and practices and Criterion "D" for its potential to yield important information in prehistory or history.

Within Kolekole, archeological resources of importance are: temporary habitation or wind shelters, two petroglyph images, one site interpreted as a possible burial and two ceremonial sites. The sites are important in that they have yielded information on prehistory. There were no new construction projects initiated at HO between 1981 and 1993. Subsequently, studies were conducted in 1998, 2000, and 2002-2003 as a result of suggested new projects. An archeological investigation of the Preferred Mees site indicates that within the ROI of the HO parcel there have been earthmoving activities associated with the construction of the MSO facility in 1964, new access road, weather tower structures, and other structures. Any archeological sites that may have existed within the footprint for the proposed ATST Project were destroyed with these previous ground-disturbing activities.

Archeological Resources Along the Park Road Corridor. The ROI includes eleven (11) archeological sites within 50 feet of the Park road corridor. Most of these sites are eligible for listing in the NRHP under Criterion "D," and one is listed under both Criteria "C" and "D." These sites include short-term camp sites associated with pre-historic and/or historic activities, cairns that appear to be trail markers, and segments of wall associated with cattle ranching.

ES-3.2.4 National Historic Preservation Act, Section 106 Regulatory Compliance

NSF's consultation process, pursuant to the National Historic Preservation Act of 1966 (NHPA), is discussed in this section because it has been a mechanism to assist in determining the affected environment.

The National Historic Preservation Act (NHPA) requires Federal agencies to consider whether their actions will have **impacts** on historic properties eligible for listing in the NRHP. The heart of the NHPA is the Section 106 process, which seeks to accommodate historic preservation concerns with the needs of the federal undertaking through consultation among the agency official and other interested parties

regarding the potential **impacts** of the undertaking on historic properties. The goal of the Section 106 consultation process is to identify historic properties potentially affected by the undertaking, assess their effects and seek ways to avoid, minimize or mitigate any adverse effects on historic properties. In the State of Hawai'i, NSF is required to consult with the Hawai'i SHPD and all interested Native Hawaiian organizations and individuals where historic properties of significance are involved. In addition to NHPA requirements, the State of Hawai'i requires agencies to promote and preserve cultural beliefs, practices, and resources of Native Hawaiians and other ethnic groups.

The NSF's Section 106 compliance process was initiated prior to issuance of the DEIS. Over 30 formal and informal consultations have been conducted since 2005. Activities included public meetings, workshops, and interviews. Prior to the publication of the SDEIS, additional consultations took place with Native Hawaiian organizations and individuals, community groups, other State and Federal agencies, and other interested parties to discuss the cultural resources involved, potential effects on those resources, and ways in which those effects could be addressed.

Since the issuance of the DEIS **and the SDEIS**, NSF and HALE have been working together to address HALE's environmental compliance needs associated with the SUP required by HALE for commercial vehicles to operate within the Park. NSF and HALE have agreed to coordinate their environmental compliance requirements under both NEPA and Section 106. It was through this partnership that the cultural, historic, and archeological resources of HALE were identified.

ES-3.3 Biological Resources

Biological resources were evaluated within the ROI, which, for these resources, falls within both the HO and the Park road corridor.

From **2002 to 2009**, surveys at HO were conducted to assess its botanical and invertebrate habitats and to map the visitation flight patterns of avian fauna. The surveys were done as part of the LRDP for HO, AEOS Mirror Coating Section 7 consultations, and more recently, as part of the **NEPA** process for the proposed ATST Project.

The results of the surveys generally indicated that the diversity and density of biological populations at HO are dynamic from season to season and over longer temporal periods, depending on a number of factors such as rainfall, temperature variations, and less well-understood factors. Human activities certainly play a role in these dynamic variations.

Mountain summits are typically aeolian deserts populated by a few mosses, lichens, and grasses. The predominant vegetation type at HO is alpine desert/shrubland. Alpine ecosystems exist at elevations of from 9,842 to 11,155 feet above sea level and can be extremely dry. Dry alpine shrublands are sparsely vegetated with dwarf native shrubs. At HO, shrubs consist of interspersed 'ahinahina and na'ena'e. Vegetation cover is restricted by harsh environmental conditions to 10 percent of the surface area or less. Some areas have little as one percent coverage. The vegetation is also low, generally less than three feet high. The ROI includes several species that are listed as endangered or threatened. These are the 'ahinahina (Haleakalā Silversword), the 'ua'u (Hawaiian Petrel), the nēnē (Hawaiian goose); and the 'ope'ape'a (Hawaiian hoary bat).

Since the 1980s, the threat to certain ecosystems within HALE has been more compelling than others; accordingly, this FEIS is focused on those ecosystems (including plants, avian species, and arthropods) within the Park road corridor.

ES-3.3.1 Botanical Resources

The botanical resources within HO include those on disturbed and undisturbed portions of the property. A June 2009 botanical survey (Vol. II, Appendix E-Botanical Survey) indicated that, in general, the number of species has increased over time and it appears the distribution and abundance of both native and non-native plants has increased.

The landscape at HO is considered to be an alpine dry shrubland vegetation type. Vegetation is sparse, varying from a near barren landscape (<1 percent cover) to about 10 percent cover. Botanical resources along the Park road corridor can be grouped into the alpine and subalpine shrubland habitat zones, depending upon elevation. The FEIS describes the diversity and number of plant species at HO.

The introduction of alien invasive species (AIS) was evaluated based upon what is known about existing and past loss of habitat within the ROI. According to the botanical surveys of HO conducted in 2005 and 2009, there were more non-native plants on the HO site relative to similar adjacent "pristine" areas of HALE.

ES-3.3.2 Endangered, Threatened, Listed, or Proposed Plant Species

The 'ahinahina, is Federally-listed as a "threatened" species, meaning that it may become endangered throughout all or a significant portion of its range if no protective measures are taken. In 2002, nine live silversword and three dead silversword flower stalks were located within the HO property. None of the live plants were located on or around the proposed ATST Project areas. One of the dead plants, also found during the 2005 survey, was located east of Reber Circle. The area around the plant was searched for seeds, but none were found.

There are a number of designated silversword critical habitat areas in HALE, and many-flower geranium designated critical habitat areas within the ROI. Within HALE, approximately seven miles of the Park road corridor traverse through designated critical habitat for the silversword.

ES-3.3.3 Faunal Resources

Fauna at HO consists of avifaunal species, mammals, and invertebrates. Three Federal- and State-listed animal species occur in the summit area and slopes of Haleakalā. These are the 'Hawaiian petrel, the Hawaiian goose, and the Hawaiian hoary bat.

ES-3.3.1 Endangered, Threatened, Listed or Proposed Avifaunal and Vesper Bat Species

The 'ua'u, a Federal- and State-listed endangered bird species, is present in the summit area. **There are approximately** thirty known 'ua'u burrows are along the southeastern perimeter of HO and several burrows are northwest of HO, with a large number of burrows within two miles of HO. There are up to 1,000 known burrows within HALE, including a large number along the Park road corridor. The 'ua'u can be found nesting at Haleakalā from February to November. The birds make their nests in burrows, and return to the same burrow every year. The species distribution during their non-breeding season is poorly known, but they are suspected to disperse north and west of Hawai'i with very little movement to the south or east. The 'ua'u typically leave their nests just before sunrise to feed on ocean fish near the surface of the water, and just before sunset transit from the ocean back to Haleakalā.

The nēnē is a Federal- and State-listed endangered species on Haleakalā and is the only extant species of goose not occurring naturally in continental areas. Nēnē formerly bred on most of the Hawaiian Islands, but currently are restricted to the islands of Hawai'i, Kaua'i and Maui. Nēnē seem to be adaptable and are found at elevations ranging from sea level to almost 8,200 feet in a variety of habitats, including non-native grasslands, sparsely vegetated, high elevation lava flows, cinder deserts, native alpine grasslands and shrublands, open native and non-native alpine shrubland-woodland community interfaces, mid-elevation (approximately 2,300 to 3,900 feet) native and non-native shrubland, and early successional cinder fall. Critical habitat has not been designated for the nēnē. The nēnē population on Maui is thought to consist of approximately 330 individuals. While the nēnē has been known to fly over HO, the summit area is outside the known feeding range of the bird.

The 'ope'ape'a, is a Federal-listed endangered species that resides on the lower slopes of Haleakalā. On Maui, the Hawaiian hoary bat resides in the lowlands of the Haleakalā slopes. Even though several sightings have been reported near HO and have been detected near the Park Headquarters Visitor Center and Hosmer Grove. It is unlikely that the bat is a resident of the area due to the relatively cold summit temperatures and the lack of flying insects in the area, which is the preferred food source.

ES-3.3.3.2 Other Native and Introduced Fauna

Fauna of all types are abundant along the Park road corridor, both native and introduced. Other introduced fauna that could be observed within the summit area include the chukar, the feral goat, the Polynesian rat, and the roof rat. The Indian mongoose is occasionally observed on the summit. Cats and mice are also found along the Park road corridor, with cats occasionally seen crossing the Park road. These species are not included on Federal or State threatened or endangered lists.

ES-3.3.3.3 Invertebrate Resources

Due to the harsh environment, fewer insects are present at upper elevations on Haleakalā than are found in the warm, moist lowlands. An exceptional assemblage of insects and spiders, however, make their home on the mountain's upper slopes. A survey and inventory of arthropod fauna was conducted for the 18.166 acres of HO in 2003, and the **Preferred** Mees site and Reber Circle site for the proposed ATST Project were revisited in 2005 for additional arthropod collection and analysis. The arthropod species that were collected in the 2005 study were typical of what had been found during previous studies. No species were found that are locally unique to the site, nor were there any species found whose habitat is threatened by normal observatory operations.

A supplemental arthropod inventory in response to comments submitted for the September 2006 DEIS was conducted in March 2007 for sampling of arthropods at the sites considered in the proposed ATST Project. The goal was to detect additional species that may have been missed during previous samplings. This additional survey, including night sampling, covers a seasonal component not included in the two previous studies.

Comments **during the NEPA process** indicated that the collective invertebrate inventories obtained at HO did not address certain "Species of Concern" (SOC). Therefore, USFWS was contacted to obtain a list of SOC for the ROI so that future surveys could include those. SOC is an informal term not defined in the Federal Endangered Species Act. The term commonly refers to species that are declining or appear to be in need of conservation. Many agencies and organizations maintain lists of at-risk species. These lists provide essential information for land management planning and conservation efforts.

Much like plant inhabitants along the Park road corridor, arthropods may be divided into two general population groups — the aeolian dwellers of the upper road and the subalpine species of the lower road.

In contrast to the more hospitable shrublands, the alpine or upper slopes of the Haleakalā aeolian ecosystem is extremely xeric (dry) caused by relatively low precipitation, porous lava substrates that retain negligible amounts of moisture, little plant cover, and high solar radiation. There are two notable arthropods of concern, the Argentine ant and the Yellow-jacket, of which both are predators within the high-elevation shrubland that constitutes the northwest slope portion of the Park road corridor.

In response to further comments about species of concern that might have been missed during earlier surveys, a third arthropod survey was conducted in June 2009. There were a number of additional species collected, including one endemic carabid beetle and two species of long-horn beetles that are considered rare. This survey also included evaluation of the arthropod resources along the Park road corridor that could be impacted by the construction of the proposed ATST Project. Sixty species of arthropods were observed near the entrance station. Fourteen species of moths were collected, ten endemic to Hawai'i. None of these species have a restricted distribution and are all considered common.

ES-3.4 Topography, Geology, and Soils

The following discussion on topography, geology, and soils includes both the HO and Park road corridor.

ES-3.4.1 Topography

The ROI for this section includes both the HO and Park road corridor. Unless otherwise noted, the discussion in this section applies equally to all areas within the ROI. Haleakalā, the larger volcano on the eastern side of Maui, rises above at 10,023 feet above sea level (ASL). The summit area of Haleakalā is rugged and barren, consisting of lava and pyroclastic materials. Within a 4-mile radius of HO the elevation drops to approximately 3,600 feet ASL, with an average slope greater than 30 percent. The proposed ATST Project is located in the crater area of the Kolekole cinder cone, which is part of the Southwest Rift Zone.

ES-3.4.2 Geology

The ROI for this section includes both the HO and Park road corridor. Unless otherwise noted, the discussion in this section applies equally to all areas within the ROI. The **Preferred** Mees site consists of polygonal to sub-columnar lava horizons, which are broken into large blocks along horizontal and vertical joints. The near horizontal ankaramite lava is ponded and agglutinated with spatter and some cinder. These lava horizons are several feet thick and intermixed with cinder beds. The Reber Circle site did not show gross evidence of faulting, instability or mass wasting, and in a human-referenced time scale, both the Reber Circle site and the Mees site.

ES-3.4.3 Soils

The ROI for this section includes both the HO and Park road corridor. Unless otherwise noted, the discussion in this section applies equally to all areas within the ROI. Soil borings at the **Preferred** Mees site identified a soil profile generally consisting of cinder sands and gravels on top of a basalt layer. Soil profiles were obtained from cores at six locations, five within the proposed ATST Project footprint. Moderately hard to hard basalt substrate substantial enough for bearing weight was identified at depths of 5 to 21 feet below grade. Two cores taken at the Reber Circle site identified hard basalt substrate beneath a thin (5- to 15-foot) layer of less consolidated basalt.

ES-3.5 Visual Resources and View Plane

The ROI for this section includes HO, the Park road corridor, other areas within HALE, and a few areas on Maui as discussed below. Approximately 1.7 million visitors annually are attracted to Haleakalā's various lookouts and vantage points for its spectacular vistas. Looking down the slopes to the west, a majestic view of Maui's isthmus and West Maui Mountains is afforded, while to the east are the richly colored scenes of the crater and, on minimal cloud-cover days, the slopes of Mauna Kea and Mauna Loa on the island of Hawai'i.

On a cloudless night, Haleakalā also serves as an outstanding platform from which to view the heavens, facilitated by its position above the cloud inversion layer, the clean atmosphere, and the lack of degrading light sources.

Visibility of the summit area would be more likely in the early morning before the daytime cloud inversion layer builds up, and in the late afternoon after the inversion layer dissipates. When mid- and upper-level cloud cover is absent, many of the existing structures at HO are visible from miles away. Some of the facilities can also be seen from public viewpoints and highways that climb the slopes of the mountain. The current facilities at HO that are closest to the northern boundary of the property are visible in various locations on Maui. The tallest of these, the metallic 110-foot tall U. S. Air Force Advanced Electro-Optical System completed in 1994, is easily seen with the unaided eye from most areas within the Central Valley as well as from some windward and leeward communities, especially in morning and late afternoon hours. The two white 50-foot domes of the Maui Space Surveillance System are, however, also visible in many of those same areas when the summit area is free of clouds and have been since completion in 1965.

ES-3.6 Visitor Use and Experience

Haleakalā National Park encompasses approximately 33,230 acres and attracts more than one million visitors annually to experience the natural and cultural wonders the park was designated to protect. There are three primary visitor areas within the Park. The first, the "Summit Area," is considered to be the Haleakalā summit. There are two visitor facilities in this area. The Haleakalā Visitor Center, which is near the cinder cone known as Pa Ka'oao (White Hill), is located on the rim of the crater. Another overlook building accessible by vehicle or foot is located at the highest point of Halealakā on Pu'u Ula'ula (Red hill) and is also one of the main attractions for visitors to the summit.

The second, the Wilderness Area, is located over the majority of the eastern side of the Park. A portion of the Wilderness Area inside the crater is accessed through the "Summit Area" and offers hiking from two major trailheads. Leleiwi and Kalahaku Overlooks are located along the Park road between the Park Headquarters Visitor Center and the Pu'u Ula'ula and Haleakalā Visitor Center summit viewing areas.

The frequently visited third area, also part of the Wilderness Area is located on the eastern side of HALE near the coast, and is known as Kipahulu. Hiking, swimming, and camping are available in this area of the Park.

Outside of HALE, an unimproved, access road known as Skyline Drive originates 0.5 miles away from HO at the Saddle Area. It traverses the Southwest Rift Zone, ultimately leading to Spring State Recreation Area (also known as Polipoli State Park), which is located at 6,200 feet ASL within the fog belt of the Kula Forest Reserve.

The proposed ATST Project is located **near HALE** within the HO property and is not open to the general public. The closest visitor facility is the Pu'u Ula'ula Overlook **located within HALE**. The Haleakalā

Visitor Center and the Keonehe'ehe'e (Sliding Sands) Trail Head are approximately a quarter mile to the east of the entrance to both the Pu'u Ula'ula Overlook and the road leading to HO. Haleakalā Observatories are clearly visible from the Pu'u 'Ula'ula Overlook located directly to the northeast of the proposed ATST Project location.

A visitor's survey was conducted in 2000 by the NPS Visitor Services Project as part of the Cooperative Park Studies Unit at the University of Idaho. The primary reason backcountry visitors go to the Summit Area of HALE included the following: 1) sightseeing and scenic driving, and 2) watching the sunrise. The most visited areas of the Summit Area of HALE were identified as Pu'u Ula'ula Overlook and the Haleakalā Visitor Center.

ES-3.7 Water Resources

The ROI for water resources includes HO and the Park road corridor. The ROI is within the Waiakoa and the Manawainui Gulch watersheds. Haleakalā Observatories is within the Waiakoa and the Manawainui Gulch watersheds. The groundwater boundaries are the Kamaole and Makawao Aquifer Systems of the Central Aquifer Sector and the Lualailua and Nakula Aquifer Systems of the Kahikinui Aquifer Sector.

There is no continuous source or supply of water at the summit area of Haleakalā. Water catchment systems store rainwater collected from building roofs, etc. At HO, to supplement this source, water is trucked to each user in certified tanks where it is stored on-site. Users maintain their own collection systems and storage tanks for potable and/or non-potable water, as well as their individual pumping and distribution systems.

ES-3.7.1 Surface Water

All precipitation falling near the summit infiltrates and flows subsurface toward the natural drainage courses, such as Manawainui Gulch.

Due to site topography, as well as a small collection of stormwater conveyance systems consisting of concrete channels and culverts, runoff generated within the HO site is controlled and conveyed via natural drainage paths to an infiltration basin at the western extremity of HO property. Runoff harvesting is also part of the drainage features at HO. Runoff from the Mees building is captured and stored in cisterns and used for domestic water. Some of the runoff from IfA facilities is captured by these cisterns before it reaches the infiltration basin.

ES-3.7.2 Groundwater

The groundwater resources below HO are characterized as part of the Kamaole and Makawao systems of the Central sector and the Lualailua and Nakula systems of the Kahikinui sector. The upper aquifer is classified as being replaceable and highly vulnerable to contamination, while the lower dike aquifers are classified as being irreplaceable and moderately vulnerable to contamination. There are no drinking water wells within 11 miles of the summit.

ES-3.8 Hazardous Materials and Solid Waste

The ROI for HAZMAT and solid waste includes HO, the Park road corridor, and the portion of the State highway leading up to the HALE Park road corridor. This section focuses on the solid and hazardous waste management and disposal practices at HO because this location is the main user of such materials

and solid waste on the summit. The Park road corridor is discussed primarily within the context of transporting such materials and wastes.

Hazardous waste, as defined by the U. S. Environmental Protection Agency (Title 40 of the CFR, Chapter 1, Subchapter I-Solid Wastes, Part 261-299), refers to substances that have "imminent and substantial danger to public health and welfare or the environment."

ES-3.8.1 Solid Waste

Because of the remote location of HO, each facility must be diligent when handling or managing waste. Each facility within the HO complex has its own trash receptacle and each facility's building maintenance personnel are responsible for trash collection. Non-hazardous trash is disposed of off-site in a licensed landfill, with computer paper and aluminum being recycled.

ES-3.8.2 Hazardous Materials

The ATST Hazardous Material and Hazardous Waste Management Plan finalized in April 2006, provides extensive guidance on hazardous material and hazardous waste management for the proposed ATST Project. Guidance on HAZMAT at HO that covers the entire HO property is provided via management plans from IfA and the Air Force Research Laboratory, which are required by several Federal/Dept. of Defense regulations. A list of these plans, an overview of their guidance, and the regulations under which they are required is also in this section. The MSO facility, the Faulkes Telescope Facility, the Pan-STARRS, the Zodiacal Observatory, and the Airglow Facility do not have HAZMAT on-site and are not considered small quantity generators (SQGs). The University of Chicago Neutron Monitor facility is classified as a SQG, since it uses boron trifluoride (BF3) gas and boron is classified as a poisonous gas. Hawai'i does not have a hazardous waste disposal facility; therefore, hazardous waste is shipped to the continental United States for proper disposal.

Spill prevention at Maui Space Surveillance Complex (MSSC) is guided by the February 2003, Spill Prevention Control and Countermeasure Plan for MSSC, prepared by Rocketdyne Technical Services, a Boeing Company. This plan outlines procedures for carrying out response actions for releases of HAZMAT into the air, soil, or water that pose a threat to human health or the environment.

The UH Hazardous Material Management Program, dated October 2002, governs the handling of HAZMAT for the HO site. The management plan complies with applicable Federal, State, and local regulations that govern the use of HAZMAT and the disposal of hazardous wastes. The handling of hazardous waste emergencies at MSSC is directed by the Hazardous Material Emergency Response Plan for the MSSC, which was most recently revised in June 2004 by Boeing LTS, which has the prime responsibility for spill response,

There has been only one recorded material spill incident within HO. On September 11, 1999, a subcontractor working at MSSC released 330 gallons of a 20 percent mixture of propylene glycol and water into the cinders and rock. (NOTE: The Food and Drug Administration (FDA) has determined propylene glycol to be "generally recognized as safe" for use in food, cosmetics, and medicines.) All required notifications were made to the appropriate agencies and personnel and a containment trench and plastic covering were installed immediately. Because the material did not violate the Resource Conservation and Recovery Act and was not Federally-regulated, the Environmental Protection Agency (EPA) was not contacted.

Hazardous materials related to the operation of current HO facilities, and as required for the proposed ATST Project require transportation on the public roads leading to the site. This includes the Park road

corridor, which is subject to traffic congestion during peak tourist seasons and times of day. Since the risk posed by potential spills of HAZMAT would be heightened in the presence of traffic congestion, the transportation of these materials would be scheduled in advance with HALE to avoid peak traffic hours. The other safeguards and regulations that would apply to the transportation of HAZMAT are outlined in Section 2.4.4-Telescope Operation Activities.

ES-3.9 Infrastructure and Utilities

The ROI for infrastructure and utilities includes both HO and the Park road corridor. The affected Infrastructure and Utilities consist of wastewater treatment, stormwater and drainage systems, electrical and communications systems, and roadways and traffic. A detailed description of these systems may be found in Section 3.0-Description of Affected Environment.

ES-3.9.1 Wastewater and Solid Waste Disposal

Septic tanks are the primary means of sewage disposal within the summit area,. There is no central waste/sewage collection or storage system at the Haleakalā summit. Each user provides for the collection and proper storage of wastewater and sewage generated by that site. Trash collection is the responsibility of building maintenance personnel for each facility located within the HO complex. Non-hazardous trash is disposed of off-site in a licensed landfill, with computer paper and aluminum being recycled. Hazardous wastes and petroleum product wastes are segregated at the generation point and handled separately

ES-3.9.2 Stormwater and Drainage System

At the HO site, this confining layer of basalt ranges from depths of 5 to 20+ feet. The significance of a confining layer of basalt near the summit area is that all precipitation falling near the summit is infiltrated and flows subsurface toward the natural drainage courses such as Manawainui Gulch. As a result, runoff from the impervious surfaces associated with HO facilities and adjacent roads may not increase the total volume of stormwater flow entering natural drainages, but may only affect the way it is transported there.

ES-3.9.3 Electrical

Maui Electric Company generates electricity for the HO site. There is a 3750/4688 kVA transformer at the Kula substation that presently serves HO. The site is connected via 23 kilovolts (kV) conductors on power lines to a 450 kVA transformer bank and voltage regulators at a substation within HO and distributed from there.

ES-3.9.4 Communications Systems

Hawaiian Telcom provides telephone and other communications services for the HO complex. HO is currently served for data and telephone connectivity by a range of copper, fiber-optic, and microwave lines. The U. S. Air Force facilities are served by a dedicated fiber cable with OC3C capacity. The IfA facilities are served by fiber-optic lines with gigabit capacity. Hawaiian Telcom provides commercially available copper and fiber-optic lines to HO with more than 100 percent reserve capacity.

The FAA operates and maintains 50-watt transmitter and receiving equipment for remote air/ground interisland and trans-Pacific communications to and from aircraft. The antennas for these transmitters/receivers are located on two towers within the FAA property adjacent to HO. The frequencies for transmission and receiving are in the Very High Frequency (VHF) and Ultra-High Frequency (UHF) radio bands, to and from transiting aircraft at altitudes from 8,000 to 50,000 feet.

ES-3.9.5 Roadways and Traffic

The ROI applicable to this subsection includes the Haleakalā Crater Road (State Route 378) and then the HALE Park road, since these are the only roads available to reach the summit of Haleakalā. Various route options to the summit intersect in the Kula community, from which a single, two-lane County- and State-maintained road ascends to HALE, which continues as a two-lane thoroughfare owned and maintained by HALE. The Park road corridor continues to the Park boundary adjacent to HO.

The condition of the road through HALE has been investigated by the FHWA. The pavement condition, at the time of the field testing campaign conducted by the FHWA in early 2009, is characterized in three different sections, identified by milepost (MP) location. The condition of the road, bridge and culverts are discussed, as is the estimated service life of the road sections.

There are two other access roads that serve the Haleakalā summit area. The FAA maintains an exclusive access road to facilities in the Saddle Area and the FAA Low Site. There is also an unimproved access road known as Skyline Drive originates at the Saddle Area and traverses the Southwest Rift zone, ultimately leading to Spring State Recreation Area (also known as Polipoli State Park).

The State of Hawai'i Department of Transportation (DOT) conducted the most recent 24-hour traffic survey on September 19 and 20, 2007 (DOT, 2007). This survey was conducted at the intersection of Haleakalā Crater Road, Haleakalā Highway, and Kekaulike Avenue and counted individual vehicles traveling on Haleakalā Crater Road. The traffic counts are relatively consistent with a previous traffic study in 2003, which recorded a total two-way 24-hour traffic volume of 1,616 at the same location.

ES-3.10 Noise

The proposed ATST Project involves various construction-related activities, as well as the introduction of stationary sources associated with facility operations. This section provides a discussion of existing noise in the ROI, which includes both HO and areas within HALE from which noise would be audible from the proposed ATST Project. An overview of the fundamentals of noise is presented as it would apply to the existing environment, followed by a discussion of the existing noise conditions at the summit of Haleakalā.

There are no **permanent** noise-sensitive human receptors at HO, such as residences, schools, hospitals, or other similar land uses. In addition, HO is not open to the public. The public areas closest to the proposed ATST Project area are the Pu'u 'Ula'ula Overlook in HALE, which is approximately a quarter mile away, and the Haleakalā Visitor Center, which is approximately **0.65 miles** away. Potential noise-sensitive biological receptors, such as 'ua'u, are discussed in Section 3.3.3-Faunal Resources.

ES-3.11 Climatology and Air Quality

The ROI for determining the affected environment for climatology and air quality includes both HO and the Park road corridor.

ES-3.11.1 Climatology

Maui stands out among the other islands in the County as having the tallest summits and thus the most extreme climate variations. The elevation at the summit of Haleakalā is 10,023 feet above sea level (ASL) and at times experiences snow and hail. In contrast to the beach areas, the summit of Haleakalā can become quite cold at times, with low temperatures that can be below freezing levels. Rainfall on Maui

usually is heaviest in the mountain areas, while the beaches and coasts are the driest. Rainfall on Haleakalā peaks in a band at elevations between 3,000 to 5,000 feet ASL where the moisture-laden trade winds are cooled as they rise against the mountain front and are held below 5,000 feet ASL by a temperature inversion that acts as a climatological boundary in the Hawaiian Islands. At higher elevations, the air can be much drier, resulting in average rainfall of from less than 15 inches to as much as 60 inches a year.

ES-3.11.2 Air Quality

All areas in Hawai'i are considered to comply with Federal and State ambient air quality standards; no areas of Hawai'i are classified as non-attainment or maintenance areas. Therefore, all of Maui, including Haleakalā, is currently an attainment area for EPA "criteria" pollutants, which include sulfur dioxide, nitrogen oxides, carbon monoxide, ozone, lead, and certain particulate matter. Furthermore, Haleakalā is categorized as a "Class 1" area under the Clean Air Act's Prevention of Significant Deterioration Program, a category the EPA reserves for the most pristine areas of the country in order to maintain the excellent level of air quality already attained.

The relatively limited commercial or industrial development on Haleakalā results in few local anthropogenic (manmade) emission sources with the potential to affect air quality at HO. Since the natural substrate at the proposed Project site is, however, a mixture of fine volcanic sand and cinders, a small amount of naturally occurring fugitive dust from the finer material is released when the substrate is disturbed. The primary sources of anthropogenic pollutant emissions at HO are the intermittent activities associated with existing research facility operations. These include low-impact mobile emission sources, such as light vehicle traffic to and from the summit, as well as stationary source emissions resulting from periodic testing of diesel-fueled emergency generators. General maintenance activities at HO likewise result in temporary and low-impact emissions.

ES-3.12 Socioeconomics and Environmental Justice

The ROI for socioeconomics is the island of Maui. **The ROI for environmental justice is the summit area of Haleakalā**. This section is a description of the contribution of the proposed ATST Project to the **existing** economy and the sociological environment **within** the ROI, as well as any **currently existing impacts** on minority or low-income communities or the health and safety of children within the **relevant ROI**.

ES-3.12.1 Resident Population and Housing

The population of the County of Maui **roughly** doubled between 1980 (71,600 **persons**) and 2006 (139,995 **persons**). While the increase in population in the State of Hawai'i was approximately 29.2 percent, between 1980 and 2006, the population increase for the County of Maui was approximately 97.5 percent.

Total housing units in Maui County increased by 12.8 percent from 2000 to 2006. For 2000, the rate of owner-occupied units on Maui and Maui County was 44 percent. For 2006, the rate of owner-occupied units for Maui County was approximately 59 percent, similar to that of the State of Hawai'i. The vacancy rate in 2006 was 25.3 percent for Maui County and 13.5 percent for the State of Hawai'i.

ES-3.12.2 Employment, Economy, and Income

As of June 2009, Maui County experienced sharp increases in the number of unemployed people, pushing the 2009 unemployment rate to 8.1 percent. One year earlier, Maui County recorded a 3.2 percent unemployment rate. The upward changes from a year ago in Maui County saw the local government sector had the largest gain of 150 jobs (6.1 percent), followed by Educational Services with a gain of 50 jobs (4.8 percent). Economic downturns from a year ago show the Natural Resources, Mining and Construction sector lost 800 jobs, the Transportation, Warehousing, and Utility sector lost 500 jobs (-13.7 percent), and the Agriculture (farming) sector lost 200 jobs (-11.4 percent).

It should be noted that Maui, like many places in the United States, Maui County is currently suffering the effects from the recent economic downturn. Although the official statistics from the U.S. Census Bureau for the current year are not yet available, updated economic statistics are available from State Dept. of Business, Economic Development, and Tourism (DBEDT). According to the 2nd quarter data provided from the DBEDT website as of June 2009, there was a total labor force on Maui of 79,100, of which 6,450 people, or 8.1 percent, were unemployed.

ES-3.12.3 Education

Based on the most current official data available, Maui District has a total of 53 schools, with 32 public and 21 private schools. The number of teachers in public schools for the school year 2004 to 2005 was 1,296, with an enrollment of 20,888 students. The number of high school enrollment in public schools for 2004 to 2005 was 6,164 students. The total number of degrees earned from Maui Community College (MCC) in 2005 was 899, including 561 associate degrees and 338 certificates of achievement. During fall 2005, there were 1,163 full-time students and 1,740 part-time students enrolled in MCC. The UH had a total of 56 distance-learning courses in 2005.

Various educational outreach programs for students and others that have potential significance for the proposed ATST Project are currently underway on Maui. These include:

- 1. The Faulkes Telescope Facility within HO, which provides observations for students in Hawai'i and the United Kingdom.
- 2. University of Hawai'i Space Grant Program, which has previously sponsored students at Maui Community College in astronomy-related projects.
- 3. Towards Other Planetary Systems program, a five-year NSF-sponsored Teacher Enhancement program.
- 4. Center for Adaptive Optics (CfAO), which is a partnership between the National Science Foundation Science and Technology Center that is headquartered at the University of California-Santa Cruz, Maui Community College, and the Maui Economic Development Board.
- 5. The CfAO Akamai Internship Program is designed for all community college and university undergraduates in Hawai'i and kama'āina studying on the mainland who are interested in pursuing a career in science, technology, engineering or math fields and have had to overcome barriers to achieve their educational and/or career goals.
- 6. The Professional Development Workshop brings graduate students and post-doctorates from CfAO's mainland sites together with community college faculty members and observatory personnel from Hawai'i for an intensive 5-day training on inquiry-based teaching methods.

7. Industry/Education Collaborative, in which a key component to the success of the partnership comes from a strong collaboration with the technical and scientific community on Maui. Specific activities have been developed to engage this community, as well as mechanisms to obtain input on the courses and programs

ES-3.12.4 Environmental Justice and Protection of Children from Environmental Health or Safety Risks

The primary area of the ROI for this section is **the summit area of Haleakalā**. This FEIS contains a discussion of environmental justice issues in accordance with Executive Order (EO) 12898, and a discussion relating to the protection of children from environmental health risks is presented in accordance with EO 13045. EO 13045, "Protection of Children from Environmental Health Risks and Safety Risks, April 1997," seeks to protect children from disproportionately incurring environmental health risks or safety risks that might arise from Federal policies, programs, activities, and standards. Environmental health risks and safety risks to children are those that are attributable to substances that a child is likely to come into contact with or to ingest.

The HO site is clearly defined and a posted sign at the entrance indicates that access to the area is restricted and off limits to unauthorized personnel. The only people who would typically occupy the HO site and proposed ATST project area would be employees of the various facilities or visiting members of the scientific community. Native Hawaiians are welcome to enter for cultural and traditional practices as indicated by the language on the sign. **There is no minority or low-income populations that reside in close proximity to HO or HALE.**

ES-3.13 Public Services and Facilities

The ROI for determining the affected environment for public services include both HO and the Park road corridor. Public Services and Facilities include police and fire protection, schools, recreational facilities, and healthcare services.

ES-3.13.1 Police Protection

The Maui County Police Department (MPD) is located at 55 Mahalani Street in Wailuku. The station is named Hale Maka'i. Police substations are located in various communities around the County. The closest police substation is located in Makawao approximately 29 miles from the summit of Haleakalā. A new police substation currently being constructed is located in Kula, which is the community closest to the summit, approximately 22 miles away. However, the MPD has no jurisdiction over HALE activities. HALE Federal law enforcement officers are the exclusive policing authority within HALE.

ES-3.13.2 Fire Protection

The island of Maui has ten engine companies, two ladder companies, one rescue/hazmat company, two rescue boats and two tankers. In addition, the department leases a helicopter for rescue and wild land firefighting. The closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā. Another fire station serving the Upcountry community is located in Makawao approximately 29 miles from the summit. These two fire stations, although the closest to HO, are beyond fire fighting capabilities for HO. National Park Wildlife Firefighters work for the common goal of fire management, wildland fire use, fire prevention, and fire suppression. A militia comprised of approximately 10 to 12 wildland firefighters reside on Maui and are certified for this responsibility.

ES-3.13.3 Schools

The closest schools to the proposed ATST Project are located in the Kula community (Haleakalā Waldorf School, King Kekaulike High School, Kula Elementary School, and the Kamehameha Schools) and are approximately 25 to 27 miles from the summit of Haleakalā.

ES-3.13.4 Recreational Facilities

The Haleakalā Visitor Center of HALE is located approximately two-thirds mile northeast of HO and is one of the main points of attraction for visitors of the mountain. Overlooks with orientation panels and descriptive displays are located at Leleiwi, Kalahaku, and Pu'u Ula'ula along the Park road between the Park Headquarters Visitor Center and the summit. **In addition**, rare 'ahinahina (Haleakalā Silversword) plants that can be seen at Kalahaku draw many nature enthusiasts.

Annually, 1.7 million visitors are attracted to the summit, crater, and the 24,000 acres of pristine wilderness of HALE because of the excellent walking, hiking, and horseback riding opportunities available. As of March 18, 2008, the NPS has issued a News Advisory that the moratorium of commercial downhill bicycle rides in HALE will continue pending a full evaluation of all **impacts** from the activity in the Park's Commercial Services Plan.

The Skyline Trail begins at the 9,750-foot elevation at the lowest point of the paved access road near the Saddle Area and continues for about 6.5 miles, ending at the Polipoli Spring State Recreation Area. Trails through the area are open to the public for hiking and related recreational activities except during times of extreme fire danger or inclement weather.

The Park Headquarters Visitor Center, Haleakalā Visitor Center, and the Kipahulu Ranger Station (located on the east side of Maui) have cultural and natural history exhibits. Rangers are on duty during business hours to answer questions and assist visitors. Periodic, guided interpretive hikes and activities are available at both the Haleakalā Visitor Center and the Kipahulu Ranger Station.

There is no food or gas available within the Park. Restrooms are located at the Haleakalā Visitor Center, Kalahaku Overlook, Park Headquarters Visitor Center, and Hosmer Grove and are handicapped accessible. Limited emergency services are available at both the Park Headquarters Visitor Center and Headquarters. When snow and/or icy conditions warrant, the Park closes the road.

ES-3.13.5 Healthcare Services

Maui Memorial Medical Center is located in Wailuku and is approximately 50 miles from the summit. It is the only full-service hospital on Maui **and offers** a broad range of emergency services including complex diagnostic and treatment services. The formerly named Kula Hospital, located in Keokea, is approximately 40 miles from the summit. Beginning October 31, 2005, the newly named Kula Hospital and Clinic began providing urgent care and limited rural emergency care on a 24-hour, 7-day a week basis. **The Kula Hospital offers a** basic laboratory and X-ray services, and an Emergency Department. The Kula Clinic portion of the facility is a comprehensive outpatient clinic with normal business hours Monday through Friday. Emergency medical service stations are located in Kula and Makawao, which dispatch emergency medical care.

ES-3.14 Natural Hazards

The ROI for this section includes the HO and Park road corridor. Natural hazards in the State of Hawai'i consist of drought, earthquakes, high surf, high winds, storms and hurricanes, tsunamis, volcanoes, and

wildfires. Any part of the population could be affected, depending on the lower elevation areas affected by occurrences of these natural hazards.

Natural hazards at the higher elevations of Haleakalā consist of the potential for earthquake movement, hurricanes, high winds. Snow, ice, and extreme cold can produce hypothermia after brief exposure to the cold conditions common on the summit. Hypoxia can also occur because of the thinner air at the high elevation. The specific nature of these hazards is discussed in detail in Section 3.0-Description of Affected Environment.

The 18.166 acres of HO is restricted to only a small number of employees of the various facilities working any time within a 24-hour period. The area outside of HO belongs to the HALE and is predominantly utilized by tourists and HALE personnel during the day. HALE closes the Park road whenever any of the weather conditions listed below becomes critical and serious enough to warrant protecting human life.

Although drought and the possibility of subsequent wildfires is a normal and a recurrent feature of climate, it can occur in all-climatic zones, with its characteristics varying significantly from one region to another. Drought is a temporary aberration and differs from aridity, in that the latter is restricted to low rainfall regions and is a permanent feature of climate.

Hawaii's largest earthquakes, up to magnitude 7.5 to 8.1, are associated with dike intrusions into the active volcanoes and expansion of the volcanoes across the old seafloor. Other earthquakes that are potentially damaging are caused by the load of the Hawaiian Islands on the Pacific lithosphere. Earthquake movement can sometimes be felt at the summit of Haleakalā.

Hurricanes do not strike Hawai'i often, with most weakening before reaching Hawai'i, or passing harmlessly westward and south of the Islands. Strong winds occurring from June to November are always a potential threat from these rare storms, with wind speeds increasing at the higher elevations such as the summit of Haleakalā.

Temperatures on Haleakalā range between 40 and 65 degrees Fahrenheit, but can be below freezing at any time of year with the wind chill factor. Hypothermia is a medical condition in which the victims' core body temperature has dropped significantly below normal (occurring below 95 degrees Fahrenheit) and normal metabolism begins to be impaired.

Ice and snow conditions can occur on the Haleakal \bar{a} roadways making it dangerous for motorists, because, visually, the road appears wet, rather than icy. Under black ice conditions drivers should be prepared to expect little to no traction, little to no braking capability, extremely poor directional control, and the high possibility of skids.

Hypoxia is a pathological condition in which the body as a whole (generalized hypoxia) or a region of the body (tissue hypoxia) is deprived of adequate oxygen supply. Hypoxia is often associated with high altitudes, where it is called altitude sickness. Altitude sickness, also known as acute mountain sickness, is a pathological condition that is caused by lack of adaptation to high altitudes, commonly occurring above 8,000 feet. Symptoms of generalized hypoxia depend on its severity and speed of onset.

ES-4.0 ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND MITIGATION

Each **of the following** sections describes the methodology used for **impact** analysis and factors used to determine the significance of **impacts** according to the criteria described in Federal and State regulations.

Impacts are described where they occur for each resource, including direct, indirect, and cumulative **impacts**. Direct **impacts** are caused by the proposed ATST Project, achieved through implementation at either the **Preferred** Mees site or the Reber Circle site, and occur at the same time and place. Indirect **impacts** are caused by the proposed ATST Project and respective project alternative, but occur later in time or at a distance from the proposed ATST Project. Cumulative **impacts** are the incremental environmental **impacts** of the proposed ATST Project when added to other "past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions." Cumulative **impacts** can result from individually minor, but collectively significant, actions taking place over time. Where **mitigation measures would reduce the duration, intensity or scale of impacts and where they are feasible, they are identified within the resource evaluations as MIT-1 through MIT-18, and they are summarized in Section 4.18.** The No-Action Alternative is evaluated under the same parameters following the alternatives analysis. **Impacts** are described by the following levels of **intensity**:

- 1. Negligible,
- 2. Minor,
- 3. Moderate; or,
- 4. Major.

This section also evaluates **impacts** based on whether they are long-term or short-term in duration.

ES-4.1 Land Use and Existing Activities

If implemented at the **Preferred** Mees site or at the Reber Circle site the proposed ATST Project would have a minor, adverse, and long-term **direct impact on current land use and existing activities at HO**. No mitigation would be necessary; however, NSF would implement MIT-1 (Decommissioning and Deconstruction) to divest itself of the facility at the end of the ATST lifetime (approximately 50 years after commissioning), providing an opportunity to restore the land to its existing conditions, unless otherwise decided in consultation with the Native Hawaiian community.

There would be a major, long-term impact on the existing FAA RCAG facilities that could result in signal attenuation from those facilities due to physical obstruction by the ATST structures, if the proposed ATST project is built at either location. To address any potential issue involving degradation of communications as a result of the proposed ATST Project, mitigation would include the erection of high-gain antennas at the current location of the RCAG towers (MIT-2). This would reduce the impacts to negligible, adverse, and long-term.

There would be no impact on HALE land use, including along the Park road corridor. Also, the proposed ATST Project, if implemented at either location, would comply with all Federal State, and HO land use planning. The proposed ATST Project would be built on State Conservation land, and therefore is exempt from Maui County building codes, in accordance with county regulations. In addition, the proposed ATST Project would not be subject to Chapter 2.80A, of the Maui County Code, pertaining to the General Plan and the community plans. The Makawao-Pukalani-Kula Community Plan as adopted through Ordinance No. 2510, Objective No. 8, recommends a two-story or 35-foot height limitation throughout the region. As noted in the plan, however, HO is in a Conservation District and is not subject to such restrictions.

Under the No-Action Alternative, the proposed ATST Project would not be built and the land use and existing activities at HO would continue to function in its current configuration.

ES-4.2 Cultural, Historic, and Archeological Resources

Cultural Resources

Construction and operation of the proposed ATST Project at either the Preferred Mees or Reber Circle sites would result in major, adverse, short- and long-term, direct impacts on the traditional cultural resources within the ROI. No indirect impacts are expected. Mitigation measures would be implemented; however, those measures would not reduce the impact intensity: impacts would remain major, adverse, long-term and direct. Mitigation measures during construction include: MIT-4 (Sense of Place training), MIT-5 (Cultural Monitor), and MIT-13 (Noise). Mitigation measures for operation include: MIT-1 (Decommissioning), MIT-3 (Locate an area for a Hawai'i star compass), MIT-14 (Paint), MIT-16 (Exterior Design), and MIT-18 (Rename roads at HO).

In addition to the mitigation measures prescribed for specific impacts above, NSF is committed to two additional mitigation measures, MIT-15 (ATST usage time for Equally Qualified Native Hawaiian scientists) and MIT-17 (MCC Educational Program). Although several consulting parties during the Section 106 process communicated that these major, adverse, long-term direct impacts to the summit of Haleakalā as a traditional cultural property cannot be mitigated, several other Native Hawaiians individuals and organizations suggested that mitigation could be achieved through education and workforce development. Comments from the Maui Native Hawaiian Chamber of Commerce, Office of Hawaiian Affairs, the Grand Master of the Royal Order, a Native Hawaiian individual representing the Hawai'i Carpenters Union, and private individuals advocated for an educational program to serve as mitigation for adverse impacts to the summit.

Effects on traditional cultural resources within the Park road corridor associated with construction and operation of the ATST Project at either the Preferred Mees site or the Reber Circle site are expected to be negligible, adverse, long-term and direct. No indirect impacts are expected. Mitigation measures associated with noise and traffic include MIT-6 (SUP requirements). While MIT-6 was initially developed to limit impacts to visitors and impacts to natural resources, a TCP would also benefit from this mitigation measure. It would limit traffic levels and hours of operation, and the noise associated with construction traffic along the Park road corridor, and would maintain the negligible, adverse, long-term direct impacts to the TCP during daylight hours.

Under the No-Action Alternative, there would continue to be major, adverse, long-term, direct impacts to traditional cultural resources.

Historic Resources

There would be negligible, adverse, long-term, direct effects from the construction and operation of the proposed ATST Project at the Preferred Mees site. There would be no indirect effects expected. No mitigation would be required.

There would be major, adverse, direct, long-term impacts on historic resources from the construction of the proposed ATST Project at the Reber Circle site. Implementation of MIT-8 would reduce the level of impacts to negligible, long-term, and direct.

Operation-related activities of the proposed ATST Project at the Preferred Mees site and the Reber Site would be negligible, adverse, long-term and direct.

Under the No-Action Alternative, there would be no effects on historic resources within the ROI.

Archeological Resources

There would be negligible, adverse, long-term, direct effects on the archeological resources at HO and within the Park road corridor from construction and operation of the proposed ATST Project at either the Preferred Mees site or the Reber Circle Site.

Under the No-Action Alternative, there would be no effects on archeological resources within the ROI.

ES-4.3 Biological Resources

For evaluation of the potential **impacts** on biological resources as a result of implementing the proposed ATST Project, the ROI would be primarily within both the HO and relevant areas within HALE, including the Park road corridor. **Impacts** on biological resources were evaluated by determining sensitivity, significance, or rarity of each resource that would be adversely affected by the proposed ATST Project. The **impacts** of the proposed ATST Project on each element of the biological ecosystem is explained in this section.

For botanical species during construction, overall **impacts** at HO are anticipated to be minor, adverse, and long-term. These same resources would experience negligible, adverse, and long-term **impacts** within the Park road corridor. **Impacts** along the road corridor on botanical resources from Alien Invasive Species would be minor, adverse, and long-term, with respect to introduction and proliferation.

To reduce the risk of transporting non-native species or seeds to the project site, NSF has proposed a Long Range Development Plan for the prevention of introduction of invasive exotic weed species, which would be followed during the construction, maintenance, and operation of the proposed ATST Project (MIT-9).

During construction, the anticipated **impacts** on endangered, threatened, proposed, and candidate plant species would be negligible, adverse, and short-term. These species include the **'ahinahina** (Haleakalā silversword) and the **many-flower geranium**. USFWS concurred that there would be negligible impact o these species in the informal Section 7 consultation, and noted that by providing for vehicle steam cleaning, invasive species inspections, and rapid response to on-site discoveries of introduced species, this project is providing the best available level of protection against habitat-modifying invasive insects, plants, and other pests (MIT-9).

With respect to endangered, threatened, proposed, and candidate avifaunal species, construction activities that could induce ground vibration (i.e., heavy equipment grading, excavating, drilling, and compacting) that could adversely affecting 'ua'u nesting and fledging success. Construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year. Construction impacts could have a major, adverse, short-term impact to 'ua'u habitat. With the implementation of MIT-6 and MIT-9, the impacts on 'ua'u are anticipated to be negligible, adverse, and long-term.

By combining the average nēnē fatality rates due to vehicles driving the Park road corridor and the ATST vehicle use data, USFWS calculated that there would be a collision with 0.3 nēnē during the 31-year life of the Project. To further reduce the chance of a collision with a nēnē, all drivers accessing the ATST site during the life of the project would receive a Hawaiian goose briefing from the Institute for Astronomy. Drivers would receive a refresher briefing regarding the nēnē at the beginning of this species' breeding season approximately November 1 of each year. These measures are anticipated to further reduce the impacts on this endangered species within the action area.

Construction **impacts** on nēnē were evaluated. Nēnē may be affected by human activities through the application of pesticides and other contaminants, ingestion of plastics and lead, collisions with stationary or moving structures or objects, entanglement in fishing nets, loss of habitat, disturbance at nest and roost sites, attraction to hazardous areas through human feeding and other activities, and mortality or disruption of family groups through direct and indirect human activities. None of these activities are anticipated to occur within the normal habitat of the nēnē in connection with the construction of the proposed ATST Project and, therefore, negligible adverse short- or long-term **impacts** are anticipated from these activities. The risks to nēnē from vehicular activities are discussed and calculations from historic mortality data indicate an extremely small risk of collision with a vehicle connected with the proposed ATST Project during its lifetime.

Threats to the 'ope'ape'a identified by the USFWS, some of which could potentially occur at HO, include direct and indirect **impacts** of pesticides, predation, alteration of prey availability (introduced insects), and roost disturbance. Use of either the Mees site or Reber Circle site would not change the current operating procedures or the associated **impacts** on the ecosystem and, although it may affect the extent, the proposed ATST Project would have a negligible adverse long-term **impact**.

The USFWS informal Section 7 consultation concluded that Hawaiian hoary bats are not likely to be in the area of the construction site during the day because there are no roost trees in the vicinity of the site. At night, bats may transit the site, commuting through the area or foraging for local insects. Because the telescope buildings will not have external lighting, they will not attract insects which would attract foraging bats to the vicinity of the buildings. They navigate entirely by sight. The telescope buildings, however, would be painted white and would, therefore, be more visible than their surroundings. Therefore, the possibility of a bat collision with the telescope structures would be unlikely.

During construction at **either** the **Preferred** Mees or **Reber Circle sites**, there would be negligible, adverse, and long-term **impacts** on other native and introduced fauna within the ROI. These would include feral goats, rats, avian species, mongoose, cats, and others.

The Reber Circle site is at a greater distance **than is the Preferred Mees site** from 'ua'u burrows and is on previously developed land. Although the potential for adverse **impacts** on that avian biological resource is slightly less at the Reber Circle site than at the **Preferred** Mees site, the potential still exists. With implementation of the USFWS mitigation measures, the **impacts** on 'ua'u would be negligible, adverse, and long-term.

Operations-related **impacts** on biological ecosystems at the **Preferred** Mees site would be similar to those during construction. Loss of numbers and diversity of native plants has already occurred at HO, and, therefore, it is anticipated that botanical resources would experience the same minor, adverse, long-term **impacts** from operations of the proposed ATST Project. It is anticipated that operations of the proposed ATST Project. It is anticipated that operations of the proposed ATST Project would have negligible, adverse, long-term **impacts** on the small 'ahinahina population found at HO. Vehicular traffic would increase within the Park road corridor by less than or equal to about one percent and the risk of 'ua'u or 'ope'ape'a mortality would be negligible, adverse and long-term.

Under the No-Action Alternative, no construction would take place and operations would continue unaltered. Therefore, the proposed ATST Project would result in no additional **impacts**. **Impacts** resulting from previous construction and current operations at HO, which include those described below, would continue to occur.

ES-4.4 Topography, Geology, and Soils

The ROI for topography, geology, and soils is HO and the Park road corridor.

Construction of the proposed ATST Project at the Mees site would require excavation and would result in excess soil placed at locations outside the ATST footprint. The material would be spread over a soil disposal area that would not affect the topography. Minor adverse **impacts** on soils from construction activities and **potential** erosion could be possible during construction of the **proposed** ATST **Project** at the **Preferred** Mees Site **if appropriate BMPs are not implemented in accordance with approved stormwater management plans. No mitigation would be necessary to reduce these impacts.**

The removal of material for leveling at Reber Circle would be approximately twice that required for the Preferred Mees site and would result in slight changes to the existing topography; however, the changes would be localized and would not affect the overall topography of the area within the ROI.

Park topographic, geological, or soil resources are not expected to be affected during construction and operations of the proposed ATST Project.

ES-4.5 Visual Resources and View Planes

The ROI for consideration of impact on visual resources and view planes encompasses two general areas: 1) land within the HALE, including the Park road corridor; and, 2) certain portions of the landmass of Maui, from which structures at HO are generally visible.

Areas of potential visibility for both the Preferred Mees and Reber Circle alternative sites for the proposed ATST Project were identified through use of a viewshed analysis, a computer-generated process that relies upon the maximum elevations of a project's features and surrounding topography to identify locations from which the project would theoretically be visible via an unobstructed or partial line-of-sight. Accessible viewpoints were identified within the viewshed. Photographs were taken toward the location of the proposed ATST Project from representative viewpoints, and a set of viewpoints was selected to use as the basis for the analysis. Photographic simulations were produced, showing renderings of the proposed ATST Project within existing views. Determination of impacts and their intensity was made after the comparison of the existing and simulated views.

From within HALE, the prominence of the proposed new structure at the Preferred Mees site, in views from within two miles of the proposed ATST Project site (including from: Pu'u Ula'ula Overlook; areas of HALE adjacent to HO, including Magnetic Peak; and the upper Park road corridor, including the Summit Visitor Center at Pu'u Ula'ula), would result in moderate, adverse and long-term impacts to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible to the point of co-dominance with other nearby structures. It would intensify the already developed appearance in its immediate surroundings, and would also appear to increase slightly the amount of horizontal space occupied by structures in views from within the Park. The new structure would not substantially alter the existing visual character visible in any view. In views from further away in the Park (namely portions of land within the Crater and the lower Park road corridor, including Hosmer Grove), impacts to visual resources would be negligible, adverse, and long-term. The proposed ATST Project would be barely detectible, if visible at all from these locations. During the operations phase, however, crane equipment may be visible and, thus, moderate, adverse impacts would result from some vantage points.

From outside of the Park, in views from throughout Maui (including windward, upcountry, central valley and south Maui locations), the proposed ATST Project at the Preferred Mees site would result in a minor, adverse and long-term impact to visual resources. No mitigation would be necessary. The new structure would be visible atop distant ridgelines from a number of viewing locations and indistinguishable in views from other locations. Because of the distance of these views, regardless of whether the HO is visible at present or not, the proposed ATST Project would not substantially alter the visual quality of the views.

From within HALE, the prominence of the proposed new structure at the Reber Circle alternative site, in views from within two miles of the ATST Project site (including from: Pu'u Ula'ula Overlook; areas of HALE adjacent to HO, including Magnetic Peak; and the upper Park road corridor, including the Summit Visitor Center at Pu'u Ula'ula) would result in moderate, adverse and long-term impacts to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible to the point of co-dominance with other nearby structures. It would intensify the already developed appearance in its immediate surroundings, and would appear more prominent in some views that the Preferred Mees site alternative. It would also, however, appear completely within the existing HO development footprint, and would not appear to increase the horizontal space occupied by structures in views toward the site from points within the Park. The structure would not substantially alter the existing visual character visible in any view. In views from further away in the Park (namely portions of land within the Crater and the lower Park road corridor, including Hosmer Grove), impacts to visual resources would be minor, adverse, and longterm. The proposed ATST Project would be visible, but not dominant, along ridgelines in these views. No mitigation would be necessary. During the operations phase, however, crane equipment may be visible and, thus, moderate, adverse impacts would result from some vantage points.

From outside of the Park, in views from throughout Maui (including windward, upcountry, central valley and south Maui locations), the proposed ATST Project at the Reber Circle alternative site, would result in a minor, adverse and long-term impact to visual resources. No mitigation would be necessary. The new structure would be visible atop distant ridgelines from a number of viewing locations and indistinguishable in views from other locations. Because of the distance of these views, regardless of whether the HO is visible at present or not, the proposed ATST Project would not substantially alter the visual quality of the views.

ES-4.6 Visitor Use and Experience

Moderate, adverse, and long-term impacts on visitor use and experience would be anticipated if the proposed ATST Project were constructed at either the Preferred Mees site or the Reber Circle site. These impacts would result from changes in the quality of recreational activities such as sightseeing, hiking, backpacking, photography, and camping associated with changes in view from construction activity at the proposed ATST Project site and along the Park road corridor. **Impacts on** air quality associated with increased construction vehicle traffic and use **would be minor, adverse, and short-term, as described in Section 4.11-Air Quality.** These impacts would occur over the short-term, would be mitigated to the greatest possible extent, and the impacts on visitor use and experience would diminish in the long-term. Changes in the view would, however, continue to result in moderate, adverse, and long-term impacts on the visitor use and experience from locations where the proposed ATST Project would be prominently seen, as described in Section 4.5-Visual Resources and View Planes.

Construction noise, prior to mitigation, would have a major, adverse, and short-term impact on visitor use and experience. These impacts, however, would occur over the short-term and would be mitigated (MIT-6) to intensity levels of negligible, adverse, and long term between April 20th and July 15th; at other times of the year, noise impacts would be mitigated to moderate, adverse and short-term.

The small increase in traffic during construction would have a negligible impact on travel time and visitor use and experience. During operations, the increased traffic would be even less and would have a negligible, long-term impact on the visitor use and experience. Additionally, slow moving vehicles and/or vehicles that are class 5 or larger would not be allowed to travel through the Park between approximately 11:00 a.m. and 2:00 p.m., which are peak visitation hours (MIT-10).

There would be no additional direct impact to the visitor use experience under the No-Action Alternative. The visual impact of HO could, however, still be considered to be contrary to visitor expectations for the summit area, with respect to the natural landscape vistas, and would continue to have a major adverse and long-term direct impact on the viewshed. It is also possible that, over time, indirect impacts would result due to a decline in facilities and outdating of available information at the Park (i.e. as a result of no changes or upgrades). Likewise, there would be no impact on the visitor use and experience if the proposed ATST Project were not built.

ES-4.7 Water Resources

The proposed ATST Project, whether built at the Preferred Mees site or the Reber Circle site, would have minor, adverse, direct, short- and long-term environmental impacts on the surface water and negligible, adverse impacts on groundwater in the ROI. If the Preferred Mees site were selected, replacement of the cesspool would further result in a minor, beneficial, and long-term impact on groundwater. No mitigation would be necessary and no indirect impacts are anticipated. Temporary, localized, minor impacts are anticipated during construction and standard BMPs would be implemented to minimize impacts to surface water and drainage during construction.

The proposed ATST Project would be designed so that the most onsite stormwater would be captured for reuse in an existing cistern reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through onsite French drains where water would percolate to the natural subsurface environment.

At both sites, wastewater treatment systems would be constructed and treatment to domestic wastewater would occur prior to infiltration into subsurface water. In addition, if the proposed ATST Project were built at the Preferred Mees site, the existing cesspool would be removed and site remediation would occur to ensure no contamination of groundwater from untreated wastewater. Negligible, adverse, and short-term impacts could result at both sites if discharges of untreated wastewater occurred while handling, during operations, or in the event of system failure. Otherwise a minor, beneficial, long-term impact would result from removal of the cesspool under the Preferred Mees site alternative. Under the Reber Circle alternative and the No-Action Alternative, the current surface water features and drainage would remain unchanged and the cesspool used at the existing MSO facility would continue to be used. Any discharges of untreated wastewater could cause minor, adverse, and long-term impacts on groundwater quality.

ES-4.8 Hazardous Materials and Solid Waste

The construction and operation of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, long-term direct impacts on hazardous materials and solid waste management. Management plans have been prepared for the proposed ATST Project, containment features have been designed, and on-site training would be required for personnel. There would be no change from the current management of solid waste. Facilities would continue to be responsible for their waste. There would be no change from the current management of solid waste under the No-Action Alternative. Facilities would continue to be responsible for their waste. Negligible adverse impacts on solid waste management would be experienced. Under the No-Action Alternative, the proposed ATST Project would not be constructed; thereby omitting any short-term use of materials. Existing facilities would continue to use materials for mirror coating and cleaning, lubrications, refrigerants, etc. Therefore, the potential for a release would still exist. Negligible adverse impacts are expected as a result of the No-Action Alternative.

ES-4.9 Infrastructure and Utilities

The ROI for infrastructure is HO and the Park road corridor. These include HALE, and private, Federal, and State lands. The ROI for utilities is focused on the HO property, which is separately served by MECO and Hawaiian Telcom and the Park road leading up to HO.

The removal of the existing cesspool and implementation of an IWS under the proposed ATST Project, if built at the Preferred Mees site would result in a minor beneficial, long-term direct impact on the wastewater system. The implementation of an IWS at the Reber Circle site would have minor, adverse, and long-term impacts on the wastewater system. No mitigation would be necessary to reduce this impact.

Whether constructed at the Preferred Mees site or the Reber Circle site, the proposed ATST Project would capture all stormwater on site either in the existing MSO cistern or through French drains to be directly filtered to the substrate. Because the project would not contribute to the HO drainage system, there would be a negligible, adverse, and long-term environmental impact on the surface water at the site. The runoff from impervious surfaces associated with the proposed ATST Project would not increase substantially due to designed capture of stormwater, although transport to the natural drainage locations may be slightly altered.

The anticipated electrical load that would be required by the proposed ATST Project would have a negligible, adverse, and long-term impact on the MECO service to HO. Additional loads from all anticipated needs would be served by an upgrade that has been specified by MECO and power demands could be met with improved efficiency and a safer reserve capacity, and would thus result in a moderate, beneficial, and long-term impact on the electrical system.

Fiber optic lines are available at HO that would be adequate for data connectivity and negligible, adverse, and long-term impacts are anticipated from the additional requirements of the proposed ATST Project.

Moderate, adverse, and short-term impacts to roadways and traffic would occur during construction of the proposed ATST Project. Traffic along State highways and Haleakalā Crater Road would be affected by heavy equipment, delivery of concrete and materials, service trips, and daily commuting of construction workers. These impacts would be mitigated by MIT-11 and MIT-12, including specific mitigation measures, such as the ones described above and recommended by the FHWA HALE Road Report (Vol. II, Appendix P). These would be included in the HALE-issued SUP and as such would become mandatory requirements for the construction and operation phases of the proposed ATST Project. Carpooling and scheduling of deliveries would further minimize conflicts with other traffic, tours, or other activities. The impact to construction-related traffic would be reduced to minor, adverse, and long-term. The operation of the ATST project would result in negligible, adverse, and long-term, direct impacts to roadways and traffic. The additional ATST-related traffic would be minimal in comparison to existing normal traffic.

There would be major, adverse, and long-term impacts on the FAA communication systems resulting from project implementation at either the Preferred Mees site or the Reber Circle site. MIT-2 would reduce this impact to negligible, adverse, and long-term.

ES-4.10 Noise

Impacts of noise from the construction of the proposed ATST Project at either the Preferred Mees site or the Reber Circle site are anticipated to be a major, adverse, short-term, direct impact. Construction noise emissions would increase the existing ambient noise levels at the summit but would be temporary and intermittent. Trucks and mobile construction machinery would also raise ambient noise above background levels during the construction period. MIT-6 would limit construction activities to begin no earlier than 30 minutes after sunrise and end no later than 30 minutes prior to sunset and to be prohibited between April 20th and July 15th, in coordination with USFWS and NPS mitigation measures; MIT-10 would restrict slow-moving construction traffic from traveling along the Park road corridor during peak recreational use (11 a.m. to 2 p.m. daily); and MIT-13 would incorporate reasonable noise-reduction practices and abatement procedures into the construction plan to reduce noise impacts. These mitigation measures, however, would not reduce the level of impact. It is acknowledged that the resulting sound levels could affect Native Hawaiian cultural practitioners and those engaged in recreational activities. even when such levels comply with regulatory requirements. Additional analyses of noise impacts on traditional cultural practitioners are located in Section 4.2, Cultural, Historic and Archeological Resources, and noise impacts on visitors are discussed in Section 4.6, Visitor Use and Experience.

Because the expected levels from ATST operations would be similar to those already present, a 3 dBA increase is reasonably expected. This would result in a minor, adverse, long-term noise impact.

There would be no change to existing conditions under the No-Action Alternative. There would be no construction introducing machinery-related noise intrusion to the area and no operational noise aside from existing sources. There would be negligible adverse, long-term **impact** to noise conditions under the No-Action Alternative.

ES-4.11 Air Quality

The ROI for air quality **impacts** is HO and the adjacent properties that could be detrimentally affected by consequences of the proposed ATST Project on air quality.

Site development and construction of the proposed ATST Project at either the Preferred Mees site or the alternative Reber Circle site would have negligible, adverse, short-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts would be anticipated. Vehicle traffic accessing the facility via the Park road corridor would temporarily increase due to the construction vehicles and crews expected during the construction period. The additional traffic, however, would not significantly add to the current level of vehicle emissions associated with existing HO operations and visitor traffic.

Excavation and grading would generate some hazardous and nuisance air emissions. Actual adverse impacts on air quality at HO, based on proposed operations and regional meteorological conditions, are, however, expected to be temporary, intermittent, and at levels substantially below both human health and hazardous air pollutant industrial hygiene criteria. To minimize fugitive dust emissions, contractors would be required to comply with applicable State regulations under HAR 11-60.1-33, which require the implementation of "reasonable precautions" for controlling fugitive dust. The contractor would implement strict dust-control measures and BMPs as mandated

by the LRDP. These operational practices would limit controllable emissions from site activities that could adversely affect the local air quality. These practices would be established through an ongoing program to control fugitive dust by strictly adhering to the procedures imposed by the LRDP on construction projects at HO.

Operation of the proposed ATST Project would have negligible, adverse, short-term and long-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts would be anticipated. There would be no additional impact on air quality from operations of the proposed ATST Project facility at the Preferred Mees site. Operations would not produce any major air emissions, and as a result, the facility would meet applicable Federal and State air quality standards. Consequently, as mandated in the LRDP for facilities with stationary sources exceeding threshold quantities of a regulated substance, an air quality risk management plan would not be required for the proposed ATST Project. The relative increase in vehicle traffic accessing the facility via the Park road corridor would not appreciably change. The additional traffic would not significantly add to the current level of vehicle emissions associated with existing HO operations and visitor traffic.

Ongoing construction and site work would continue on HO under the No-Action Alternative, however these impacts would be negligible.

ES-4.12 Socioeconomics and Environmental Justice

The ROI for determining socioeconomic impacts is the island of Maui. The ROI for determining environmental justice impacts is the summit area of Haleakalā. This section describes the contribution of the proposed ATST Project to the economy and the sociological environment of the ROI, as well as any impacts on minority or low-income communities or the health and safety of children within this region.

The proposed ATST Project, whether located at the **Preferred** Mees site or the Reber Circle site, would need approximately 20 people for the first year of commissioning. This number is estimated to become between 50 and 55 by the final year of commissioning. Approximately two-thirds of the newly hired personnel would work on Maui with the remaining personnel working for the proposed ATST Project remotely from either Maui or the UH Manoa campus on O'ahu. The permanent population would not exceed population projections, there would be no displacement of residents in their communities, and demand for housing can be accommodated with existing vacant housing units. Therefore, there would be a minor, long-term **impact** on population and housing. The proposed ATST Project would have both short- and long-term beneficial **impacts** on the local economy and employment.

The proposed ATST Project would **have negligible** adverse **impact** on the schools within the ROI. Local universities and schools would benefit from the research conducted at HO and from internships, post-doctoral fellowships, and other student programs.

The potentially affected area is not a predominantly minority or low-income community, so none of the impacts of construction and operation of the proposed ATST Project would disproportionately affect minority or low-income groups. Thus, with regard to environmental justice, the proposed ATST Project would have negligible adverse impacts for either the Preferred Mees site or the alternative Reber Circle site.

Under the No-Action Alternative, no new personnel would be relocated to Maui and existing conditions and operations would not change. No adverse **impacts** on the local economy and employment would occur under the No-Action Alternative because existing conditions and operations would not change.

Similarly, none of the beneficial short-term or long-term **impacts** identified under each of the other project alternatives would be realized under the No-Action Alternative.

The No-Action Alternative would have no **impact** on the schools and community within the ROI because the existing conditions at the **either of the** proposed site locations would remain unchanged. Similarly, none of the beneficial short- or long-term **impacts** identified under each of the other project alternatives would be realized under the No-Action Alternative.

With regard to environmental justice, the No-Action Alternative neither minority or low-income groups would be impacted. Thus, with regard to environmental justice, the No-Action Alternative would result in negligible adverse impacts.

ES-4.13 Public Services and Facilities

The ROI for public services and facilities is considered to be the Upcountry area of Maui. Due to its remote location near the summit of Haleakalā, HO is 22 miles from the nearest public services and facilities. With a travel time of nearly an hour to the closest police or fire stations, the facilities at HO are unable to utilize timely services from these Maui public departments. The nearest school and healthcare facility is in Kula, which is 27 miles from HO. Therefore, HO is considered to be independent of most public services and facilities.

Police Protection. It is not anticipated that the proposed ATST Project would affect police operations. Police communication facilities in the summit area would not be affected by construction or operations at either the **Preferred** Mees or Reber Circle site locations. In comparison to the approximately 1,600 vehicles that ascend the summit each day, the few additional vehicles on the road during construction and operation of the proposed ATST project would not expand demands on police services. MPD would experience negligible adverse, long-term **impacts** as a result of immeasurable and imperceptible changes brought on by the proposed ATST Project.

Fire Protection. The closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā. Another fire station serving the Upcountry community is located in Makawao, approximately 29 miles from the summit. These two fire stations are beyond fire fighting capabilities for HO. Therefore there is no anticipated impact from the proposed ATST Project on these services at either the **Preferred** Mees or Reber Circle site locations. The few **additional** vehicles on the road during construction and operation in comparison with the approximately 1,600 vehicles that ascend the summit each day would pose negligible adverse, long-term demands on fire protection services.

Schools. The closest schools to the proposed ATST Project are located in the Kula community (Haleakalā Waldorf School, King Kekaulike High School, Kula Elementary, and the Kamehameha Schools) and are approximately 25 to 27 miles from the summit of Haleakalā. No **impact** is anticipated from construction or operation of the proposed ATST **Project at either the Preferred Mees site or the alternative Reber Circle site.** Negligible adverse, long-term **impacts** are anticipated from construction or operation of the proposed ATST **Project at either site**.

Recreational Facilities. The proposed ATST Project would have **minor**, adverse, long-term impacts on recreational facilities at either the Preferred Mees site or the alternative Reber Circle site. The change would be noticeable at various locations in HALE as described in Section 4.5 and, thus, have **moderate**, adverse, and long-term impacts from some of those vantage points. Access to any HALE or State Conservation Land facilities, including the Park road corridor, would not, however, be blocked or impeded, and no trails would be eliminated or re-routed. During operations of the proposed ATST Project, the recreational impact for the Park road corridor would be minor, adverse, and long-term

at either the Preferred Mees site or the alternative Reber Circle site, mainly due to the slight increase in traffic from ATST operations.

Healthcare Services. Maui Memorial Medical Center is located in Wailuku and is approximately 50 miles from the summit. It is the only full-service hospital on Maui and offers a broad range of emergency services including complex diagnostic and treatment services. The formerly named Kula Hospital, located in Keokea, is approximately 40 miles from the summit. The proposed ATST Project would not affect Healthcare services. Changes would be of immeasurable or imperceptible consequence and, therefore impacts on Park resources are not expected for either the Preferred Mees site or the alternative Reber Circle site.

Federal Aviation Administration. In response to a request for concurrence to NSF's determination of negligible adverse impact, the FAA issued a Notice of Presumed Hazard in October 2007, suggesting that the proposed ATST facility would result in radio frequency shadowing at the FAA Remote Communications Air-Ground (RCAG) facility located about 800 feet to the West of the proposed project. In accordance with 11 CFR Part 77.35, FAA specialists working with NSF have addressed any potential issue involving a degradation of signal as a result of the proposed ATST Project. Given the potential for degradation of signal, FAA has determined that the degradation of signal can be mitigated by replacing the existing antennas with high gain antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas. The FAA has stated that further modification of the site and relocation would not rise to a level of significance. In addition, NSF will work with the FAA to obtain adequate funding for implementation of the resolution. This would reduce the impacts to negligible, adverse, and long-term.

ES-4.14 Natural Hazards

The ROI for natural hazards is considered to be that portion of the summit area of Haleakalā that is under direct management and control of UH IfA and the 50-foot corridor along the Park road corridor.

The potential natural hazards at HO are high winds; extreme rain, ice, and snow due to storms or hurricanes; earthquakes due to Hawaii's position within a seismically active zone; and, hypoxia due to the high altitude of the site. Any of these may affect the HO site and personnel at any time. All HO contractors and operations staff would be trained on the natural hazards unique to the site in order to minimize potential injuries. Therefore, the construction and operation of the proposed ATST Project would have negligible adverse **impacts** on the safety of the public and adverse **impacts** on the environment would be negligible such as to cause damage, destruction, or loss of life.

ES-4.15 Summary of Potential Impacts Resulting from the Proposed ATST Project

Table ES-4.1 summarizes the **impacts** from the proposed ATST Project. These include beneficial and adverse **impacts** on resources in the ROI from the proposed ATST Project, whether implemented at the **Preferred** Mees site or the **alternative** Reber Circle site. The proposed ATST Project has the potential for major, adverse, long-term impacts, **some of** which are mitigable, **and some of which cannot**. **Cumulative impacts for both the two action alternative and the No-Action Alternative can be found in Section 4.17-Cumulative Impacts to the Affected Environment**.

Resource Section	Impact	Mitigation	Final Impact		
Impacts of the Preferred Mees Site Alternative					
4.1 - Land Use and Existing Activities	<i>Minor, Adverse, Long-term</i> impact on level of use of the land and current land use designation (Conservation District, General Subzone).	MIT-1	Minor, Adverse, Long- term		
	<i>Major, Adverse, Long-term</i> impact on the FAA RCAG facility by degradation of the communication signal.	MIT-2	Negligible, Adverse, Long-term		
4.2 - Cultural, Historic, and Archeological Resources	<i>Major, adverse, long-term</i> impact resulting from construction and day-to-day use of the ATST project on the summit area of Haleakalā. The proposed ATST Project would be seen as culturally insensitive and disturb traditional cultural practices conducted within the ROI. Further, noise and construction- related disturbances would have a major adverse impact on traditional cultural practices within the ROI. No mitigation would lessen these impacts.	MIT-1	Major, Adverse, Long-Term		
		MIT-3			
		MIT-4			
		MIT-5			
		MIT-6			
		MIT-13			
		MIT-14			
		MIT-16			
		MIT-18			
	<i>Moderate, Adverse, Long-term</i> impact resulting from the potential disturbance to historic resources along the Park road corridor.	MIT-6	Minor, Adverse, Long-term		
		MIT-7			
		MIT-12			
	<i>Negligible, Adverse, Long-term</i> impact on archeological resources during construction and operation.	MIT-5	Negligible, Adverse, Long-term		
		MIT-7			
4.3 - Biological Resources	<i>Major, Adverse, Short-term</i> impact on the Hawaiian Petrel during the egg incubation period due to noise and vibration generated by construction activities. Potential major, adverse effects from construction could include the disturbance of the 'ua'u habitat at HO, where birds would not be willing to remain in their burrows during the nesting season. Unrestrained construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year.	MIT-6	Negligible, Adverse, Short-term		
	<i>Major, Adverse, Short- and Long-term</i> impact on botanical resources resulting from earth movement during construction and AIS introduction. Potential effects on 'ahinahina plants, Geranium multiflorum critical habitat, and 'ua'u burrows were found to be negligible.	MIT-9	Negligible, Adverse, Short- and Long- term		

Table ES-4-1. Impact Summary.

Resource Section	Impact	Mitigation	Final Impact	
Impacts of the Preferred Mees Site Alternative				
4.4 - Topography, Geology, and Soils	<i>Minor, Adverse, Short-term</i> impact resulting from land clearing, demolition, grading/leveling, excavation, and other construction-related earthmoving activities.	N/M		
4.5 - Visual Resources and View Planes	<i>Moderate, Adverse, Short-term</i> impact during the construction period when equipment, specifically cranes, will be visible from the Pu'u Ula'ula Overlook, the western edge of the Haleakalā Visitor's Center, the summits of White Hill (Pa Ka'oao) and Magnetic Peak, and along the Park road corridor near Kalahaku Overlook. No mitigation would adequately reduce this impact.	N/M		
	<i>Moderate, Adverse, Long-term</i> impact after the ATST facility is erected and is visible from Pu'u Ula'ula Overlook, the western edge of the Haleakalā Visitor's Center, the summits of Pa Ka'oao and Magnetic Peak, and along the Park road corridor nearing HO. No mitigation would adequately reduce this impact.	N/M		
4.6 - Visitor Use and Experience	<i>Major, Adverse, Long-term</i> impact resulting from visual effects on visitor expectations for summit area natural vistas	N/M		
	<i>Major</i> , <i>Adverse</i> , <i>Short-term</i> impact resulting from construction-related noise.	MIT-6	Moderate, Adverse, Short-term	
	<i>Negligible, Adverse, Long-term</i> impact resulting from construction-related traffic traversing the Park road corridor.	MIT-10	Negligible, Adverse, Long-term	
4.7 - Water Resources	<i>Minor, Adverse, Short- and Long-term</i> impact on surface water and drainage at HO.	N/M		
	<i>Minor, Beneficial, Long-term</i> impact on groundwater sources and supplies because the existing cesspool would be replaced by an individual wastewater system to treat sanitary waste. The potential for release or failure during installation creates a negligible, adverse, short-term impact.	N/M		
4.8 - Hazardous Materials and Solid Waste	<i>Negligible, Adverse, Long-term</i> impact resulting from construction debris and hazardous materials used in building construction and operation. Adherence to the LRDP would restrict hazardous material use and guide management practices. There would be no substantive change in solid waste generation or disposal practices.	N/M		

Table ES-4-1. Impact Summary (cont.).

Resource Section	Impact	Mitigation	Final Impact
	Impacts of the Preferred Mees Site Alternativ	ve	
4.9 - Infrastructure and Utilities	<i>Major, Adverse, Long-term</i> impact on the FAA RCAG facility by degradation of the communication signal.	MIT-2	Negligible, Adverse, Long-term
	<i>Moderate, Adverse, Short-term</i> impact during the construction period to the roadways within HO.	MIT-11	Minor, adverse, short-term
	<i>Minor, Adverse, Short- and Long-term</i> impact during the construction period on State and Park roadways. This impact would continue at a lower level during operations.	MIT-12	Minor, Adverse, Short- and Long- term
	<i>Moderate, Beneficial, Long-term</i> impact on electrical systems at HO due to the proposed MECO upgrade.	N/M	
	<i>Negligible, Adverse, Long-term</i> impact on stormwater and communication systems.	N/M	
4.10 - Noise	<i>Major, Adverse, Short-term</i> impact resulting from construction-related noise both within and outside of	MIT-6	Major, Adverse, Short-
	the project area and along the Park road corridor.	MIT-11	term
		MIT-13	
	<i>Minor, Adverse, Long-term</i> impact resulting from operations-related noise both within and outside of the project area and along the Park road corridor.	N/M	
4.11 - Air Quality	<i>Negligible, Adverse, Short- and Long-term</i> impact from fugitive dust and during the construction period and during operations.	N/M	
4.12 - Socioeconomics and Environmental Justice	<i>Minor, Adverse, Long-term</i> impact on population and housing.	N/M	
	<i>Minor, Beneficial, Short- and Long-term</i> impact on the local economy and employment during the construction phase of the project. Also there would be a <i>Minor, Beneficial, Long-term</i> impact on schools due to federal funding provided to schools and specifically to MCC who would receive data and projects for their studies from ATST.	N/M	
	<i>Negligible, Adverse, Long-term</i> impact on environmental justice and the protection of children	N/M	
4.13 - Public Services and Facilities	<i>Negligible, Adverse, Long-term</i> impact on park, police, fire, and school personnel and healthcare services as a result of the proposed project.	N/M	
	<i>Moderate, Adverse, Long-term</i> impact on recreational facilities as a result of the change in the viewshed. No mitigation would adequately reduce this impact.	N/M	

Table ES-4-1. Impact Summary (cont.).

Resource Section	Impact	Mitigation	Final Impact	
Impacts of the Preferred Mees Site Alternative				
4.14 - Natural Hazards	<i>Negligible, Adverse, Long-term</i> impact on the safety of the public and health of the environment.	N/M		
	Impacts of the Reber Circle Site Alterna	tive		
*	mitigations identified under the Reber Circle Si for the Preferred Mees Site Alternative with the			
4.2 - Cultural, Historic, and Archeological Resources	<i>Major, Adverse, Long-term</i> impact on Archeological Site 50-50-11-5443, the remnant of a 1952 radio telescope experiment.	MIT-8	Negligible, Adverse, Long-term	
4.4 - Topography, Geology, and Soils	<i>Minor, Adverse, Short-term</i> impact resulting from land clearing, demolition, grading/leveling, excavation, and other construction-related earthmoving activities. The amount of impervious area would be slightly higher than that of the Mees Site since the existing MSO facility would remain.	N/M		
4.5 -Visual Resources and View Planes	<i>Moderate, Adverse, Short-term</i> impact during the construction period when equipment, specifically cranes, will be visible from the Pu'u Ula'ula Overlook and along the Park road corridor near Kalahaku Overlook and nearing HO. No mitigation would adequately reduce this impact.	N/M		
	<i>Major, Adverse, Long-term</i> impact after the ATST facility is erected that would occur at Pu'u Ula'ula Overlook. There would be a <i>Moderate, Adverse, Long-term</i> impact on western edge of the Haleakalā Visitor's Center, the summits of Pa Ka'oao and Magnetic Peak, and along the Park road corridor near Pa Ka'oao and nearing HO. There would be <i>Minor, Adverse, and</i> <i>Long-term</i> from some locations in the crater. No mitigation would adequately reduce this impact.	N/M		
4.7 - Water Resources	<i>Minor, Adverse, Long-term</i> impact on groundwater as the existing MSO cesspool would remain and would continue to be used.	N/M		

Table ES-4-1. Impact Summary (cont.).

Resource Section	Impact	Mitigation	Final Impact
	Impacts of the Reber Circle Site Alterna	tive	
•	itigations identified under the Reber Circle Si or the Preferred Mees Site Alternative with the		
4.8 - Hazardous Materials and Solid Waste	<i>Negligible, Adverse, Long-term</i> impact resulting from construction debris and hazardous materials used in building construction and operation. Adherence to the LRDP would restrict hazardous material use and guide management practices. There would be no substantive change in solid waste generation or disposal practices. A new aboveground fuel tank would be installed at the Reber Circle Site, which would comply with all USEPA and State requirements.	N/M	
4.10 - Noise	<i>Minor, Adverse, Long-term</i> impact resulting from the addition of a new backup generator, which would be supplemental as opposed to a simple replacement of an existing generator at the MSO site. The unit would operate 30 minutes per month for testing and during emergencies.	N/M	
4.11 -Air Quality	<i>Negligible, Adverse, Short-term</i> impact during construction similar to the Mees Site Alternative, however roughly twice the volume of site material at the Reber Circle site would be excavated and stockpiled.	N/M	
Resource Section	Impact	Mitigation	Final Impact
	Impacts of the No-Action Alternative		
All impacts under the N	lo-Action Alternative would be negligible with	the exception of	the following.
4.3 - Biological Resources	<i>Minor, Adverse, Long-term</i> impact on the ability to assess the health, numbers, and behavioral characteristics of the 'ua'u colony population as the monitoring program would be discontinued.	N/M	
4. 7- Water Resources	<i>Minor, Adverse, Long-term</i> impact from potential discharge of wastewater from the existing cesspool at MSO.	N/M	

Table ES-4-1. Impact Summary (cont.).

ES-4.16 Other Required Analyses

NEPA requires additional evaluation of a proposed project's **impacts** with regard to the following:

- 1. The relationship between local short-term uses of the environment and long-term productivity,
- 2. Any irreversible or irretrievable commitment of resources; and
- 3. Unavoidable adverse impacts.

Short-term damage to the environment from implementation of the proposed ATST Project at either the **Preferred** Mees site or the Reber Circle site would be limited. No major **impacts** were identified that could not be mitigated to a **lower** level, except for the major **impacts** on **cultural resources**, the visitor use and experience, and short-term noise impacts.

The proposed ATST Project would take whatever actions are reasonable and practicable to preserve and protect the natural and cultural environment. In parallel with protective measures, the long-term productivity of either of these project alternatives is founded on one of NSF's missions, supporting the scientific community's objectives to achieve unprecedented progress in solar observation. With NSF support, the astronomy community has the opportunity to make significant advances in what we know about solar history, developments, and functions.

There is a NEPA requirement for analysis of the extent to which the proposed project's primary and secondary **impacts** would commit non-renewable resources to uses that would be irreversible or irretrievable to future generations. A commitment would be irreversible when primary or secondary **impacts** limit the future options for a resource. An irretrievable commitment refers to these or consumption of resources neither renewable nor recoverable for future use.

Construction of the proposed ATST Project **at either the Preferred Mees site or the alternative Reber Circle site** would consume energy and building materials. Petroleum, oils, and fuels would be used by construction vehicles and equipment and by staff vehicles during operation. Furthermore, equipment used in the facility would require lubricants, oils, and solvents. Construction material such as steel, cement, and aggregate would be expended. There would be increases in water, power, and other resources necessary to maintain and operate new facilities and machinery. Finally, there would be a slight increase in local resources required to support the additional staff and their families. These physical resources are generally in sufficient supply and their commitment to the **proposed ATST** Project would not have an adverse impact on their availability. In some cases, certain material resources such as concrete, steel, or water could be reclaimed, recycled, and reused.

40 CFR §1502.16 requires an analysis of unavoidable adverse environmental impacts should the proposal be implemented. These impacts are divided into short- and long-term impacts. Short-term impacts are generally associated with construction and last only during the construction period. Unavoidable, moderate, adverse impacts were identified that would affect visual resources at various locations within HALE and along the Park road corridor when equipment, specifically cranes, would be visible. Construction-related noise at either the Preferred Mees site or the Reber Circle site would result in major, adverse, short-term impacts on the noise setting and subsequently the visitor use and experience, specifically in regions of HALE along the Park road corridor. These impacts would occur over the course of the construction period and no mitigation would adequately reduce this impact.

Long-term impacts generally follow completion of the improvements and are permanent. Major, adverse, and long-term impacts on traditional cultural resources would result from construction

and operation of the proposed ATST Project in two unavoidable ways. First, these activities would take place on a site that is sacred site to some. Second, due to the need to conduct traditional cultural practices in a quiet environment with unimpeded natural views, traditional cultural practices conducted within the ROI would be adversely impacted. Although mitigations would be implemented to avoid impacts, the potential for major adverse impact would remain.

Likewise, if the proposed ATST facility were built at the Preferred Mees site, there would be an unavoidable, major, adverse, long-term impact on the visitor use and experience because some of the visual resources visible from various locations within HALE and along the Park road corridor would be adversely impacted. These impacts would last for the lifespan of the ATST facility, and would continue to affect visitor expectations of the summit natural vistas; no mitigation would adequately reduce this impact.

ES-4.17 Cumulative Impacts to the Affected Environment

The CEQ, NEPA-implementing regulations, defines cumulative **impacts** as the incremental environmental **impacts** of the action when added to other "past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions." Cumulative **impacts** can result from individually minor, but collectively significant, actions taking place over time.

In November 2005, and again in February of 2009, agencies known to have facilities and operations within the ROI for the resource-specific affected environments were contacted with a request to provide information on current and planned activities that could occur within the reasonably foreseeable future and contribute to cumulative **impact** when considered with the proposed ATST Project at HO. Incremental addition of the proposed ATST Project was examined in light of ongoing and planned actions as well as present and past actions within the analysis area for each resource.

ES-4.17.1 Summary of Past Actions

Within the ROI, the past history and important events at HO and those of its adjacent neighbors are described in a table that lists the facility or action, its status, and reasonably foreseeable future actions that could change that status. The past history of the Park road corridor is also briefly described.

ES-4.17.2 Summary of Present Actions

Present actions at HO and its adjacent neighbors are summarized, including the FAA and MECO facilities on Kolekole. The corridor along the Park road is described along with its important visitor attractions and vehicular visit statistics.

ES-4.17.3 Reasonably Foreseeable Future Actions

There is only one action in the reasonably foreseeable future at HO. The SLR 2000 is an autonomous and eye-safe photon-counting Satellite Laser Ranging (SLR) station that would be installed on the southwestern side of the Mees Solar Observatory. There are no planned actions within the reasonably foreseeable future at HALE along the Park road corridor.

For Greater Maui, the Maui Island Plan calls for community development over the next 20 years that would enlarge the total of developed lands by more than 25,000 acres. The development would be a mix of commercial and residential units.

ES-4.17.4 Land Use and Existing Activities

The impacts of the Proposed ATST Project, if constructed at either the Preferred Mees site or the Reber Circle site, when added to the combined impacts from past, existing, and reasonably foreseeable future actions within the ROI would not result in increased cumulative impacts on land use within HO. The Proposed Action's impacts would be similar to those resulting from existing and planned land uses within the Conservation District. The MECO upgrade would not change land use or existing activities, and therefore would have only a negligible contribution. Finally, the proposed ATST Project would be an incremental addition of approximately 4 percent to the use of Conservation District lands within HO and only a fraction of a percent of the total resource zone. In consideration of these factors, if constructed at either location within HO, the proposed ATST Project is anticipated to result in only a minor, adverse, and long-term cumulative impact.

The major, adverse, long-term impact affecting FAA RCAG signal interference would only occur as a result of the ATST project due to the size of the proposed structure and its proximity to the FAA antenna tower. MIT-2, however, would reduce this impact to negligible, adverse, and long-term thus not increasing the cumulative impact on land use and existing activities. There would be no cumulative impact resulting from the No-Action Alternative as there would be no change to the land use or existing activities.

ES-4.17.5 Cultural, Historic, and Archeological Resources

Detailed descriptions of the **impacts** from past, present, and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on the traditional cultural, historic, and archeological resources within the ROI.

Cumulative impacts to cultural, historic, archeological resources are discussed below by alternative.

Preferred Mees Site Alternative

Cumulative impacts to cultural resources would be major, adverse and long-term. Construction of facilities on the summit beginning in 1957 and continuing with the proposed construction of the ATST project would result in a long-term major adverse impact. Cumulative impacts to traditional cultural resources include both physical and spiritual impacts.

For Native Hawaiians, an uninterrupted view is often cited as necessary to make an emotional and physical connection to a place of importance. Therefore, because the view is already interrupted by manmade structures in the summit area, the addition of the proposed ATST Project would be incremental in degradation of the spiritual values of the ROI with respect to the view. While there is no way to quantify the cumulative **impacts** of the incremental addition on spiritual values, in consideration of the past, present, and reasonably foreseeable future actions, the addition of the proposed ATST Project would result in readily detectable, localized **impacts**, with consequences at the regional level to cultural practitioners within greater Hawai'i. Therefore, the cumulative **impacts** on cultural resources of the proposed ATST Project, combined with past, present, and reasonably foreseeable future actions are considered **major**, adverse, and long-term.

Previous activities within the ROI have not adversely affected historic and archeological resources. To prevent future adverse impacts, the LRDP was prepared with detailed procedures and practices to avoid adverse, long-term impacts on archeological sites. Therefore, it is anticipated that negligible, adverse, long-term, direct cumulative effects on the historic and archeological resources

at HO and within the Park road corridor would occur from construction of the proposed ATST Project at the Preferred Mees site.

Reber Circle Site Alternative

The **impacts** on cultural resources resulting from past, existing, and known reasonably foreseeable future actions, and the addition of the proposed ATST Project within the ROI for **historic and archeological** resources at the Reber Circle site **would be similar to those at the Preferred Mees site.** Cumulative **impacts to cultural resources for past, present and future actions would be major, adverse, long-term and direct.** Implementation of the same mitigation measures that would be implemented at the Preferred Mees site would not reduce the impacts below major, adverse, long-term, and direct. It is anticipated that minor, adverse, and long-term direct cumulative effects on the historic and archeological resources at HO and within the Park road corridor would occur from the proposed ATST Project.

No-Action Alternative

The No-Action Alternative would not contribute to changes in cultural, historic, or archeological resources within HO or along the Park road corridor that constitute the ROI. The cumulative impacts on traditional cultural resources relevant to the No-Action Alternative would remain major, adverse, long-term, and direct. Because there are minor, adverse, and long-term impacts resulting from past, present, and reasonably foreseeable actions within the ROI for historic and archeological resources, the cumulative effects from the No-Action Alternative would remain at the minor, adverse, and long-term.

ES-4.17.6 Biological Resources

Detailed descriptions of the **impacts** from past, present, and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on the biological ecosystems within the ROI. The results indicate that when combined with past, present, and reasonably foreseeable future actions in the ROI, the **impact** on botanical resources would be minor, adverse, and short-term.

In combination with past, present and reasonably foreseeable future actions at HO, the **impacts** of the proposed ATST Project at the **Preferred** Mees site on endangered, threatened, proposed, and candidate plant species would be negligible, adverse, and long-term.

For other native and introduced fauna, the combined impacts of past, present, reasonably foreseeable future actions at both the Preferred Mees and Reber Circle sites would be negligible, adverse, and long-term. To reduce the risk of transporting non-native species or seeds to the project site, NSF has proposed a Long Range Development Plan for the prevention of introduction of invasive exotic weed species will be followed during the construction, maintenance, and use of the ATST (MIT-9).

Only minor differences in construction impacts exist between the Preferred Mees site and the Reber Circle site; therefore, the cumulative impacts for all the resources above would be the same for the construction and operation of the proposed ATST Project at the Reber Circle site, with the exception of the 'ua'u. The Reber Circle site is a greater distance from 'ua'u burrows in the Kolekole colony and is on previously developed land. The likelihood of adverse impacts on the 'ua'u colony would be even less than for the Preferred Mees site, and with the nesting period limitations on heavy construction, along with noise and vibration restrictions during construction, the Reber Circle site would be even less likely to result in adverse impacts on the 'ua'u at HO. The potential impacts on 'ua'u along the Park road corridor during construction at Reber Circle site would be the same as for the Preferred Mees site, which is minor, adverse, and long-term. Therefore, when

combined with the impacts from past, present, and reasonably foreseeable future actions at HO, the impacts on 'ua'u within the ROI are anticipated to be negligible, adverse, and long-term.

Under the No-Action Alternative, no construction would take place and operations would continue as at present. Therefore, the proposed ATST Project would result in no additional impacts to those described above for past and present activities at HO, which would continue to occur. Under the No-Action Alternative, however, the 'ua'u monitoring program would be discontinued, which would result in a minor, adverse, and long-term impact on the ability to assess the health, numbers, and behavioral characteristics of the colony population. This alternative would not result in the risks to biological ecosystems that have been identified in connection with the proposed ATST Project. The same risk of AIS introduction would be present from current HO traffic and materiel delivery. The botanical diversity and population would likely continue to exist as it is, and the endangered 'ahinahina would likely continue to occur as windborne dispersal dictates. The same minor adverse impacts from HO operations would continue at the Kolekole 'ua'u colony. The risk of 'ope'ape'a mortality due to a building collision would also be the same as it is at present. Overall, the cumulative impacts of the No-Action Alternative would be minor, adverse, and long-term.

ES-4.17.7 Topography, Geology, and Soils

Detailed descriptions of the **impacts** from past, present, and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on topography, geology and soils within the ROI. The results indicate that when combined with past, present, and reasonably foreseeable future actions in the ROI, the cumulative **impact** on these resources would be minor, adverse, and short-term **under either action alternative**.

Under the No-Action alternative, the proposed ATST Project would not be constructed and, therefore, the topography would remain the same and, therefore, the cumulative impacts of the No-Action Alternative when added to the impacts from past, present, and reasonably known future actions within the ROI would remain major, adverse, and long-term. With regard to geology and soils, the proposed ATST Project, under the No-Action Alternative would not be constructed and geology and soils would not be disturbed and, therefore, the cumulative impacts of the No-Action Alternative when added to the impacts from past, present, and reasonably foreseeable future actions within the ROI would remain negligible, adverse, and long-term.

ES-4.17.8 Visual Resources and View Plane

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on the visual resources and view plane within the ROI. The results indicate that when combined with past, present, and reasonably foreseeable future actions in the ROI, the **impact** on those resources would be **moderate**, adverse, and long-term from the Pu'u Ula'ula Overlook and areas of HALE adjacent to HO. From the upper two miles of Park roadway, the cumulative **impacts** would be **moderate**, adverse, and from the lower portions of the roadway, it would be negligible, adverse, and long-term. From populated areas of Maui near sea level or higher elevations, the cumulative visual **impacts** would be negligible, adverse and long term. **The No-Action Alternative would not contribute to changes in visual resources within HO or the adjoining properties that constitute the ROI, and therefore, the proposed ATST Project would not result in any additional effects on those resources.**

ES-4.17.9 Visitor Use and Experience

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on the visitor use and experience within the ROI. The results indicate that when combined with past, present, and reasonably foreseeable future actions in the ROI, the **impacts** for the loudest construction impact sounds, would result in a major, adverse and long-term **impact** on visitor's ability to enjoy ambient sound levels at Pu'u 'Ula'ula Overlook and at the start of the Sliding Sands hiking trail **prior to mitigation**. The mitigation measures (**MIT-6**) described in Section 4.6-Visitor Use and Experience and 4.10-Noise would reduce the impacts of construction noise before sunrise and after sunset and between April 20th and July 15th in compliance with USFWS mitigation measures for petrel incubation. **Considering** noise **impacts** when combined with past and present actions at HO, however, construction of the proposed ATST Project at HO would result in **major**, adverse and short-term **impacts** on the experience of visitors to the Pu'u 'Ula'ula Overlook, Sliding Sands trailhead and the surrounding HALE areas adjacent to HO.

Visual resources impacts related to visitor use and experience, when combined with the moderate, adverse, and long-term impacts from past and present actions at HO, construction of the proposed ATST Project at either location would have a major, adverse, and short-term cumulative on visitor use and experience at HALE due to visitor expectations of the environment. In addition, visual resources impacts related to the completed ATST Project, when combined with the moderate, adverse, long-term impacts of past and present actions at HO, the overall cumulative on visitor use and experience resulting from the operations of the proposed ATST Project would be major, adverse, and long-term. No mitigation would adequately reduce these cumulative impacts.

Traffic levels during construction are expected to increase by about 15 trips per day. When combined with the minor, adverse, and long-term past, present, and reasonably foreseeable actions at HO, these adverse impacts on visual resources, noise, and traffic, would result in a cumulative minor, adverse, but short-term affect on visitors. Operations of the proposed ATST Project combined with past, present, and reasonably foreseeable actions at HO would still result in cumulative minor, adverse, and long-term s on visitor use and experience along the lower roadway.

There would be no direct cumulative impact to visitor use and experience under the No-Action Alternative, as visitor use and experience would remain the same as the existing conditions outlined in Section 3.0-Description of Affected Environment.

ES-4.17.10 Water Resources

The proposed ATST Project and other future proposed actions, including the construction of the SLR 2000, would require land-disturbing activities, which could increase the potential for soil erosion to change infiltration routes and drainage patterns. Compliance with State-administered NPDES regulations and the guidelines of the HO SWMP would minimize the impacts on surface and groundwater resources. Because most on-site stormwater would be captured in the existing MSO cistern, the ATST Project would not contribute to HO stormwater systems. Since no changes to the Park road corridor are proposed, there would be no changes in stormwater runoff patterns, infiltration, or drainage within the remaining portions of the ROI. Under either project alternative, a wastewater treatment system would be installed, which would capture and process domestic wastewater prior to infiltration into the ground. The Mees site alternative would replace the existing cesspool, while the Reber Circle site alternative and the No-Action Alternative would leave the cesspool in place, continuing the current minor, adverse, long-term impact on groundwater resources. When added to the past, present, and reasonably foreseeable future actions, the

proposed ATST Project would result in cumulatively minor, adverse, and long-term impacts on the water resources.

Considering past, present, and reasonably foreseeable future actions, excluding the proposed ATST Project, the cumulative impacts from the No-Action Alternative would be minor, adverse, and long-term impacts on surface water and groundwater resources within the ROI.

ES-4.17.11 Hazardous Materials and Solid Waste

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on hazardous materials and solid waste within the ROI.

There are no future projects that have been identified to occur outside of HO that would have any **impact** on HAZMAT management or the potential for on-site contamination at HO.

The proposed ATST Project would be a Conditionally Exempt Small Quantity Generator of hazardous waste, in that it would not generate more than 100 kilograms (approximately one-half of a 55-gallon drum, 27 gallons, or 220 pounds) of hazardous waste, not more than 1 kilogram (2.2 pounds) of acute hazardous waste in one month, and not more than 1,000 kilograms (approximately five 55-gallon drums, or 275 gallons, or 2,200 pounds) of total accumulated hazardous waste and not more than 1 kilogram (2.2 pounds) of accumulated acute hazardous waste at any time. Because the proposed ATST Project and each of these proposed facilities would be obligated to comply with the requirements of the LRDP, negligible adverse, long-term cumulative **impacts** on HAZMAT, solid waste, and site contamination at HO would be expected.

If implemented at the Reber Circle site, cumulative **impacts** of existing projects and the proposed projects from HAZMAT and solid waste would be similar to those described for the **Preferred** Mees site, with the exception of the installation of an aboveground storage tank for storing diesel fuel. Increased use, storage and disposal of HAZMAT and waste and solid waste as a result of the future proposed projects and the proposed ATST Project would result in negligible adverse, long-term cumulative **impacts**.

For the No-Action Alternative, the proposed ATST Project would not be constructed, thereby not involving any short or long term use of HAZMAT. Existing facilities would continue to use such materials for mirror coating and cleaning, lubrications, refrigerants, etc. Therefore, the potential for a release would still exist. Based on the historical record of HAZMAT and waste handling at HO, which is excellent and does not include any EPA-reportable spills of HAZMAT in the more than 30 years since reporting requirements were imposed, only negligible, adverse, and long-term impacts are expected as a result of the No-Action Alternative.

ES-4.17.12 Infrastructure and Utilities

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on infrastructure and utilities within the ROI. With the exception of the removal of the Mees septic system, the cumulative impacts on wastewater, stormwater, electrical systems, communication systems and roadways and traffic would be similar to the cumulative impacts that would result from past, present, and reasonably foreseeable future actions at HO and adjacent neighbors, if the proposed ATST project were implemented at either the Preferred Mees site or the alternative Reber Circle. Constructing the proposed ATST Project at the Reber Circle site would, however, include the installation of a wastewater treatment plant and the cesspool at the MSO would continue to operate, which would result in a cumulatively minor, adverse, and long-term impact on wastewater.

Under the No-Action Alternative, the proposed ATST Project would not be constructed. The demands on the existing infrastructure and utilities would be minimally increased due to the only reasonably known future activity that would be added, the SLR 2000. The MECO upgrade would not be pursued without the proposed ATST Project. The MSO cesspool would remain in place. The SLR 2000 would have negligible, adverse, and long-term impacts on infrastructure and the cumulative impacts on infrastructure and utilities in the ROI from past, present, and future proposed projects combined with impacts from the No-Action Alternative would be negligible, adverse, and long-term.

Wastewater. The existing cesspool at the MSO facility would be removed and an advanced aerobic system would be installed to treat sanitary wastewater. Therefore, construction of the proposed ATST Project would likely result in a beneficial change in effluent quality that, along with present and past actions at HO and adjacent neighbors, would constitute a minor, beneficial, and long-term impact on wastewater generation. The cesspool would remain in place if the ATST Project were built at the Reber Circle site.

Stormwater and Drainage. The proposed ATST Project facility would be designed so that most of the on-site stormwater would be captured for reuse in the existing MSO cistern reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through onsite French drains where water would percolate to the natural subsurface environment. Therefore, because the proposed ATST Project would not contribute to the overall cumulative impact, the cumulative impact, regardless of the minor, adverse, and longterm impacts on stormwater and drainage patterns from past, present and reasonably foreseeable future actions within Kolekole, would remain negligible, adverse, and long-term.

Electrical Systems. The MECO upgrade would alter the existing electrical system by improving efficiency and providing a safer reserve capacity, which in combination with past, present, and reasonably foreseeable future actions would result in cumulative minor, beneficial, and long-term impacts on the electrical system at HO.

Communications Systems. The cumulative **impact** of the proposed ATST Project on communication systems within the ROI would be minor, adverse, and long-term. For telecommunications, there would be negligible cumulative **impacts** serving the site or anywhere else on Maui. The cumulative **impacts** on the FAA RCAG facility from all actions could be major, adverse, and long-term due to the potential for signal attenuation from the RCAG antenna resulting from the ATST facility. **To avoid such a degradation of signal, FAA would implement MIT-2, which would replace the existing RCAG antenna with a high-gain antenna in the same location. The resultant impact would be negligible, adverse, and long-term. Overall, in combination with past, present and reasonably foreseeable future actions at HO and adjacent neighbors, the cumulative impacts of the proposed ATST Project on communications would be negligible, adverse, and long-term.**

Roadways and Traffic. Considering the past and existing conditions, combined with expected **impacts** from the proposed ATST Project and those of the anticipated SLR 2000 project in the ROI, there is a potential for moderate, adverse, and short-term cumulative **impacts** on roadways and traffic within HO during construction of the proposed ATST Project. The cumulative **impacts** from traffic on the HALE roadway would be moderate, adverse, and long-term as well. Mitigation measures, **MIT-12** and **MIT-13**, would reduce the adverse **impacts** to minor, adverse, and long-term within HALE. A principal source of cumulative **impacts** to roadways and traffic would be the collateral damage to roadways caused by heavy

vehicle traffic during construction of the proposed ATST Project and interference with visitor traffic during peak travel times to HALE and the summit of Haleakalā. The use of the Park road by these vehicles in combination with past and present actions at HO and adjacent neighbors would have a cumulative minor, adverse, and long-term **impact** on the longevity of the pavement.

ES-4.17.13 Noise

There would be a **minor** increase in background noise levels in the ROI above existing conditions; however, construction of the proposed ATST Project would result in high noise levels during certain times of the year and during certain hours, as described in Section 4.10, Noise. The cumulative noise **impacts** on persons within 2,500 feet of the proposed ATST Project site from construction at either the **Preferred** Mees site or Reber Circle site would likely be major, adverse, and long-term. Mitigation measures restricting **construction** noise would be implemented **to limit construction activities to begin no earlier** than 30 minutes after sunrise and end no later than 30 minutes before sunset, and to be prohibited between April 20th and July 15th, in coordination with USFWS and NPS mitigation measures, reducing the **impacts** to negligible, adverse, long-term **impacts** during those periods.

The cumulative impacts of existing and reasonably foreseeable future actions from the No-Action Alternative would have minor, adverse, and short-term impacts on noise conditions within the ROI. Under the No-Action Alternative, the proposed ATST Project would not be constructed; therefore noise conditions would not change. However, reasonably foreseeable future actions would generate short-term, non-impulse, and impulsive noise emissions during construction which may be audible throughout the ROI and outdoor levels would likely exceed respective State standards for Class A zoning districts on occasion. Therefore, impacts from existing conditions and reasonably foreseeable future actions within the ROI and the proposed ATST Project would not alter that (as it would not be constructed under this alternative).

ES-4.17.14 Air Quality

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on air quality within the ROI. The cumulative **impacts** on air quality with the ROI from past, present, and reasonably foreseeable future actions, including the proposed ATST Project would essentially be considered negligible, adverse, and long-term.

The cumulative air quality impacts from past, existing, and reasonably foreseeable future actions when added to those from the No-Action Alternative would result in negligible, adverse, and short-term impacts on air quality within the ROI.

ES-4.17.15 Socioeconomics and Environmental Justice

Detailed descriptions of the **impacts** from past, present, and reasonably foreseeable future actions within the ROI, which includes Greater Maui, are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on socioeconomics and environmental justice within the **applicable** ROI. The socioeconomic **impacts** associated with past, present, and the foreseeable future project at HO combined with those anticipated from the proposed ATST Project would be minor, adverse, and long-term, and, for employment, economics and income, it would be minor, beneficial, and long-term. Specifically:

1. the cumulative **impacts** on housing would be minor, adverse and long-term,

- 2. the cumulative **impacts** on economics and income would be minor, beneficial and long-term,
- 3. the cumulative **impacts** on education and outreach would be minor, beneficial, and long-term,
- 4. the cumulative **impacts** on environmental justice would be negligible, adverse and long-term; and,
- 5. the cumulative **impacts** on the protection of children from environmental health or safety risks would be negligible, adverse and long-term.

ES-4.17.16 Public Services and Facilities

Detailed descriptions of the **impacts** from past present and reasonably foreseeable future actions within the ROI, which includes Greater Maui, are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on public services and facilities within the ROI.

Under the No-Action Alternative, there would continue to be negligible, adverse, and long-term impacts on public services and facilities. There would be no measurable or perceptible consequence as a result of the No-Action Alternative.

Police Protection. Construction or operations of the proposed ATST Project at **either the Preferred Mees site or the alternative Reber Circle** site would not affect Maui Police Dept. (MPD) operations, which are too distant to be summoned for emergencies typically requiring such services. In combination with past, present, and reasonably foreseeable future actions, Park rangers or MPD would cumulatively experience negligible, adverse, and long-term **impacts** on police protection.

Fire Protection. Fire fighting would be difficult, since the closest fire station located in Kula is approximately 28 miles away from the summit of Haleakalā, which is beyond fire fighting capabilities. Therefore, the cumulative **impacts** of the proposed ATST Project along with past, present, and reasonably foreseeable future actions on fire protection services is negligible, adverse, and long-term.

Schools. Due to the distance to the nearest schools, the addition of the proposed ATST Project at **either site** would contribute a negligible, adverse, and long-term **impact** to the already negligible, adverse **impacts** of the past, present, and reasonably foreseeable future actions within the ROI. The overall **impacts** would be negligible, adverse, and long-term.

Recreational Facilities. The activities at HO already pose a minor, adverse **impact** on recreational facilities. The proposed ATST Project would **not limit the** recreational facilities **and resources at HALE; however, the noise impacts would have an adverse impact on recreational facilities**. The main attractions for recreation are the locations where most visitors congregate, i.e., the Pu'u Ula'ula Overlook, the Haleakalā Visitor Center, the Leleiwi Overlook, the Park Headquarters Visitor Center, and the crater trails. During construction, the cumulative **impacts** on recreational facilities would be major, adverse, and long-term for high impact noise out to a distance of about 2,500 feet from the proposed ATST Project area. Mitigation measures would reduce the **impacts** part of the time. **See Section 4.10 for a discussion of noise impacts.** During operations of the proposed ATST Project, the cumulative **impact** from past, present, foreseeable future activities and the proposed ATST Project on recreational resources for the Park road corridor would be minor, adverse, and long-term.

Healthcare Services. The overall cumulative **impact** of the proposed ATST project along with past, present, and reasonably foreseeable future actions would remain negligible adverse and long-term for either of the two action alternatives as well as for the No-Action Alternative.

ES-4.17.17 Natural Hazards

Detailed descriptions of the **impacts** from past, present, and reasonably foreseeable future actions within the ROI, which includes Greater Maui, are combined with the potential **impacts** from the proposed ATST Project to assess the cumulative **impacts** of these actions on natural hazards within the ROI.

Implementing the proposed ATST Project, including the associated MECO upgrade, would not increase the potential for natural hazards and would not change the nature of natural hazards which occur within the ROI. Therefore, the cumulative **impacts** from existing projects, the proposed ATST project **at either the Preferred Mees site or the alternative Reber Circle site**, and the reasonably foreseeable future actions would be negligible, adverse, and long-term.

The construction and operation of the proposed ATST Project **at either site** would have a negligible, adverse **impact** on the safety of the public and adverse **impacts** on the environment would be negligible such as to cause damage, destruction, or loss of life.

Under the No-Action Alternative, the impact would remain at negligible, adverse, and long-term.

ES-4.17.18 Summary of Intensities and Impacts

Both adverse and beneficial **impacts have resulted from** past, present, and reasonably foreseeable future actions at HO and its adjacent neighbors, as described for the fourteen aspects of the affected environment.

When added to the impacts of past, present, and reasonably foreseeable future impacts, the ATST Project at the Mees site would result in major, adverse impacts on cultural resources, topography, visitor use and experience, and noise conditions. These major impacts would be the same at the Reber Circle site, and additionally the cumulative impact on visual resources would also be major; visual resources would be moderately impacted at the Preferred Mees site. All other cumulative impacts either during construction or operation would be either minor or negligible.

ES-4.18 Mitigation

Mitigation is defined by CFR Title 40 Parts 1500 to 1508, Section 1508.20-Mitigation as including avoiding, minimizing, rectifying, reducing, or compensating for the **impact** by replacing or providing substitute resources or environments. To ensure compliance with any mitigation measures that are ultimately implemented if the proposed ATST Project goes forward, NSO is in the process of developing a management plan that would utilize monitoring and evaluation mechanisms to determine if the proposed ATST Project is achieving the mitigation objectives and adjust actions accordingly. This management plan is intended to cover both phases of the proposed ATST Project, including construction and operations.

Mitigation measures are identified and discussed in the project analysis on a resource-by-resource basis, relevant. Table ES-4-2 summarizes all project mitigations and identifies the affected resource where further discussion may be found.

Mitigation		
No. MIT-1	Mitigation Description NSF would decommission and deconstruct the proposed ATST Project at	Affected Resources 4.1-Land Use and
	the end of its productive lifetime (approximately 50 years from the date operations commence), unless decided otherwise in consultation with the Native Hawaiian community. In that case, NSF would take steps to divest itself of all responsibility of the ATST Project.	Existing Activities*, 4.2-Cultural, Historic, and Archeological Resources.
	isen of an responsionity of the ATST Project.	*mitigation not required, but applied to reduce long- term impacts
MIT-2	FAA will erect high-gain antennas in the same location as the current RCAG antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas. The FAA has stated that further modification of the site and relocations of the antennas may be needed, but environmental impacts from such a potential modification and relocation would not rise to a level of significance.	4.1-Land Use and Existing Activities;4.9-Infrastructure and Utilities
MIT-3	NSF, AURA/NSO, and UH IfA, in consultation with the Native Hawaiian community, will use best efforts to locate an area for a Hawai'i star compass at the summit.	4.2-Cultural, Historic, and Archeological Resources
MIT-4	In accordance with IfA's Long Range Development Plan, all construction crewmembers would attend UH-approved "Sense of Place" training prior to working on the proposed ATST Project.	4.2-Cultural, Historic, and Archeological Resources
MIT-5	AURA/NSO would hire a cultural resource monitor to ensure protection of existing traditional cultural resources during construction. The cultural resource monitor will be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has knowledge of the spiritual and cultural significance and protocol of Haleakalā. The cultural resource monitor's knowledge should be concentrated in traditional and cultural practices and protocols. The cultural resources monitor would be chosen in consultation with appropriate organizations and individuals with knowledge of such traditions and protocols.	4.2-Cultural, Historic, and Archeological Resources
MIT-6	HALE would restrict noise levels during certain hours of the day and during certain months of the year, limit on-site ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, limit the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and prohibit wide or heavy loads from coming through the Park at night between April 20 th through July 15 th). The seasonal restriction on wide load traffic is also imposed by USFWS.	 4.2-Cultural, Historic, and Archeological Resources; 4.3-Biological Resources; 4.6-Visitor Use and Experience; 4.10-Noise
MIT-7	SUP Pre- and Post-Project Documentation: Prior to and after the proposed ATST Project, all historic features and other areas susceptible to potential impact along the Park road shall be photographed and documented (see FHWA report – "Haleakala Highway, Haleakala National Park, Maui, Hawai'i, Pavement/Drainage conditions Investigation, Distress Identification and Recommendations, Report # HALA 3-2-2009, March 2, 2009 (revised April 2009)", found in Vol. II-Appendix P). This will be completed by a qualified person funded by the ATST Project.	4.2-Cultural, Historic, and Archeological Resources

Table ES-4-2. Mitigation Summary.

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-8	Remove site Archeological Site 50-50-11-5443, concrete ring, which is a remnant of a 1952 radio telescope experiment, in accordance with the	4.2-Cultural, Historic, and Archeological
	Archeological Data Recovery Plan.	Resources
MIT-9	Mitigation measures developed in coordination with NPS and USFWS	4.3-Biological
WII I - J	would implement monitoring, avoidance, and minimization measures for	Resources
	the project, including the following:	Resources
	1. The Project will fund an agreed-upon and qualified person to	
	conduct reasonable biological monitoring activities as outlined by the	
	USFWS in its informal consultation. Specifically, the monitor will	
	ensure that any changes in behavior and any petrel mortality associated	
	with the proposed ATST Project are monitored and reported to the	
	NPS and USFWS. The monitor will also monitor the impacts to nēnē	
	and other biological resources. All monitoring activities shall take	
	place during the construction phase of the proposed ATST Project and	
	subsequently during the first three years of the operations phase.	
	2 The Mating 1 Ded. Consider the second state of the Conte Division of	
	2. The National Park Service, in cooperation with the State Division of Forestry and Wildlife (DOFAW), will likely continue to monitor and	
	manage the 'ua'u, as it has for over 25 years. This monitoring has	
	included annual surveys of the Kolekole colony for new burrows, and	
	NPS maps of active burrow locations at the Kolekole colony have been	
	provided to IfA periodically for a number of years. Independently, a	
	biological monitor provided by the proposed ATST Project would	
	work with NPS resource staff to survey the colony routinely for new	
	burrows. Should newly active burrows be found closer to ATST than	
	those shown in Figure 3-6 of the FEIS (40-feet), additional Section 7	
	consultation with USFWS would be necessary.	
	3. Formal Section 7 consultation would take place prior to the	
	possibility of "take".	
	4. Endangered Species Act Compliance - The construction must	
	adhere to the mitigation measures outlined in the informal Section 7	
	consultation with the USFWS. The USFWS consultation addressed (a)	
	noise and vibration impacts, (b) ground vibration that could collapse	
	petrel burrows, (c) flight obstacles, (d) spread of AIS from construction	
	vehicles, and (e) increased traffic and potential collisions with wildlife.	
	As requested by DLNR, AURA/NSO would monitor cumulative noise	
	and vibration during construction to ensure that noise and vibration	
	thresholds are not exceeded at the site, in accordance with the USFWS	
	Section 7 Informal Consultation Document (Appendix M). Noise and	
	vibration measuring equipment would be monitored to ensure that	
	endangered species are not exposed to potential harm.	

Mitigation No.		Mitigation Description	Affected Resources
MIT-9	A summary of the Section		
(cont.)	Possible Impact	Avoidance and Minimization Measure Adopted	
	Collision of petrels	Construction crane will be lowered at night and	
	with equipment and	marked with white polytape for visibility. All	
	buildings	structures will be painted white. No outdoor	
		lighting will be associated with the project.	
	Burrow collapse from	USFWS set ground vibration thresholds for	
	construction vibration	burrow collapse. Vibration will be monitored to ensure that the burrow collapse threshold is not exceeded.	
	Noise concerns and	Construction noise at burrows within 80 meters	
	incubating Hawaiian	will be no louder than 83 dBA measured at 5-feet	
	petrels	from the source during incubation periods (April	
	I	20 th through July 15 th). Only two truck round-	
		trips per day will be driven to the construction	
		site during the incubation period.	
	Predator population increase	Trash will be contained. Rat predation at the Haleakalā Observatories Hawaiian petrel.	
	Transport of invasive	Cargo will be thoroughly inspected for introduced	
	species to Haleakala	non-native species. All ATST facilities and	
	-	grounds with 100 feet of the buildings will be	
		thoroughly inspected for introduced species on a	
		semi-annual basis and any introduced floral	
		species found will be removed.	
	Driver education	All drivers will receive a briefing and a breeding	
		season refresher to further reduce the chance that	
		a vehicle associated with the project would cause injury or mortality to nēnē.	
	5 Alien Invasive S	pecies Prevention - NPS vehicle, equipment, and	
	materials washing a	and inspection protocol will be followed by the	
		her, to augment prevention, the IfA has	
	-	ng throughout HO. This would reduce or eliminate prevention is not successful.	
	-	on To Nēnē At Entrance Station - To enable wide	
		ark entrance station, an area 12-feet wide, currently	
		c tank, underground utilities, and native vegetation,	
		ly developed into a drivable surface. To mitigate	
		t on nënë that frequent the area, widening of the	
		completed outside the nēnē nesting season. Park	
		ith the ATST project team to implement nene for this road-widening work. Avoidance measures	
		ey of the site for nēnē prior to construction and	
		orary "orange fencing" around the outer perimeter	
	-	area to prevent nene from walking into the site	
		. The site will be restored with native vegetation	
	-	reduce impacts on nēnē.	
			1

Table ES-4-2.	Mitigation	Summarv	(cont.).
	111115ution	Jummary	(COIIC).

Mitigation No.	Mitigation Description	Affected Resources
MIT-9 (cont.)	7. Programmatic Monitoring - A programmatic monitoring plan for invertebrates, flora and fauna during the project has been prepared for	Anteeted Resources
MIT-10	the project, as described in Table 4-1. Slow moving vehicles and/or vehicles that are class 5 or larger should not travel through the Park between approximately 11:00 a.m. and 2:00 p.m. These are peak visitation hours. The ATST Project shall provide regular updates to appropriate NPS staff during the project so NPS staff can provide information to Park visitors.	4.6-Visitor Use andExperience;4.10-Noise
MIT-11	Contractors would be made aware of the potential for road damage and would be required to take measures to minimize the damage. Any damage to HO roadways that does result from ATST construction traffic would be repaired so as to, at a minimum, restore those roadways back its condition before construction of the proposed ATST Project. These mitigation measures, to be negotiated between the affected parties, would reduce the overall impact on HO roadways and traffic down to minor, adverse, and short-term impacts.	4.9-Infrastructure and Utilities
MIT-12	All construction-related traffic within the Park road corridor would be coordinated with HALE and conducted in compliance with an SUP issued by HALE, so as to avoid or minimize: damage to the road pavement, potential damage to historic structures along the park road corridor, traffic congestion, and other potential adverse impacts on Park resources and the visitor use and experience. SUP provisions issued by HALE would include mitigation measures to address traffic issues, potentially including those recommended in the FHWA HALE Road Report. The provision of wide- load truck access at the HALE entrance station would require special mitigations related to that project, as described in Section 2.4.3- Construction Activities, Construction Traffic. This would include:	4.9-Infrastructure and Utilities
	 Assurance by the ATST Project that the septic system is adequately protected. Mitigation may include placement of metal plate covers, grade beams, other protective structures, or relocation of utilities as a last resort. Protection of existing utility man-hole covers. Specifically, the 	
	Project would: a. avoid direct axle loading on the covers, b. replace the existing covers with heavier gage steel; or, c. reinforce the existing covers with additional steel bracing.	
	3. Provision of a barricade system, such as a gate, removable bollards or similar devices on the widened shoulder to deter Park visitors and staff from driving on it.	
	4. To minimize the potential impact to the nēnē habitat in this area, the access widening project would be completed outside the nēnē nesting season, which is November through March.	

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-12 (cont.)	 5. Native plants in the area of the access widening project would be protected when possible and HALE staff would work with the Project on this mitigation. 6. When the widened access is no longer needed for the proposed ATST Project, the area would be fully restored and rehabilitated to its pre-existing condition. 	
MIT-13	 To mitigate construction noise, contractors would implement reasonable noise-reduction practices and abatement procedures. These would include the following source control mitigation measures, all regarded as somewhat standard in the industry. These mitigation measures to minimize expected noise impacts during construction at HO would be as follows: Conduct all noise-emitting activities within strict day and time constraints, with work prohibited during sensitive nighttime periods. Reduce or substitute power operations/processes through use of proportionally sized and powered equipment necessary only for tasks at hand. Maintain all powered mechanical equipment and machinery in good operating condition with proper intake and exhaust mufflers, Turn off or shut down equipment and machinery between active operations; and, Shield noise sources where possible. 	4.10-Noise
	Contractors would be required to comply with applicable State noise regulations, under HAR 11-46.	
MIT-14	During the 50-year lifetime of ATST, the Project will periodically reassess technological options for new types of coatings, more efficient cooling methods, or improved compensation for thermal turbulence which may allow the ATST enclosure and buildings to be painted a color other than white. If such future technology is determined to be an effective, reliable and affordable solution that meets the scientific requirements of the ATST Project, NSF will consider repainting the exterior structures of the ATST with a more neutral color.	4.2-Cultural, Historic, and Archeological Resources
MIT-15	If there are Native Hawaiian scientists among the pool of scientists qualified to conduct research at the proposed ATST Project, NSO will reserve up to 2% of total ATST usage time for these Native Hawaiian scientists. Usage time will be provided through the Telescope Allocation Committee process similar to other scientists' requests based on technical feasibility and scientific merit. Unused time will not be carried forward to the next allocation period. Qualifications for usage will be based on established NSO guidelines.	4.2-Cultural, Historic, and Archeological Resources

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-16	The exterior design for the lower portion of the ATST building will include	4.2-Cultural, Historic,
	a well thought-out representation of traditional Hawaiian culture suitable to	and Archeological
	the Haleakalā setting, such as artwork depicting Maui and the Sun or other	Resources
	appropriate motifs. These depictions will be developed in consultation with	
	Native Hawaiian artists.	
MIT-17	NSF will support Maui Community College (MCC) in developing an	4.2-Cultural, Historic,
	educational initiative (Akeakamai I Ka La Hiki Ola, or Scientific	and Archeological
	Exploration Beneath the Life-Bringing Sun) on Maui to address the	Resources
	intersection between traditional Native Hawaiian culture and science. To	
	support this educational initiative at MCC, NSF will, if the proposed ATST	
	Project is approved, make available \$20 million (\$2 million per fiscal year,	
	commencing in FY 2011), subject to applicable Federal law.	
MIT-18	UH If A will work with appropriate authorities to consider renaming the	4.2-Cultural, Historic,
	roads on the summit.	and Archeological
		Resources

ES-5.0 Notification, Public Involvement, and Consulted Parties

Pursuant to the National Environmental Policy Act (NEPA) and upon recommendation by the State of Hawai'i Dept. of Health, OEQC, Federal and State agencies, Native Hawaiian Organizations (NHOs) and individuals, other organizations and members of the public were notified, contacted, and consulted during the course of planning for the proposed ATST Project or in the course of preparing studies or submitting applications for various approvals.

Details of public and agency disclosure and involvement regarding the proposed ATST Project consisting of notification letters, agency and media announcements, document distribution lists, and descriptions of public hearings, consultations, and comment periods are detailed in the following subsections. Responses to issues and concerns raised during the public hearings, comment periods, and consultation meetings were addressed by the ATST point-of-contact.

Consultation meetings pursuant to the Section 106 process of the National Historic Preservation Act (NHPA) also took place both before and after publication of the DEIS and after publication of the SDEIS. At times, the NEPA and NHPA processes were linked (as is reflected in some of the notification letters and cards), and at other times, there were additional focused Section 106 consultation meetings. This section discusses the Section 106 process, including the consultations with Native Hawaiian organizations and individuals for the proposed ATST Project. KC Environmental, Inc. (KCE), the NSF, and the archeological consultant for the proposed ATST Project initiated early and detailed consultations with the SHPD and the ACHP. These consultations have continued since 2005 and are summarized in this section.

Consultation with the U. S. Fish and Wildlife Service also took place pursuant to the Endangered Species Act. A summary of that interaction and the results of consultation are provided in Section 4.3-Biological Resources and Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document.

ES-5.1 EIS Process

ES-5.1.1 Pre-Assessment Notification

Federal Process. After considering the proposed ATST Project, NSF determined that it would prepare an EIS to assess the environmental **impacts** of the proposed Project pursuant to NEPA. On June 23, 2005, the Notice of Intent (NOI) for the proposed ATST Project was published in the Federal Register. (The Federal Register is a legal newspaper published every business day by the National Archives and Records Administration (NARA). The Federal Register contains: Federal Agency Regulations, Proposed Rules and Notices, Executive Orders, Proclamations, and Other Presidential Documents. The proposed ATST Project comes under the Federal Register's organizational category of "Notices, including scheduled hearings and meetings open to the public, grant applications, and administrative orders.")

State Process - Office of Environmental Quality Control. The OEQC was established in 1970 to help stimulate, expand and coordinate efforts to maintain the optimum quality of the State's environment. The OEQC implements the Environmental Impact Statement law, Chapter 343, HRS. If the lead agency decides that a proposed project may have a significant environmental **impact**, a State EIS must be prepared prior to implementing the proposed project. For the proposed ATST Project, the UH IfA, as the accepting authority for the proposed Project, decided that a State EIS must be prepared. The announcement for the proposed ATST Project was published on June 23, 2005 in the OEQC Bulletin. In addition, formal notification letters announcing the intent of the NSF to prepare an EIS for the proposed ATST Project were sent in June 2005 to State of Hawai'i elected officials, organizations, Federal and State agencies, and community individuals.

During consultation with the OEQC, it was determined that an EIS Preparation Notice (EISPN) was needed to address requirements under HRS Chapter 200, Title 11, in that the proposed ATST Project may potentially meet one or more of the significance criteria for **impacts** on Conservation District Land. The EISPN, which was a lengthy document describing the proposed ATST Project, was also prepared in accordance with HAR 13-5-31, which requires an EIS to accompany the required CDUA, where significant **impacts** may be anticipated. The EISPN was published and distributed in August 2005 to the OEQC, a recommended number of elected officials, agencies and organizations, libraries, and other interested individuals. Additional copies of the EISPN were distributed during the following months as agencies or individuals requested a copy.

ES-5.1.2 Pre-Assessment Public Scoping Meetings Pursuant to NEPA and OEQC Guidance

Three pre-assessment Public Scoping Meetings to assist the lead agency in determining the scope of environmental analysis, resources involved, and potential concerns about **impacts** were held on Maui, Hawai'i. Each meeting was facilitated by Mediation Services of Maui, was recorded by a transcriptionist from Iwado Court Reporters, and a Hawaiian language interpreter was available for individuals wishing to speak in Hawaiian, although no testimony was heard in the Hawaiian language at any of the scoping meetings. The attending public was invited to sign-in, view and collect information made available about the proposed ATST Project, listen to presentations given by members of the NSF, the NSO, the National Optical Astronomy Observatory (NOAO), the UH IfA, and the environmental consultants. The public was given the opportunity to ask questions, comment about issues and concerns, and given 30 days to submit written commentary or a written request to be included as a consulting party to the proposed ATST Project. Although particular comment periods were determined by the OEQC and Federal regulations, all written comments were accepted for inclusion into the DEIS and made part of the NSF's Administrative Record for the proposed ATST Project.

ES-5.1.3 Additional Public Meetings

An additional six meetings were held upon the request of the community or at the request of ATST Project members. Those in attendance were given the opportunity to ask questions and comment on the proposed ATST Project. All information presented during these additional meetings was identical to the July 2005 Public Scoping meetings.

ES-5.1.4 Publication of the Draft Environmental Impact Statement

The DEIS was formally published in the Federal Register on September 6, 2006. It was formally published in the OEQC Bulletin on September 8, 2006 and distributed to the OEQC, an OEQC– mandatory and –approved number of State and County of Maui agencies, organizations, libraries, elected officials, other interested individuals and Federal agencies. Additional copies of the DEIS were distributed during the following months upon request.

The public was given the required 45-day period in which to submit written on the DEIS. During this time period, the public was also invited to submit requests to become consulting parties pursuant to Section 106 of the NHPA.

DEIS Public Comment Meetings

The DEIS was published on September 8, 2006, which initiated a 45-day public comment period. The DEIS addressed the multi-year site selection process by the scientific community to locate scientificallyviable sites. The DEIS also addressed the potential direct, indirect, and cumulative environmental **impacts** of on-site construction, installation, and operation of the proposed ATST Project. Notification of the public hearings on the DEIS was published in the Maui News, and the Haleakalā Times and Maui Weekly-South Edition, September 13 to 26, 2006 issue. The 45-day public comment period began on September 8, 2006, and ended on October 23, 2006; however, public comments were accepted beyond the deadline and are included in this final EIS.

Three DEIS public hearings were held on Maui, Hawai'i. The format for each meeting was identical. Mediation Services of Maui facilitated all meetings and, at the onset of each meeting, set courtesy rules for comment and/or response interaction, notified participants that a court stenographer was in attendance to record the meeting, notified participants that those who signed up to give oral comments would be called upon to speak, and encouraged participants to submit comments either by oral testimony, via mail, facsimile, or e-mail before the comment deadline. As a result of public request, meeting transcripts are included in the EIS in Vol. III. **The public was informed that all comments would be addressed either individually or collectively, depending on the nature of the comment.**

DEIS Public Comments and Responses

Public input was solicited throughout the scoping process and on the DEIS. Comments submitted before publication of the DEIS were included in Vol. III, Appendix A and responses to substantive comments to the DEIS are provided in this FEIS. All comments were carefully evaluated during the preparation of this FEIS and, where appropriate, they were incorporated into the document. Full consideration was given to the concerns, suggestions, information, and documentation provided by the commenting individuals, groups, and agencies.

ES-5.1.5 Publication of the Supplemental Draft Environmental Impact Statement

The SDEIS was published on May 8, 2009, and was prepared in response to comments from members of the public and federal and state agencies on the DEIS. In a number of respects, the SDEIS was considerably revised from the DEIS; comments received warranted additional surveys and studies. The

SDEIS was formally published in the Federal Register and the OEQC Environmental Bulletin on May 8, 2009, and was distributed to a number of Federal, State, and County of Maui agencies, organizations, libraries, elected officials, and other interested individuals.

SDEIS Public Comment Hearings

Two NEPA Public Comment Hearings were held on Maui, Hawai'i on June 3 and 4, 2009. The format for each meeting was identical. A Meeting Facilitator was present at both meetings and, at the onset of each meeting, set courtesy rules for comment and/or response interaction, notified participants that a court stenographer was in attendance to record the meeting, notified participants that those who signed up to give oral comments would be called upon to speak, and encouraged participants to submit comments either by oral testimony, via mail, facsimile, or e-mail before the comment deadline. As a result of public request, meeting transcripts are included in the EIS in Vol. IV.

SDEIS Public Comments and Responses

The public was given the required 45-day comment period, which began on May 8, 2009 and ended on June 22, 2009. During this time period, the public was encouraged to submit comments to the SDEIS and again to submit requests to become consulting parties pursuant to Section 106 of the NHPA. The public was informed that all comments would be addressed in the FEIS either individually or collectively depending on the nature of the comment. All substantive comments and the responses thereto are included in Vol. IV.

ES-5.2 The Section 106 Consultation Process Pursuant to the National Historic Preservation

As stated in 36 CFR Part 800, "Section 106 of the National Historic Preservation Act requires Federal agencies to take into account the **impacts** of their undertakings on historic properties and afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on such undertakings."

In compliance with Section 106, NSF invited participation in this process to **Native Hawaiian** organizations and individuals who may attach religious and cultural significance to a historic property that may be affected by a proposed undertaking.

At the time the DEIS was published, NSF continued its outreach efforts to identify Native Hawaiian organizations that might have an interest in the Section 106 consultation process. To that end, assistance was requested from the Office of Hawaiian Affairs (OHA) and the Native Hawaiian community prior to each consultation meeting to identify Native Hawaiian organizations to invite.

In September of 2007, the U.S. Department of the Interior's Office of Hawaiian Relations published in the Federal Register, Vol. 72, No. 186, a Notice regarding the development criteria for establishment of a Native Hawaiian Organization (NHO) Notification List. The intent of the NHO list is to make available to other Federal agency officials this mechanism to assist with reasonable and good faith efforts to identify NHOs that are to be notified or consulted with when required by statute or when desired. Although the NHO list was not published prior to the publication of the DEIS, NSF did review the NHO list prior to conducting its August 2008 consultation meetings and invited all organizations appearing on the NHO list that had not previously been identified

ES-5.2.1 Section 106 Consultation Chronology

The ACHP was sent a formal notification letter in June 2005 announcing the intent of NSF to prepare an EIS for the proposed ATST Project. This pre-assessment letter included a project description with the intent to publish an EIS, detailed information about the three Public Scoping Meetings, and ATST Project management contact information. On July 6, 2006, a letter was sent to the ACHP, pursuant to 36 CFR §

800.6(a)(1)(iii), informing the ACHP of NSF's finding of adverse **impact** regarding the proposed undertaking. The letter also included a list of organizations and individuals the NSF has been in consultation with throughout the Section 106 process, a copy of CKM Cultural Resources' evaluation for the proposed Project, and a copy of a letter that was sent to Melissa Kirkendall, Maui archeologist, SHPD, requesting concurrence of the agency's adverse **impact** finding (ACHP, 2006). Additional information pursuant to Section 800.11(e) of the ACHP regulations was submitted to the Council for their review and determination of whether their participation in this matter is warranted. Ultimately, the ACHP decided to become a consulting party to NSF's Section 106 process.

The SHPD is the responsible State of Hawai'i entity with which NSF is required, pursuant to the NHPA, to engage in Section 106 consultations regarding the proposed ATST Project. A letter dated June 20, 2005 was sent to the SHPD (Melanie Chinen, former Administrator; Melissa Kirkendall, former Maui Archeologist; and Cathleen Dagher, former Assistant Maui Archeologist) to notify them of NSF's intent to prepare an EIS. NSF directly, and through KCE, corresponded with the SHPD regarding formal and informal consultation meetings. Since the publication of the DEIS, NSF and the SHPD have engaged in consultations regarding NSF's Section 106 process and ways in which adverse **impacts** need to be addressed. NSF continues to consult with the SHPD regarding the goal of developing a Memorandum of Agreement/Programmatic Agreement designed to address adverse **impacts** associated with the proposed ATST Project. In September 2005, on behalf of the NSF, KCE initiated consultation in accordance with Section 106 of the NHPA through numerous communications between Melissa Kirkendall, former Maui Archeologist of the Hawai'i SHPD and Archeologist Erik Fredericksen of Xamanek Researches, LLC.

On January 24, 2006, informal consultation was initiated with Kahu Charles K. Maxwell, Sr. and Dane Maxwell of CKM Cultural Resources and Kumu Hula Hokulani Holt-Padilla of the Maui Arts and Cultural Center, all of whom are knowledgeable about the traditional, cultural, and spiritual significance of Haleakalā.

During consultations with HALE in January 2006, the HALE Superintendent expressed concerns about potential **impacts** from construction of the proposed ATST Project on the historic Park road. Specifically, the Superintendent commented that the historic roadway has been evaluated by NPS and HAER as eligible for listing in the National Register of Historic Places under Criterion "A" (for its development of the National Park System, the development of early NPS landscape architectural design styles, and the craftsmanship of the CCC and Criterion "C" (for its association with rustic Park design that characterized early NPS development during the 1930s).

Formal Consultation Meeting – March 28, 2006. A letter inviting participation in a formal Section 106 consultation was sent by KCE on behalf of the NSF on February 22, 2006. This letter was sent to elected officials, agencies, organizations, and members of the community who submitted written requests to be a consulting party to the proposed ATST Project. A copy of the letter and mailing distribution list was also sent to the SHPD and OHA. Identical public notices were published in the Maui News on March 1 and 23, 2006, the Haleakalā Times in the March 15 to 28, 2006 issue and the Maui Weekly-South in the March 16 to 22, 2006 issue.

Formal consultation meetings were held on March 28, 2006, at Mayor Hannibal Tavares Community Center and on May 1, 2006, at the Paukūkalo Community Center. The intent of both meetings was to introduce the Section 106 process to the public, discuss avoidance, mitigation and minimization proposals, answer questions and listen to testimony, request assistance in providing NSF with contact information for other Native Hawaiian organizations and individuals who may want to participate in this process, and to encourage discussion on identifying and resolving adverse **impacts**. Proposals arising from these interactions were received from Mr. Warren Shibuya (March 28, 2006 and August 28, 2008),

Mr. Charles K. Maxwell, (March 28, 2006), and Chancellor Clyde Sakamoto, Maui Community College (May 14, 2007).

Consultation was held on March 28, 2006, with Retired Judge Boyd Mossman, Maui Trustee of OHA. NSF was given a list of additional Native Hawaiian groups that Judge Mossman recommended be invited to participate in the Section 106 process. Invitation letters dated March 31, 2006 were distributed and included a brief summary of the proposed ATST Project as it relates to the Section 106 process.

Formal Consultation Meeting – May 1, 2006. Notification postcards were sent to agencies, organizations, and members of the community announcing a second formal consultation meeting. This meeting was held on May 1, 2006 at the Paukūkalo Community Center. A copy of the postcard announcement and mailing distribution list was sent to SHPD and OHA.

Identical public notice advertisements were placed in the Maui News on April 21, 2006, the Haleakalā Times in the April 26 to May 9, 2006 issue, the Maui Weekly-South in the April 27 to May 3, 2006 issue, and posted to the ATST web site. At the meeting, the public was invited to participate in the Section 106 process, public testimony was heard, written testimony was accepted, and questions were answered. During public testimony, specific concern was heard about which organizations and individuals were contacted, the IfA's LRDP, and the NSF's role in educational outreach specifically for women and Native Hawaiians. Documentation addressing all of these concerns was posted to the ATST website within the week following the meeting.

DEIS Notification and Section 106 Resolution Proposals Status Update – June 5, 2006. On behalf of the NSF, KC Environmental, Inc. (KCE) sent information postcards to agencies, organizations, and members of the community with information announcing the anticipated publication of the DEIS and the subsequent public meetings to comment on the DEIS. It also announced that scheduled meetings with interested individuals and groups who submit resolution proposals for the Section 106 process would be held during the week of the DEIS public meetings. A copy of the postcard and mailing distribution list was sent to SHPD and OHA. The information on the postcard was also published in the Maui News, Haleakalā Times, Maui Weekly-South, and posted on the ATST web site.

OHA Formal Consultation Meeting – September 27, 2006. On September 27, 2006, NSF met again with OHA following issuance of the DEIS. That meeting took place in Honolulu with OHA Administrator, Clyde Nāmu'o. At that meeting, Mr. Nāmu'o said he was glad NSF engaged OHA early on in its Section 106 process, and he indicated that NSF was taking the right steps and engaging the right people.

Supplemental Cultural Impact Assessment Distribution – July 4, 2007. Extensive comments were received on the DEIS and during the Section 106 consultations concerning the proposed ATST Project's impact on historic and cultural resources. In view of these comments, NSF decided that it would be necessary to have a supplemental cultural impact evaluation prepared to assist in both its NEPA process and its ongoing Section 106 consultations. The SCIA provided by Cultural Surveys Hawai'i, Inc. substantially addressed the comments received on the DEIS and reflects additional consultative interactions requested in those comments.

ACHP Letter and Maui Community College Mitigation Proposal – November 8, 2007. The November 8, 2007, consultation letter from NSF to ACHP summarized the current Section 106 process, including consultations with interested parties. The November 8th letter also expressed NSF's desire to hold a meeting with the consulting parties to discuss all mitigation proposals submitted to date and allow for submission of additional proposals. Finally, the letter notified ACHP of the receipt of a Mitigation Proposal from MCC, and requested a meeting with the ACHP to discuss a path forward in the

consultation process. A copy of both the November 8, 2007 ACHP letter and the MCC Mitigation Proposal were sent to the consulting parties.

Formal Consultation Meeting – June 16 and 17, 2008. An invitation to attend formal Section 106 consultation meetings on June 16 and 17, 2008, was sent to all consulting parties. Those meetings were held at the University of Hawai'i Institute for Astronomy Maikalani Facility. A meeting facilitator was present as well as a court reporter.

While several consulting parties who attended the June 2008 meetings expressed concerns about and objections to the location of the proposed ATST Project, other consulting parties provided creative suggestions for mitigation provisions that could be included in a Memorandum of Agreement. Some of these suggestions included providing educational programs for Native Hawaiians, at both the University and K through 12 levels; locating an area for a "Hawai'i star compass" on the summit in recognition of the role navigation has played in Native Hawaiian culture; having the Native Hawaiian community identify a person with appropriate *kuleana* (responsibility)who could serve in a capacity similar to that of a Konohiki to work with the University of Hawai'i to facilitate traditional cultural practices at the Haleakalā High Altitude Observatory Site and to provide interpretation of the summit; removing the concrete remnants of the Reber Circle and cleaning up other areas on the summit; and putting a 50 year limit on the life of the proposed ATST Project. All of these suggestions and other comments by the consulting parties in attendance are set forth in the transcripts of both meetings; those transcripts, the notes of the facilitator, and other important information containing NSF's Section 106 compliance efforts to date were posted on the ATST project website.

Follow-up from June 16 and 17, 2008 Consultation Meetings. Following the June, 2008 consultation meetings, NSF engaged in extensive conversations with the ACHP, the SHPD, HALE, and DOI's OHA regarding an appropriate path to move forward in its Section 106 consultation process. Concerns were expressed by the ACHP, the SHPD, and HALE regarding the outreach efforts NSF had made to include members from the Native Hawaiian Community.

The ACHP wrote a letter to NSF on July 17, 2008, requesting further information regarding NSF's outreach efforts. In response to specific questions raised by the ACHP, NSF responded with a letter excerpted in Section 5.0.

On July 24, 2008, NSF sent a letter to all consulting parties inviting them to consultation meetings scheduled for the following month (on August 27th and 28th). That invitation letter was also sent to an additional 87 individuals/entities who NSF considered to be potentially interested parties. These parties expressed an interest in participating in the Section 106 process at some point over the past three years, but were ultimately not included in the list of consulting parties due to inactivity and/or an apparent lack of interest. Nevertheless, NSF decided to reach out to them to provide them with another opportunity to participate in the process.

Discussions also ensued regarding expanding the Area of Potential **Impacts** to include the Park road corridor. NSF agreed to do so. NSF continued to work closely, primarily with the ACHP, to structure the format for additional consultation meetings scheduled for August 27 and 28, 2008. In structuring the August meetings, NSF also consulted closely with HALE and reached out to the SHPD.

An invitation letter announcing the next consultation meetings which were scheduled to take place on August 27, 2008 at the University of Hawai'i Institute for Astronomy Maikalani Facility – was sent to all persons listed as consulting parties and those from the NHO list that had not previously been included in the process. In addition, an invitation letter was sent to those persons/entities who previously expressed an interest in NSF's Section 106 process, but who became inactive and/or demonstrated an apparent lack

of interest in participating further in the process. A Public Notice announcing the August 27, 2008 consultation meetings was published in the Maui News, the Honolulu Advertiser, and the Honolulu Star Bulletin on August 24, 2008.

Both meetings on August 27, 2008, were intended to provide opportunities for consulting parties to meet with NSF to discuss ways in which to address adverse **impacts** to historic properties associated with the proposed ATST Project through avoidance, minimization, and mitigation. At the meetings, there were no suggestions provided by the consulting parties regarding ways in which to minimize or mitigate any adverse **impacts** associated with the proposed ATST Project; most of the people present stated that they were against the proposed ATST Project and that they were in favor of avoiding the **impacts by not having the proposed ATST Project built at HO.** NSF explained that, due to the scientific criteria required to build the proposed ATST Project, adverse **impacts** resulting from the color, size, and location of the proposed Project could not be avoided unless NSF were to select the No-Action Alternative and issue a decision to not fund the proposed Project's construction.

An additional meeting was held on August 28, 2008, attended only by representatives of NSF, the ATST project team, the ACHP, HALE, and the SHPD, to discuss next steps in the process. It was agreed upon that NSF would host another consultation meeting to address potential **impacts** to the Park road corridor once a road condition survey was completed (that survey was completed in January, 2009, by the FHWA, and the final report was issued on March 4, 2009). Due to the very small attendance of consulting parties at both the June and August 2008 consultation meetings, the NSF, ACHP, HALE, SHPD and ATST project team representatives discussed, again, ways in which to improve outreach efforts to include more participation by Native Hawaiians. **That discussion continued up until the next formal consultation meetings were held, June 8, 9, and 10, 2009. It should be noted that, as a cumulative result of the response to all Section 106 consultation meetings, the consulting party list comprised of agencies, Native Hawaiian organizations and individuals, and other interested individuals and community groups had grown from 64 in June 5, 2006 to 118 as of August 27, 2008.**

HALE Newsletter – May 2009

The NPS published a Newsletter on behalf of NPS and NSF prior to the June Section 106 consultation meetings. The Newsletter contained information about HALE's participation in the EIS process and the proposed ATST Project's need for a Special Use Permit, information about both the NEPA SDEIS Public Comment Hearings and the Section 106 consultation meetings held in June 2009. Also provided were articles about mitigation (including a discussion about what is meant by a "community benefits package"), the HALE road, the project status, as well as contact information for both NSF and HALE. The newsletter was sent to all Section 106 consulting parties and was posted to the ATST and NPS websites.

Formal Consultation Meetings – June 8, 9, and 10, 2009

Consultation meetings to solicit public input under Section 106 of the NHPA were held jointly by the NSF and HALE at the Kula Community Center (June 8th), the Ha'iku Community Center (June 9th), and at Maui Community College (June 10th). The consulting parties and members of the interested public were invited to participate in these meetings to provide feedback and comments regarding the Area of Potential Effect, the identification and evaluation of cultural, historic and archeological resources, and measures to avoid, minimize, and/or mitigate potential adverse impacts to these resources. Identical Public Notices were published over a three week period in the Maui News, the Honolulu Advertiser, and the Honolulu Star Bulletin newspapers. Pursuant to a prior agreement with NSF, HALE also provided information for public service announcements through local radio stations. Each meeting was conducted by a meeting facilitator.

At the meetings, many of the consulting parties present expressed their position that the mountain is sacred and that spirituality cannot be mitigated. Those people and entities favored avoiding adverse effects through exercising a decision not to fund the proposed ATST Project. Several others voiced their position in favor of the proposed project. They acknowledged the cultural significance of the mountain, but specifically advocated for the inclusion of an educational program designed to address the intersection between Native Hawaiian culture and science as a mitigation measure. An additional group of consulting parties recognized the cultural significance of the mountain, but argued that adverse effects could be mitigated through a workforce development program. One individual recommended a mitigation measure that would require NSF to acquire a piece of private property on which significant cultural sites are known to be located.

As of the publication of this FEIS, the Section 106 meeting notes being prepared by HALE were not finalized, and, thus, they could not be included as an appendix. As soon as the notes are finalized, they will be posted to the ATST website. The meeting facilitator's notes, however, were posted to the ATST project website and are included in Vol. IV, Appendix D.

Before, during, and after the June 2009 meetings, NSF received many letters from consulting parties suggesting mitigation measures. Nearly all of those letters included support for mitigating the adverse effects to cultural resources through an educational program designed to address the intersection between Native Hawaiian culture and science. Many of those letters also suggested that the adverse effects can be mitigated through a workforce development plan. Among several other items suggested for mitigation, the Maui Native Hawaiian Chamber of Commerce advocated for "a well thought out and culturally attractive representation via artwork such as carvings of Maui and the Sun, as well as any other appropriate scenes", which are to be included on the observatory exterior. All of these letters were posted to the ATST project website. At the conclusion of the June 2009 consultation meetings, the consulting party list had grown to over 130.

ES-5.2.2 Addressing Adverse Effects

Mitigation for resolving adverse effects is described in Section 4.18.2-Cultural, Historic, and Archeological Resources. Following the June 2009 consultation meetings and the close of the public comment period, NSF considered which proposals for minimization and mitigation were feasible and within NSF's authority to adopt. All proposals for minimization and mitigation proposals from interested groups and individuals have been and continue to be considered, and several have been incorporated into both this FEIS and a draft PA that is currently under review by all consulting parties.

Written proposals for mitigating adverse effects were submitted during the consultation processes between 2006 and 2009.

In sum, pursuant to the regulations implementing the Section 106 process, 36 CFR. Part 800, NSF has engaged in numerous formal and informal consultations with the consulting parties, including the SHPO, the ACHP, Native Hawaiian Organizations and individuals, the NPS, and other individuals and groups regarding how to address adverse effects to historic properties, including the summit as a traditional cultural property. Those consultation efforts have resulted in the preparation of a draft Programmatic Agreement, which is now under review by the consulting parties. If a final Programmatic Agreement can be agreed upon and executed by the Advisory Council on Historic Preservation, the Hawai'i SHPO, AURA/NSO, NSF, and any other consulting party that has a responsibility under the Programmatic Agreement, the Section 106 process will be completed. If a Programmatic Agreement cannot be reached, then consultation may be terminated by NSF, the Advisory Council on Historic Preservation, or the Hawai'i SHPO, and the regulations

set forth at 36 CFR. §800.7 must be followed. If the Advisory Council on Historic Preservation provides advisory comments on the proposed ATST Project, NSF must consider and address any such comments in its final decision regarding whether to go forward with the proposed ATST Project.

As discussed above, after the June 2009 Section 106 consultation meetings, and after receiving many letters containing mitigation measures (including those set forth in the figures above), NSF began developing a draft PA to address adverse effects. A draft was prepared with input from the Hawai'i SHPO, the ACHP, and HALE. It contains on-site and off-site mitigation measures, as well as mitigation measures designed to protect and preserve HALE resources as part of the SUP. The specific mitigation measures now under consideration by the consulting parties.

ES-5.3 Consultation Under the Endangered Species Act

In July 2005, NSF began its consultation with the USFWS, and a site visit to the primary and alternate sites for the proposed ATST Project was arranged for September 2005. On-site discussions with an avian biologist from USFWS included representatives from HALE, NSO/NOAO, IfA, and KCE. At that time, the USFWS and HALE biologists suggested that pre-construction video monitoring of the 'u'au burrow colony adjacent to the primary site for the proposed ATST Project would be a useful tool to characterize the behavior of the 'u'au prior to the proposed ATST Project, so that potential **impacts** during construction, if any, could be recognized. They also suggested that monitoring of a "control" 'u'au colony in HALE during construction would provide a better understanding of potential **impacts**, if any, during construction, by comparing the behavior of 'u'au much further away from construction activities. In response to that suggestion, NSF initiated a day/night, motion activated, video monitoring program of 30 'u'au burrows at HO in February 2006, with video data collected during the entire nesting season.

On June 15th, 2006, NSF requested initiation of formal consultation for the construction and use of the proposed ATST Project, pursuant to Section 7 of the Federal Endangered Species Act of 1973, as amended (16 USC, 1531, et seq.). At that time, NSF determined that the construction of the proposed ATST Project could adversely affect the endangered 'u'au. NSF also determined that the construction would not adversely affect the nēnē, 'ope'ape'a, or 'ahinahina. During the pre-consultation and formal consultation process, NSF and USFWS worked cooperatively to develop avoidance and minimization measures to reduce **impacts** to listed species, specifically for the 'u'au occupying burrows in the vicinity of the proposed ATST Project.

In a February 2007 conference call between USFWS and NSF, the USFWS concurred with the NSF determination "...that the inclusion of avoidance and minimization measures had reduced project **impacts** to the level of insignificance" Although not anticipated, it was agreed that if a nēnē or 'u'au was harmed or killed as a result of ATST construction activities, work action would cease and formal consultations would be initiated with USFWS at that time.

After further consideration of the potential **impacts** on the 'u'au in March 2007, e.g., the unlikely prospect of "incidental take" of 'u'au during construction, USFWS decided to issue an Informal Section 7 Consultation Document rather than a Formal Biological Opinion. The Informal Consultation Document concurred that the proposed ATST Project is not likely to adversely affect the endangered species in question. It also circumscribed the Action Area not likely to be adversely affected by the proposed ATST Project to include the HALE summit area and Park road corridor.

As a result of discussions with HALE regarding the issuance of a Special Use Permit to traverse the Park road, it was determined that the shoulder of the road by the entrance gate would need to be temporarily widened. As a result of this development and its questionable impact on endangered

species, HALE and NSF contacted the USFWS. The response from the USFWS was that no further consultation was required. Accordingly, a statement was added to Section 4.3-Biological Resources specifying that if a Hawaiian petrel or nēnē is harmed or killed as a result of ATST construction activities, the USFWS would be contacted immediately and any work action would cease until the cause for the take is formally addressed.

ES-6.0 UNRESOLVED ISSUES

There are three issues that remain unresolved, but are in a significant stage of development.

Section 106 consultation process pursuant to the NHPA. As further outlined in Section 5.0-Notification, Public Involvement, and Consulted Parties, NSF has been involved in a Section 106 consultation process for the proposed ATST Project since 2005. Over 30 formal and informal consultation meetings have been held with consulting parties; the most recent consultation meetings were held on June 8, 9, and 10, 2009. NSF has been working with the consulting parties, including the Hawai'i SHPD, the ACHP, the NPS, and Native Hawaiian Organizations and individuals to develop a programmatic agreement to address the adverse effects related to the proposed ATST Project. A draft Programmatic Agreement (PA) has been prepared pursuant to 36 CFR § 800.14(b) and is currently under review by the consulting parties. A two-week comment period closed on July 23, 2009, and a telecon was held on July 24, 2009, during which responses to comments were explained and efforts made to finalize the draft PA.

If a final Programmatic Agreement can be agreed upon and executed by the ACHP, SHPD AURA/NSO, NSF, and any other consulting party that has a responsibility under the PA, the Section 106 process will be completed. If a PA cannot be reached, then consultation may be terminated by NSF, the ACHP, or SHPD, and the regulations set forth at 36 CFR. § 800.7 must be followed. If the ACHP provides advisory comments on the proposed ATST Project, NSF must consider and address any such comments in its final decision regarding whether to go forward with the proposed ATST Project.

It should be noted that, regardless of whether a final PA is reached among the consulting parties, NSF has committed -- if the proposed ATST Project is approved for construction funding -- to implementing the mitigation measures set forth in the draft PA for which NSF has an obligation therein. (Please note that if a final PA cannot be agreed upon, the mechanism for developing the educational program at MCC may differ from that set forth in the draft PA since it obligates a role for other entities such as the ACHP and the SHPD.) To support the educational program initiative at MCC referenced in the draft PA, NSF shall, if the proposed ATST Project is approved, make available \$20 million (\$2 million per fiscal year, commencing in FY 2011), subject to applicable federal law. Independent from Section 106 mitigation, NEPA, provides for such mitigation measures to be implemented as a way of compensating for the impact. *See* 40 CFR § 1508.20.

Finally, it should be noted that NSF's Section 106 process is also intended to serve as the Section 106 process for the NPS in support of its consideration of the issuance of the Special use Permit (SUP) required by the NPS to operate commercial vehicles on the Haleakalā National Park Road (HALE) during the construction and operation of the proposed ATST Project.

<u>Special Use Permit</u>

Since August of 2008, NSF has been working with the ATST Project team and the NPS on a proposed SUP to allow ATST-related commercial vehicles to traverse along the Park road during the construction and operations phases of the proposed ATST Project. The environmental compliance efforts required in support of the SUP are underway; the NPS has been working with NSF with the goal of using NSF's

environmental compliance efforts under NEPA and Section 106 of the National Historic Preservation Act to satisfy its obligations under those statutes. While the parties have agreed to several items in concept, which are included in the analysis contained in this FEIS, details of those items and additional SUP provisions are currently being negotiated.

Federal Aviation Administration Mitigation

The National Science Foundation and the Federal Aviation Administration (FAA) have been working together to address any potential issue involving a degradation of signal as a result of the proposed ATST Project. The FAA recently informed NSF that, "[t]he signal interference can be mitigated by replacing the existing antennas with high gain antennas and replacing/modifying the existing antenna towers to provide increased tower platform size to accommodate the new antennas. Further modifications to the site and relocation of the antennas may be needed to restore signal propagation to pre-construction values." The FAA informed NSF that any further modifications to the site and relocation of the antennas are not anticipated to result in significant effects to the environment. The FAA and NSF are currently working out the details of implementing this mitigation should the proposed ATST Project be approved for funding.

This page intentionally left blank.

1.0 INTRODUCTION

The proposed ATST Project is an applicant action by the National Science Foundation (NSF) for the development of the Advanced Technology Solar Telescope ("proposed ATST Project") within the 18.166-acre University of Hawai'i Institute for Astronomy (IfA) Haleakalā High Altitude Observatory (HO)¹ site at the summit of Haleakalā, County of Maui, Hawai'i.

The primary goals of the proposed ATST Project are to understand solar magnetic activities and variability, both because the Sun serves as a key resource for understanding the underpinnings of astrophysics and our understanding of magnetic plasmas, and because activity on the Sun drives space weather. Space weather creates hazards for communications to and from satellites, as well as for astronauts and air travelers. Furthermore, and perhaps most importantly, the variability in solar energy induced by solar activity affects the Earth's climate. The key to understanding solar variability and its direct impact on the Earth rests with understanding all aspects of solar magnetic fields, which in turn control the fluctuating Sun.

This Environmental Impact Statement (EIS) is also being prepared to evaluate the potential environmental effects associated with issuing a National Park Service (NPS) Special Use Permit (SUP), pursuant to 36 Code of Federal Regulations (CFR) § 5.6 to operate commercial vehicles on the Haleakalā National Park Road during the construction and operation of the proposed ATST Project.

This EIS is a joint Federal and State of Hawai'i document prepared in compliance with the following documents and guidelines:

1. NSF has prepared this EIS in accordance with the Federal National Environmental Policy Act (NEPA) process (42 U.S. Code (U.S.C.) §4321 et seq., to evaluate the potential environmental effects associated with the siting, construction, and operation of the proposed ATST Project. The EIS was prepared in compliance with NEPA, Council on Environmental Quality (CEQ) NEPA Implementing Regulations (40 CFR Parts 1500-1508), the National Science Foundation's NEPA implementing regulations (45 CFR Part 640), and NPS Director's Order 12 Conservation Planning, Environmental Impact Analysis and Decision Making (NPS/USDOI 2001).

As stated in those regulations, the purpose of an EIS is "to serve as an action-forcing device to insure that the policies and goals defined in the Act are infused into the ongoing programs and actions of the Federal Government. It shall provide full and fair discussion of significant environmental effects and shall inform decision makers and the public of the reasonable alternatives, which would avoid or minimize adverse effects or enhance the quality of the human environment." (40 CFR 1502.1).

- 2. The Federal NEPA process is separate and distinct from the State of Hawai'i environmental process to be completed by the University of Hawai'i (UH) in accordance with applicable State of Hawai'i statutes and regulations, as follows:
 - a. The State of Hawai'i Chapter 343 Hawai'i Revised Statues (HRS), and Title 11, Chapter 200 Hawai'i Administrative Rules (HAR), EIS Rules, in that the proposed ATST Project may potentially meet one or more of the significance criteria for effects on Conservation District Land; and,

¹ The observatory facilities located at the summit of Haleakalā are sometimes locally referred to as "Science City" because of the numerous scientific research facilities present at the summit; however, the correct name is the Haleakalā High Altitude Observatory (HO).

b. HAR 13-5-31 (Permit and Applications), which requires an EIS to accompany the required Conservation District Use Application (CDUA), where significant effects may be anticipated.

No final action will be taken by the NSF pertinent to funding for the on-site construction, installation, and operation of the proposed ATST until the decision-making process under NEPA has been completed.

1.1 Project Location

The proposed ATST Project would be located on State of Hawai'i land within the Conservation District on Pu'u (hill) Kolekole, near the summit of Haleakalā. The UH IfA Long Range Development Plan (LRDP) for the Haleakalā High Altitude Observatory Site (<u>http://www.ifa.hawaii.edu/haleakala/LRDP/</u>) is a publicly vetted document that discussed two possible locations for the future development of a large solar telescope. Following the same review process for environmental documents, the LRDP was distributed to State of Hawai'i and County of Maui entities, NPS, U.S. Air Force, community associations, individuals, and to Maui public libraries. Notice of release of the draft LRDP was also published in the Maui News. The draft LRDP had an extended 9-month public comment period.

Pu'u Kolekole is about 0.3 miles from the highest point, Pu'u Ula'ula (Red Hill) Overlook, which is in Haleakalā National Park (HALE). At an elevation of 10,023 feet, Haleakalā is one of the prime sites in the world for astronomical and space surveillance activities. The Kolekole cinder cone lies near the apex of the Southwest rift zone of the mountain. The rift zone forms a spine separating the Kula Forest Reserve from the Kahikinui Forest Reserve, both of which are pristine lands along the rift zone.

Immediately east of HO is the former General Broadcasting Area. A Federal Aviation Administration (FAA) air traffic control repeater station and a U.S. Department of Energy (DOE) research facility are situated immediately to the west of HO. Other land bordering HO is owned by the State of Hawai'i and controlled by the Department of Land and Natural Resources (DLNR). The only access road leading up to HO traverses through HALE. The NPS has exclusive jurisdiction over this portion of the road, which begins at 6,800 feet above sea level (ASL). This portion of the road is historically important and eligible for listing on the National Register of Historic Places.

Figure 1-1 shows the proposed ATST Project location on the island of Maui. Figure 1-2 is an aerial photograph showing existing structures within the HO complex. Figure 1-3 is a contour map of the HO and the DOE and FAA properties that are directly adjacent to HO.

The proposed ATST Project would be located within the 18.166-acre HO site at the summit of Haleakalā, County of Maui, Hawai'i, on approximately 0.86 acres of undeveloped land. The 0.86 acres includes the leveling area, buildings, and paved pads (**the actual building footprint would be 0.74 acres**). The preferred site is east of the existing C. E. Kenneth Mees Solar Observatory (MSO) facility and will be referred to in the EIS as the Mees site. The alternative site would be at a currently unutilized site within the HO referred to as Reber Circle, and will be referred to in the EIS as the Reber Circle site. Figure 1-4 shows the location of both these sites within HO. As a NEPA requirement, the No-Action Alternative has also been considered. These alternatives are further defined in Section 2.0-Proposed ATST Project and Alternatives.

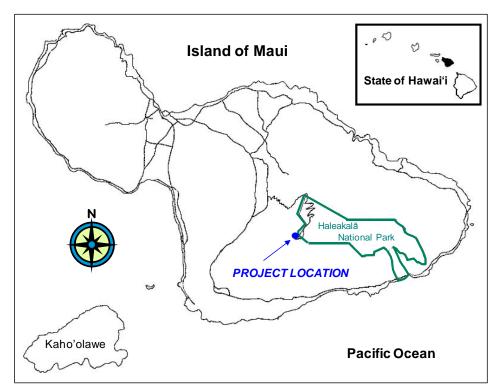


Figure 1-1. Proposed ATST Project Location on Island of Maui, Hawai'i.

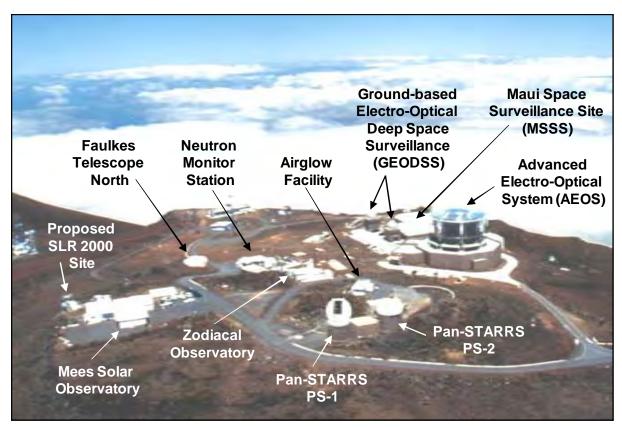


Figure 1-2. Haleakalā High Altitude Observatory Site Aerial Showing Existing Facilities.

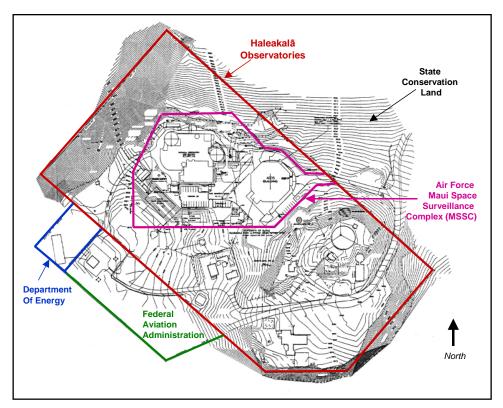


Figure 1-3. Haleakalā High Altitude Observatory Site, Department of Energy, and Federal Aviation Administration Properties.



Figure 1-4. Aerial Showing Mees Site and Reber Circle Site Locations.

1.2 Land Ownership

In 1961, an Executive Order (EO) by State of Hawai'i Governor Quinn set aside 18.166 acres of land on the summit of Haleakalā in a place known as Kolekole to be under the control and management of the IfA for scientific purposes. The site is known as HO and it is the only such property on Haleakalā specifically designated for such purposes. UH is the recorded fee owner of the parcel identified as Tax Map Key (TMK) (2) 2-2-07-008. Figure 1-5 shows the tax key map and general location of the proposed project. UH IfA is responsible for managing and developing the land. Other agencies established adjacent facilities through EO during the same period. Figure 1-6 shows the HO site TMK and adjacent properties.

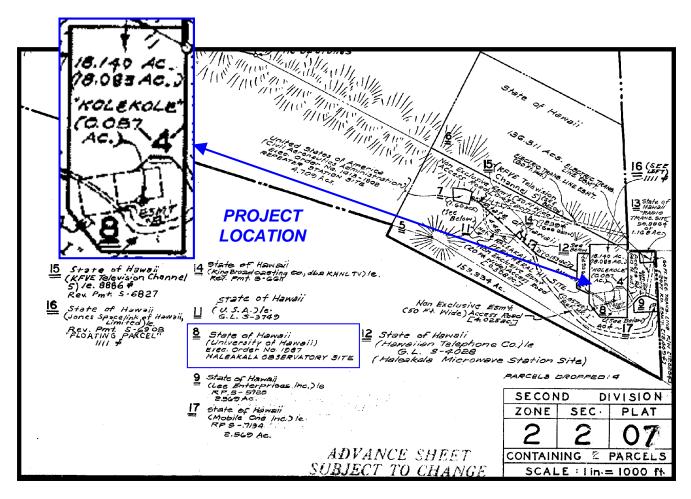
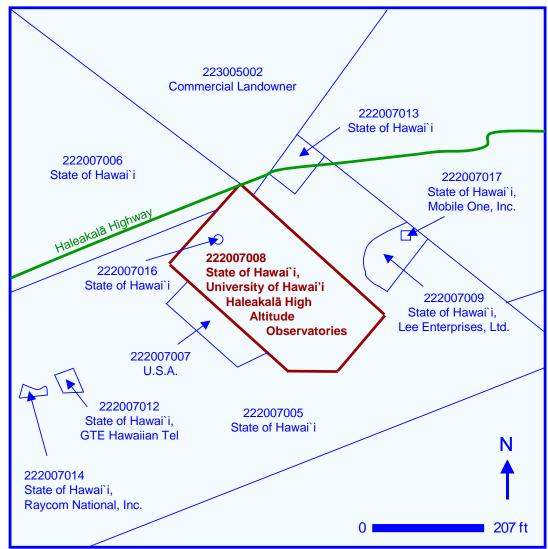



Figure 1-5. Haleakalā High Altitude Observatory Site Tax Map Key.

Internet website: http://kivanetext.co.maui.hi.us/kivanet/2/permit/index.cfm

Figure 1-6. Haleakalā High Altitude Observatory Site and Adjacent Properties.

1.3 Identification of Agencies Proposing the Action

National Science Foundation

NSF serves as the lead Federal agency for review under NEPA. NSF would fund construction of ATST if the project were to be approved.

The NSF is an independent Federal agency created by Congress in 1950. The NSF's Statutory Mission is "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense."

The NSF Vision

Enabling the Nation's future through discovery, learning and innovation. Realizing the promise of the 21^{st} century depends in large measure on today's investments in science, engineering and mathematics research and education. NSF investment — in people, in their ideas, and in the tools they use — will catalyze the strong progress in science and engineering needed to secure the Nation's future.

Association of Universities for Research in Astronomy

The Association of Universities for Research in Astronomy (AURA) is a consortium of universities, and educational and other non-profit institutions that operates world-class astronomical observatories, termed "centers". Its members are comprised of 33 U.S. institutions and 7 international affiliates. AURA acts on behalf of the science communities that are served by its centers, and as trustees and advocates for the centers' missions.

AURA Mission Statement

"To promote excellence in astronomical research by providing access to state-of-the-art facilities."

National Solar Observatory

The proposed ATST Project is a project of the National Solar Observatory (NSO) that is being considered for funding by the NSF. The IfA is one of several partners collaborating on this project and, therefore, it is cooperating in the Federal NEPA process, as well as leading the parallel State of Hawai'i EIS process.

The proposed ATST project is an international venture led by the NSO. AURA operates the NSO under a cooperative agreement with NSF. Principal partners on ATST are the University of Hawai'i Institute for Astronomy, the High Altitude Observatory (HAO) of the National Center of Atmospheric Research (NCAR), the University of Chicago, and the New Jersey Institute of Technology. Figure 1-7 is a chart identifying the primary agencies for the proposed ATST Project.

Together with the National Optical Astronomy Observatory (NOAO), NSO forms a Federally Funded Research and Development Center. NSO receives operations and development funds through a cooperative agreement with AURA, the NOAO/NSO management organization.

Mission of the NSO

The mission of the NSO is to advance knowledge of the Sun, both as an astronomical object and as the dominant external influence on Earth, by providing forefront observational opportunities to the research community.

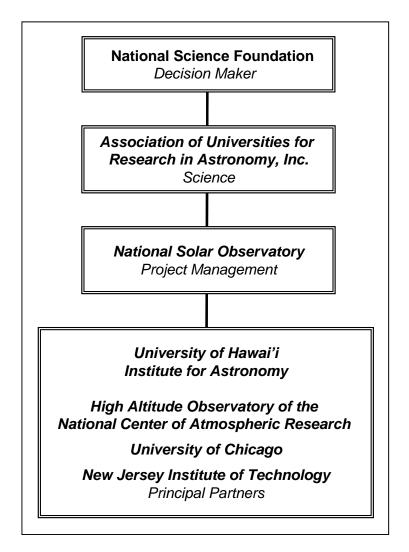


Figure 1-7. Primary Agencies for the Proposed ATST Project.

The mission includes the operation of cutting edge facilities, the continued development of advanced instrumentation both in-house and through partnerships, conducting solar research, and educational and public outreach. NSO accomplishes this mission by:

- 1. Providing leadership for the development of new ground-based facilities that support the scientific objectives of the solar and solar-terrestrial physics community.
- 2. Advancing solar instrumentation in collaboration with university researchers, industry, and other government laboratories.
- 3. Providing background synoptic observations that permit solar investigations from the ground and space to be placed in the context of the variable Sun.
- 4. Providing research opportunities for both undergraduate and graduate students, helping develop classroom activities, working with teachers, and mentoring high school students.
- 5. Innovative staff research.

1.3.1 Identification of Federal Agency

The Federal agency is the NSF, Division of Astronomical Sciences. The primary contact and authorized representative for the NSF is Craig Foltz, Ph.D., **ATST Program Director.**

National Science Foundation, Division of Astronomical Sciences4201 Wilson Boulevard, Room 1045, Arlington, VA 22230Telephone: 703-292-4909Fax: 703-292-9034

1.3.2 Identification of Accepting Authority

<u>Federal</u>

The accepting authority for the proposed ATST Project would be the National Science Foundation, which is also the agency primarily responsible for the action. It assumes responsibility for preparing the EIS in accordance with NEPA, the CEQ NEPA-Implementing Regulations (40 CFR Parts 1500-1508), and the National Science Foundation's NEPA-implementing regulations (45 CFR Part 640). The primary contact is Dr. Craig Foltz, **ATST Program Director**.

National Science Foundation, Division of Astronomical Sciences 4201 Wilson Boulevard, Room 1045, Arlington, VA 22230 Telephone: 703-292-4909 Fax: 703-292-9034

<u>State of Hawaiʻi</u>

While NSF is the agency primarily responsible for the action and assumes responsibility for the EIS in accordance with HAR Title 11 Chapter 200-4(a), the State accepting authority for the proposed ATST Project would be University of Hawai'i at Mānoa. The primary contact is Dr. Virginia S. Hinshaw, Ph.D., Chancellor.

University of Hawaiʻi at Mānoa 2444 Dole Street, Honolulu, HI 96822 Telephone: 808-956-8312

1.4 Project Summary

Project Name:	Advanced Technology Solar Telescope
Location:	Haleakalā High Altitude Observatory site, Maui, Hawai'i
Judicial District:	Waiakoa, Papa'anui, Makawao
Applicant:	National Science Foundation
Recorded Fee Owner:	University of Hawai'i
Tax Map Key(s):	(2) 2-2-07:008
Land Area:	18.166 acres (HO), 0.86 acres (Proposed ATST Action)
Existing Use:	Observatories
State Land Use:	Conservation, General Subzone
County General Plan:	Conservation
County Zoning:	None
Special Management Area:	Not within Special Management Area
Accepting Authorities:	Federal: National Science Foundation
	State of Hawai'i: University of Hawai'i

1.4.1 Need for the Project

Since George Ellery Hale's 1908 discovery that sunspots coincide with strong magnetic fields, astronomers have become increasingly aware of the Sun's magnetic field as a complex and subtle system. The familiar 11-year sunspot cycle is just the most obvious of its many manifestations. Recent advances in ground-based instrumentation have shown that sunspots and other large-scale phenomena that affect life on Earth are intricately related to small-scale magnetic processes whose inner workings happen on scales that are too small to be observed with current ground- and space-based telescopes.

At the same time, using advances in computer science and technology, scientists have developed intriguing new theories about those small-scale processes, but they lack empirical observational data to verify the validity of their models. Scientists are positioned for a new era of discovery about the Sun and how it affects life on Earth, how distant stars work, and how to possibly control plasmas in laboratories.

To embark on that journey, astronomers must observe the Sun and its magnetic activities at higher resolutions on three fronts:

- 1. Spatial The telescope and its instruments must resolve fundamental scales of structures on the solar surface and in its atmosphere. In other words, they must depict those phenomena in sufficient detail to resolve the smallest features on the solar photosphere.
- 2. Spectral The telescope and its instruments must resolve narrow slices of the solar spectrum for better measurements of magnetic fields and thermal structure. In other words, it must precisely divide up the Sun's energy into different parts of the solar spectrum.
- 3. Temporal The telescope and its instruments must be capable of obtaining high cadence (frequent) images and spectra of rapidly developing events in the solar atmosphere. In other words, it must acquire many more pictures in the same time interval in order to track rapid evolution of features on the Sun.

Further, astronomers must not only observe in familiar near-ultraviolet (UV) and visible light, but must also further exploit the relatively unexplored infrared solar spectrum. Scientists must see the faint solar corona in the infrared, measure the polarization of sunlight with greater precision, and cover a large fieldof-view so extended areas of solar activity can be studied. These capabilities would reveal hidden aspects of magnetic activities and help us bridge the gap from what is known today to what must be learned in the future. But doing so requires a large and more technologically advanced telescope to overcome limitations imposed by current instruments.

The technologies currently being used by the Mees Solar Observatory on Haleakalā are insufficient to meet these future challenges. The solution is a large aperture solar telescope supporting an array of advanced scientific instruments.

The NSO's long range plan recognizes that progress in understanding the Sun requires that it be treated as a global system, in which critical processes occur on all scales, from the very small (<100 kilometers, <62.1 miles) to scales that encompass the whole Sun. This was recognized by the National Research Council in its recent decadal report entitled, "Astronomy and Astrophysics in the New Millennium, 2001":

The first scientific goal for advancing the current understanding of solar magnetism is to measure the structure and dynamics of the magnetic field at the solar surface down to its fundamental length scale.

Despite the brightness of the Sun, solar physicists share a problem with their nighttime colleagues: "photon starvation." While bright images of the solar disk, the corona, sunspots, and flares are the most familiar of solar observations, definitive work is done at high spectral and spatial resolution while observing a small section of the Sun in a spectrally narrow subset of the available light. This is like looking through a microscope and switching to higher powers and inserting a color filter: as you get closer to the object, you also reduce the available light, eventually approaching blackout. The amount of light that a telescope collects increases with the square of the telescope's diameter. Therefore, a fourmeter (13.1-foot) telescope, such as the proposed ATST Project, is able to collect sixteen times more light than a telescope with a one-meter (3.3-foot) diameter.

Furthermore, the ultimate detail that a telescope can resolve, the so-called "diffraction-limit", is set simply by the diameter of its light-collecting primary lens or mirror. So, a telescope with a four-meter diameter can theoretically see four times more detail than can a one-meter telescope. In practice and like their nighttime astronomer counterparts, solar physicists must cope with atmospheric "seeing". Seeing is a term used by astronomers as a measure of the image quality with "excellent seeing" referring to conditions under which the images delivered through the atmosphere are very sharp and "bad seeing" referring to atmospheric conditions that blur the images. Looking up through Earth's atmosphere is like looking up from the bottom of a swimming pool — turbulence in the air blurs the images of celestial objects just like turbulence in the water blurs the view of objects above the pool. Without corrective measures, seeing limits current ground-based solar telescopes to the study of structures no smaller than a few hundred kilometers in size on the surface of the Sun (Fig. 1-8). A larger telescope can solve the problem of light (photon) starvation, but atmospheric seeing would limit it to the same spatial resolution as smaller telescopes unless corrective steps are taken. Adaptive optics (AO), an emerging technology that corrects most of the atmospheric distortion, can enhance existing solar telescopes, but just to the diffraction limit set by their small apertures. Orbiting telescopes have a perfect seeing environment, but in order to achieve the resolution needed to study the smallest structures on the Sun, would require a large aperture, making for a prohibitively expensive telescope. Furthermore, space telescopes are expensive to operate, have lifetimes considerably shorter than ground-based telescopes, and greatly limited flexibility for instrument development and facility upgrades.

A large ground-based telescope — such as the proposed ATST with its 4-meter (13.1-foot) aperture and integrated AO system — can simultaneously advance spatial, spectral, and temporal resolution of solar observations. The proposed ATST Project would be a unique scientific tool providing an unprecedented combination of spatial, temporal, and spectral resolutions across visible and infrared wavelengths. As such, this telescope is expected to be useful and innovative for several decades to come and would be the first large, ground-based telescope designed to serve the entire community of solar and space physicists to be constructed in nearly 40 years.

If approved for construction, the proposed ATST Project would be in place only a century after astrophysicist George Ellery Hale's breakthrough discovery; the ATST would explore deeper into the heart of sunspots, flares, and other key solar activities. Observations of the small-scale processes at the solar surface and through the overlying atmosphere of the Sun would help us understand the life cycle of magnetic fields. The proposed ATST Project would be a powerful, flexible system that would serve the U.S. and international solar physics communities as the primary ground-based facility in the first half of the 21st century.

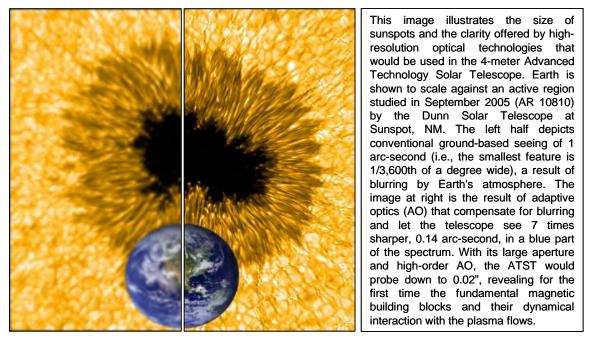


Figure 1-8. The Impact of Atmospheric Seeing and Correction by Adaptive Optics Techniques.

At the onset of the 21st century, fundamental physical processes that govern the behavior of the Sun and many other astrophysical objectives remain elusive. The Sun provides the laboratory and unique opportunity to probe cosmic magnetic fields with unprecedented resolution in space and time and to test theories of their generation, structure, and dynamics. The field of solar physics has developed rapidly during the last decade, to a point where sophisticated theories and models await critical observational tests. However, existing instrumental capabilities no longer are sufficient to meet this challenge. Recent incorporation of practical AO systems in astronomical telescopes, coupled with other advances in unique and powerful instrumental techniques, now promises a major advance in solar observing capabilities. To achieve observational progress in solar astronomy, a solar telescope would have to have the capabilities listed in Table 1-1.

Table 1-1. Capabilities Required for Solar Observational Progress.

- 1. An angular resolution of 0.1 arcsecond* or better to resolve the pressure scale height and the photon mean free path. In other words, the sharpest visual image possible using a telescope with optics sufficiently refined to produce that level of detail.
- 2. A high photon flux at the critical spatial resolution for precise magnetic and velocity field measurements. In other words, the capability of collecting as much "useful" solar radiation as possible and delivering it to the telescope's instruments.
- 3. Access to a broad set of diagnostics, from 0.3 to 35 microns**. In other words, to observe the widest spectrum of solar light to observe atmospheric properties from the various structures on the Sun.

^{*} Arcsecond: The second division of a degree of arc. One sixtieth of an arc minute (1/3600th of a degree.)

^{**} Micron, micrometer: A metric unit of length equal to one millionth of a meter.

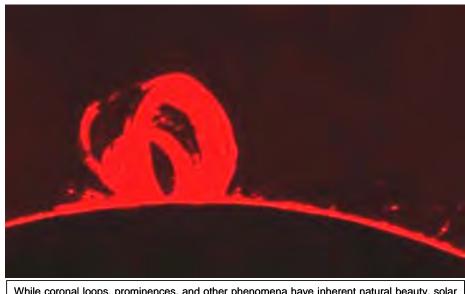
Neither the current MSO facility on Haleakalā nor any other current or planned ground-based or space-based solar telescope in the world has these capabilities.

1.4.2 Purpose of the Project

To meet this challenge, a team led by the NSO **designed** the **proposed** ATST **Project** as the world's largest optical solar telescope. An unobstructed 4-meter (13-foot) diameter primary mirror combined with the latest in computer and optical technologies would give **the proposed** ATST **Project** sharper views of solar activities than any telescope on the ground, in space, or in the planning stages. (Section 2.0-Proposed ATST Project and Alternatives, provides a discussion of site selection criteria as well as justification for alternate sites considered but removed from further consideration.) **The proposed** ATST **Project** would be an unprecedented facility, supporting world-class science from its "first light" anticipated (**if approved**) in 2015, **and continuing** throughout future decades. It would be an indispensable tool for exploring and understanding physical processes on the Sun that ultimately affect Earth.

The proposed ATST Project would address questions that include:

- 1. How are the highly intermittent magnetic fields observed at the solar surface generated? How are they dissipated?
- 2. What magnetic configurations and evolutionary paths lead to flares and coronal mass ejections (CMEs) (Figs. 1-9 and 1-10)?
- 3. What mechanisms are responsible for variations in the dynamo that drives the sunspot cycle and the Sun's energy output?


These are important because magnetic fields are key to fluctuations in solar energy. Their configuration and interactions are critical to our understanding of solar flares and CMEs that impact space weather and the mechanisms that drive sunspots that are not well understood.

From a site on Haleakalā, the proposed ATST Project would have unprecedented sensitivity for measuring the Sun's outer atmosphere and it would be able to see the finest details on the disk of the Sun. The proposed ATST Project would be unique in its ability to resolve fundamental length and time scales of the basic physical processes governing variations in solar activity. Just as fundamental problems in atomic, nuclear, and gravitational physics were revealed through earlier studies in solar physics, the proposed ATST Project would have a broad impact on astronomy and astrophysics, plasma physics for potential future power systems, solar-terrestrial relations and climatology and ultimately, prediction of solar activity.

The existing NSF-funded, ground-based solar telescope facilities operated by the NSO were built more than a generation ago. The proposed ATST Project represents a once-in-a-life-time investment of significant expense and as such the selection of the site is critically important. The two primary science drivers — highest resolution seeing and dark daylight sky close to the Sun's corona — are the most critical when evaluating potential sites for the telescope.

To summarize, there are three primary objectives for the ATST telescope that must be met:

Objective 1: The ability to efficiently observe the solar atmosphere at or near the diffraction limit of the telescope (in other words, when turbulence in the atmosphere is minimal);

While coronal loops, prominences, and other phenomena have inherent natural beauty, solar physicists see magnetic activity that is poorly understood at this time. The loop structure forms when coronal gases condense along magnetic field lines. With its large aperture and a suite of advanced instruments, the 4-meter Advanced Technology Solar Telescope would probe the structure and dynamics of coronal loops providing data to decipher the role they play in space weather and other solar activities.

Figure 1-9. Coronal Phenomena.

Coronal mass ejections (CMEs), flares, and other eruptions pose major hazards to spacecraft and to humans making future voyages to the Moon and Mars. Solar eruptions can fire large quantities of energetic particles across space and damage sensitive electronics and human tissue. The 4-meter Advanced Technology Solar Telescope will help scientists understand the origins of CMEs and other eruptions and to develop predictive tools.

- Objective 2: The ability to efficiently observe the faintest outer layers of the solar atmosphere, the corona, adjacent to the very bright photosphere; and,
- Objective 3: The ability to observe the solar atmosphere at wavelengths from visible through mid-infrared wavelengths.

The ability to address these objectives defines NSF's purpose and need for the proposed ATST Project. In considering the potential funding of the proposed ATST Project, NSF has relied on the opinions of a large number of experts in the fields of astronomy, solar and space physics, as well as experienced telescope engineers and builders. In their consideration of the proposed ATST Project, these experts scrutinized the ability of the ATST design to meet the three primary science objectives in the context of an assumed satisfactory site.

These science drivers establish detailed design constraints as well as strict demands on the properties of any potential site. The ability of the design to address the science objectives is no more or less important than the selection of the site. A very capable telescope placed at an inadequate site is no better than a poorly performing telescope on an exquisite site. In their evaluations, the ATST reviewers examined the design under the assumption that a satisfactory site exists and strongly recommended that the facility be constructed. Therefore, in considering the project for Federal funding, the design of the telescope and the quality of the site are inexorably linked such that both must meet strict criteria in order for the purpose and need to be met.

1.4.3 ATST Education and Public Outreach

The ATST consortium provides Education and Outreach (E&O) on several fronts that leverage and expand existing programs within the partnering groups and create unique opportunities offered by the ATST during both its development and operation. An Educational and Outreach Officer has been appointed to coordinate the efforts of the ATST partnering organizations.

The goals of the ATST E&O program include:

- 1. Increase student, teacher, and public understanding of the Sun, both as a star and as a prime driver of conditions on Earth,
- 2. Foster and sustain the growth of a new generation of solar physics research,
- 3. Increase the strength and breadth of the nation's university community pursuing solar physics and related fields; and,
- 4. Enhance the understanding and application of science and math education in our schools, colleges, and the public at large.

The E&O Program would draw from and reach out to the public at large, high school students, teachers, K-12 and college community programs, undergraduate and graduate students, post-doctoral and staff researchers and university staff.

A goal is to establish several graduate student positions at the partnering universities, including UH. Thesis topics would encompass a range of innovative engineering and solar science applications relating to the proposed ATST Project. Well-established, ongoing E&O activities complement the goals of the proposed ATST Project. The NSO is also developing a proposal to the NSF to fund activities specific to supporting new E&O activities associated with fulfilling the educational goal of the proposed ATST

Primary Objectives for the Project

Understanding Solar Magnetic Activity

A primary goal of the proposed ATST Project would be to help scientists understand the solar magnetic activities and variability that drive space weather and the hazards it creates for astronauts and air travelers, and for communications to and from satellites. Space weather occurs when a solar storm on the Sun ejects a vast amount of ionized gas that travels through space and impacts the Earth's magnetosphere, the protective sheath produced by the Earth's own magnetic field. This magnetic field extends outward from the Earth's core into interplanetary space where it encounters the magnetic field and moving charged gases (plasma) of the solar wind. The Sun flings one million tons of matter out into space every second. This mass loss, the so-called "solar wind", is formed as the Sun's topmost layer blows off into space carrying with it magnetic fields still attached to the Sun. It is driven by gusts and disturbances associated with violent events on the Sun. The buffeting of this solar wind against the Earth's protective magnetic shield in space is responsible for storms we call space weather.

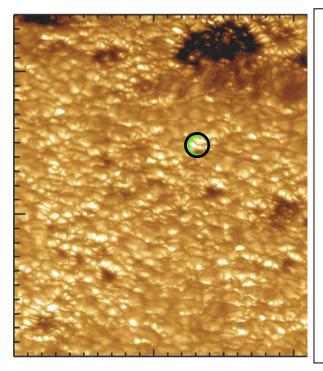
Studying space weather (Odenwald, 1999) is important to our national economy because solar storms can affect the advanced technology we have become so dependent upon in our everyday lives. The energetic plasma and radiation from solar flares and associated "coronal mass ejections" that cause colorful auroras at higher latitudes can also:

- 1. Harm astronauts in space,
- 2. Damage sensitive electronics on orbiting spacecraft and cause them to change position,
- 3. Create blackouts on Earth when they cause surges in power grids; and,
- 4. Disrupt communications networks.

The solar storms that can cause billions of dollars in damage to satellites and communication systems occur more frequently than may be expected. For example, the probability of such a storm or change in solar output affecting commerce with multi-billion dollar impact is estimated to be about 90 percent in our lifetime.

Another primary objective for the proposed ATST Project would be to resolve fundamental length and time scales of the basic physical processes governing variations in solar activity associated with climate changes on Earth. The Sun is indisputably the chief driving force for our terrestrial climate. The annual march of the seasons as the Earth's axis of rotation tilts toward or away from the Sun's direction is sufficient proof of that, while the presence of periodicities in glacial deposits matching those of known orbital variations has revealed the apparent sensitivity of global climate to relatively small changes in the distribution of sunlight. What has remained debatable and controversial, however, is the question of whether or not variations in the Sun's radiative and plasma emissions occur that are capable of influencing the weather and climate at the Earth's surface.

Like other stars of similar age, size, and composition, the Sun shows many signs of variability. Most pronounced and by far the most familiar is a cycle of about eleven years' duration (NASA, 2006) in the number of "sunspots" on its glowing surface. But although the Sun is known to be a variable star, its total output of radiation is often assumed to be so stable that we can neglect any possible impacts on climate. Testimony to this assumption is the term that has been employed for more than a century to describe the radiation in all wavelengths received from the Sun: the so-called "solar constant", whose value at the mean Sun-Earth distance is a little over 1.3 kilowatts per square meter of surface.


In actuality, the "solar constant" varies. Historical attempts to detect possible changes from the ground were thwarted by variable absorption of radiation by the Earth's atmosphere. Measurements from spacecraft bypass this problem since they are outside the atmosphere. The most precise of these, made continuously since 1979 have revealed changes on all time scales — from minutes to decades — including a pronounced cycle of roughly eleven years. Sunspots and other forms of solar activity are produced by magnetic fields, whose changes also affect the radiation that the Sun emits, including its distribution among shorter and longer wavelengths. The most highly variable parts of the Sun's spectrum of radiation are found at the very shortest wavelengths — the UV and X-ray region — and in the very longest and far less energetic band of radio waves.

Insights into the variable nature of the Sun and comparisons with weather and climate records are part of a determined effort to demonstrate that keys found in the cyclic nature of solar behavior might open the doors of down-to-Earth predictions. After more than a century of controversy, the debate as to whether solar variability has any significant effect on the climate of the Earth remains to be settled. This long unanswered question has some urgency when viewed in the context of widespread concerns about global warming and greenhouse gases. In order to gauge the possible impacts of anthropogenic greenhouse gases (those that are derived from human activities) on the present or future climate, scientists must first know the natural variations on which our own activities are imposed. Specifically, to understand the impacts of solar variations on climate they need to know how much the solar inputs vary, how the climate system responds to these changes; and, most importantly, scientists need answers to a number of questions about the Sun itself in order to predict how solar radiation will vary.

As the sunspot number rises or falls, the distribution of energy within the spectrum of sunlight also changes. High levels of solar activity enhance radiation at UV and X-ray wavelengths, and at radio wavelengths, far more than in the visible portion of the spectrum. At peaks of the eleven-year cycle, radiation at longer UV wavelengths, for example, increases by a few percent, compared with an increase of but 0.1 percent in the total radiation. Still larger changes — factors of two or more — are found in extremely short UV and X-ray wavelengths.

Changes in the Sun's total radiation and its distribution in wavelength occur primarily because solar activity produces two different phenomena that alter the surface brightness, and hence modulate the outward flow of radiated energy. The first of these are sunspots that appear in great number during times of high solar activity. Cooler than surrounding regions, sunspots "block" some of the radiation that the Sun would otherwise emit for a time. The second are known collectively as *faculae* (Figure 1-11). These are brighter than the surrounding surface, and add to the overall radiation from the Sun. The radiation that is emitted from the Sun varies continually in response to the push and pull of these two competing and constantly changing phenomena. In years of maximum solar activity, it is the bright faculae that prevail, raising the levels of both total and UV radiation.

The major asset of the proposed ATST Project would be to enable precision studies of light emitted in narrowly defined colors. These would permit scientists to observe small, fast changing phenomena — with high-speed "movies" rather than just a few still images — and resolve the small scale magnetic structures in the solar atmosphere that are responsible for the majority of solar variability discussed above. These capabilities would come at a time of great progress in computer modeling of solar magnetic activity and would let scientists test theory with observations. Currently, the level of detail in the computer models of the interplay of the gas motions and magnetic fields on and above the solar surface is better than our ability to measure with current solar telescopes. Therefore, it is impossible to assess the validity and predictions of the models. This then hampers the development of better models and creates an impasse where our theories of solar physics cannot be checked and future progress is impeded.

A subtle, poorly understood aspect of energy from the Sun is faculae (Latin for "little torch"). These are bright points (the circle indicates an example) that are visible mainly near the limb of the Sun where we are looking at the sides of columns of hot gas circulating from the interior of the Sun. They are believed to be associated with magnetic flux tubes that emerge on scales that are too small to be studied easily with current solar telescopes.

Large numbers of faculae will form plages, bright areas that show up best in colors emitted by super-hot hydrogen atoms or calcium ions, and are a factor in the Sun's total irradiance, and hence its energy input to the Earth's atmosphere. Resolving and understanding the structure and formation of these faculae requires the capabilities of the 4-meter Advanced Technology Solar Telescope.

Figure 1-11. "Little Torches" on the Sun.

Project. NSO anticipates applying to the NSF in 2006-07 for a Planning Grant that would fund the definition of this new E&O Program and set the stage for seeking grants to implement proposed E&O activities and the hiring of qualified staff. Should the proposed ATST Project be funded, the NSO's goal would be to begin implementing activities before operations begin.

NSO has extensive experience in E&O programs at its Sunspot, New Mexico, and Tucson, Arizona, sites. It can also call on the experience of its colleagues within the broader AURA: NOAO, the Gemini Observatories, the Cerro-Tololo Inter-American Observatory, and the Space Telescope Science Institute. It would also call on expertise from the University of Hawai'i Institute for Astronomy.

NSO conducts annual programs offering both graduate and NSF Research Experience for Undergraduates (REU) students the opportunity to participate in hands-on astronomical research programs, working closely with staff scientists and engineers. A large fraction of today's active solar astronomers have participated in this extremely successful NSF-funded program. Students would be recruited into these programs specifically to work on science projects and instrument development programs related to the proposed ATST Project.

The proposed ATST Project's science and technology would be incorporated into classroom material that NSO produces and distributes nationally through participation in the Astronomical Society of the Pacific (ASP) Project ASTRO. NSO personnel participate as mentors and instructors in the NSF Research Based Science Education (RBSE) program and the NSF Research Experiences for Teachers (RET) program. Through these programs, high school teachers would work with NSO staff scientists to develop classroom exercises based on the proposed ATST Project's developments and extensive related NSO data that are available via the Internet (e.g., the Virtual Solar Observatory). NSO is a strong participant in the Southwest Consortium of Observatories for Public Education (SCOPE), and would participate in similar

organizations in Hawai'i. This valuable collaboration would result in excellent interaction among the public and the educational outreach staff of these groups and include cooperative promotion, visitor center display sharing, and the ability to leverage limited funding into additional outreach opportunities. Materials would be produced that reflect the new capabilities of the proposed ATST Project to describe solar astronomy and the effects of the Sun on the Earth for dissemination by SCOPE.

Some preliminary plans for the E&O Program include:

- 1. <u>Internships:</u> NSO would develop a program for internships with college students from Hawai'i. Activities would include scientific research and hands-on work in the branches of engineering and the leading-edge technology involved in developing and operating the proposed ATST Project. Local educators would be consulted closely to develop the details of the program to meet their students' needs. The program would be open to all students with emphasis on Native Hawaiians and would concentrate on the development of a technically capable workforce.
- 2. <u>Post-doctoral Fellowships:</u> The NSO would provide opportunities for Post-doctoral candidates to participate in analysis, modeling, simulation and instrumentation efforts related to the science and engineering objectives of the proposed ATST Project.
- 3. <u>Student Programs:</u> The science and technological aspects of the proposed ATST Project offer a unique opportunity to greatly increase the role of solar physics in undergraduate education. The NSO E&O Program would develop educational modules designed to take advantage of the new observations and insights that would be derived from science operation of the proposed ATST Project. A plan would be developed for integrating these into existing astronomy and physics curricula following development work and field-testing with teachers and students at local schools. The NSO E&O Program associated with the proposed ATST Project would feature elements that could be deployed as permanent exhibits at visitor centers, as classroom activities at different grade levels in schools, as special events at summer camps or established science centers and museums on Maui, and as web-based activities.

The proposed ATST Project would encompass materials and in-service training for a range of hands-on and computer activities in conventional school and teacher in-service settings or as informal science education offerings at science camps, museum lectures, and other venues. Five thematic areas are in development or definition. Magnetic Carpet Ride and Goldilocks Star are publicly attractive names for education modules that address underlying ATST science issues in a manner not previously handled by science education.

- 1. <u>Magnetic Carpet Ride</u>: This will cover the basics of magnetism as it has been discovered and explored in solar physics, which is the principal scientific rationale for ATST. Solar researchers use the Magnetic Carpet metaphor to describe the fine-scale, rapidly changing structure of the global solar magnetic field. NSO has developed a preliminary plan for a curriculum that explores the basics of magnetism as it has been discovered and explored in solar physics, and aspects of how it has been traditionally taught that apply to the proposed ATST Project. This project has been developed over the last two years by the E&O Program officer and would be vetted through the NSO science team presently.
- 2. <u>Goldilocks Star</u>: This activity turns the natural interest in seeking habitable planets "not too hot, not too cold, but just right" into a better awareness of the need to study and understand our Sun. This would be an integrated curriculum aimed at middle- and high-school students and combining aspects of biology, physics, and chemistry. The anticipated product would be materials and in-service training for a range of hands-on and computer activities that can be done in conventional school settings or as informal science education offerings (science camps,

museum lectures). This project has been developed over the last two years by the E&O Program Officer and would be vetted through the NSO science team presently.

- 3. <u>Hawaiians and the Sun</u>: With cultural leadership from Hawaiian elders and educators, this would portray how native peoples perceived and interacted with the heavens in general (e.g., navigation) and the Sun in particular. This would combine elements of social studies and astronomy. This is a new concept that would not be advanced until the ATST EPO office can form a team of local elders and educators to guide the project.
- 4. <u>Sizing Up Your Solar System</u>: NSO is developing a 1:250 million-scale model of the solar system that includes math exercises on ratios and map scales using the relative sizes of the Sun and planets. The exercises are scaled to the Earth or Sun = 1 (for whatever unit is being used) so the students compute small, easily handled numbers even while working on astronomical scales. Other exercises include model building and art. The exercises include studying the solar interior and conveying a taste of the mystery that remains about how the solar dynamo and convective systems work. NSO has been developing the solar system model since 2003 and recently presented early lesson plans at the National Aeronautics and Space Administration's (NASA) "Living With a Star" education conference.
- 5. <u>The Optics Bench</u>: Derived from existing hands-on optics activities, the Optics Bench would introduce students and visitors to the basics of optics as used in solar observing and include basic physics and engineering contexts. Lesson plans and low-cost duplicates would be developed so the E&O office can take activities to classrooms and so teachers can replicate them. Highlights would include the NSO's AO work. This is a new activity based on existing science museum "cookbooks." ATST would investigate employing local high school shop classes to enhance local involvement.

1.5 Current Environmental Setting for Proposed ATST Project

HO is wholly contained within Pu'u Kolekole. The Kolekole volcanic center is located in East Maui on the southwest rift of Haleakalā, adjacent to the deeply eroded and spectacular summit depression. Alkalic lava flows in this area belong to both the post-shield stage Kula series as well as to the initial phase of the rejuvenated stage Hana series. The observatories are largely built on ankaramitic picro-basalts and some basanites (UH IfA, 2005), found at http://www.ifa.hawaii.edu/haleakala/LRDP/. Geological field studies completed for the LRDP describe the HO property as an asymmetric volcanic cone whose slopes are steeper at the western and northwestern sides, while the eastern and southern slopes are gentler. Much of the northern slope — most of which is occupied by the Air Force Maui Space Surveillance Complex (MSSC) — is flattened and has been disturbed. The central crater of Kolekole is described as a flattened bowl of ponded ankaramite lava, spatter and pyroclastic ejecta. More than one eruptive vent was present on Kolekole. The primary vent was likely in the approximate position of the present day Panoramic-Survey Telescope and Rapid Response System (Pan-STARRS) observatory, and one prominent likely secondary event is within the wide depression near the western border of the property (UH IfA, 2005). Presently, facilities located within HO (Fig. 1-2) observe the Sun, provide a world-class telescope for education and research outreach to students all over the world, use lasers to measure the distance to satellites, track and catalogue man-made objects, track asteroids and other natural potential space threats to Earth, and obtain detailed images of spacecraft. It is a principal site for optical and infrared surveillance, inventory and tracking of space debris, and active laser illumination of objects launched into Earth's orbit, activities that are all crucial to the nation's space program

In addition to the facilities located at HO, two ahu (altar or shrine) are also located within the HO property. A Native Hawaiian master dry-stack mason constructed an east- and a west-facing ahu in 2005, both signifying a sacred ceremonial site. The east ahu was dedicated as Pā ele Kū Ai I Ka Moku and the

west ahu was dedicated as Hinala'anui. Native Hawaiians practicing cultural traditions are welcome to utilize the existing ahu sites. See Section 3.2- Cultural, Historic, and Archeological Resources for more information.

1.5.1 Local and Regional Perspective

In 1961, the 18.166 acres of land were designated and assigned to the IfA for scientific purposes, under EO 1987 by then Governor Quinn. UH IfA is responsible for managing and developing the land. Other agencies established adjacent facilities through EO during the same period.

Historical Uses

Table 1-2 lists a facility history for scientific events that occurred beginning in the spring of 1951 when Grote Reber conducted radio astronomy experiments at Haleakalā.

Facility	Date	Event	
"Reber Circle"	1951	Grote Reber, one of the pioneers of radio astronomy, experimented with radio interferometry using a large steel and wood truss antenna. Site abandoned approximately one year later.	
none	1955	Dr. Walter R. Steiger of the UH Department of Physics conducted a site survey study near the summit of Haleakalā to determine the suitability of the location for a solar observatory.	
none	1961	EO 1987 from Hawai'i's Governor Quinn to UH set aside 18+ acres of land on the summit of Haleakalā to establish the HO site. UH responsible for managing and developing land.	
Mees Solar Observatory	1957 to 1976	In preparation for the International Geophysical Year, the UH was approached by Dr. C. Kenneth Mees of Eastman Kodak to locate and operate a Baker-Nunn satellite-tracking facility on Haleakalā. In 1964, the MSO facility was named for Dr. C. Kenneth Mees.	
(MSO)	1964 to Present	NSF initially funded - and in later years NASA funded - the C.E. Kenneth Mees Solar Observatory, which began astronomical studies of the solar corona and chromosphere.	
Airglow and Zodiacal Light Programs	1962	Airglow and Zodiacal Light program initiated in the old blockhouse in which Grote Reber had once housed his equipment.	
University of Hawai'i Institute for Astronomy (IfA)	1967	The University of Hawai'i founded the Institute for Astronomy. The IfA's primary research activities include the study of galaxies, cosmology, stars, planets, and the Sun. At this point in time, the IfA's assets included the Waiakoa Laboratory in Kula, the Mees Solar Observatory, and the newly constructed Zodiacal Light observatory at the summit.	
Airglow Facility	1972	Airglow program equipment moved to new facility.	
Lunar and Satellite Ranging Observatory (LURE)	1974 to 2004	LURE, which was operated by IfA under contract to the NASA Goddard Space Flight Center, supported the NASA Space Geodesy and Altimetry Projects, has provided NASA with highly accurate measurements of the distance between LURE and satellites in orbit about the Earth, and which was involved in the NASA Crustal Dynamics Project. This project was replaced by the Pan-STARRS test-bed (PS-1) in 2006.	

Table 1-2. Facility History at Haleakalā High Altitude Observatory Site.

Facility	Date	Event		
Cosmic Ray Neutron Monitor Station	1991 To 2007	Cosmic Ray Neutron Monitor Station, the only such station in the world, operated in association with the University of Chicago Enrico Fermi Institute and the Faulkes Telescope Facility.		
Multi-color Active Galactic Nuclei Monitor Project (MAGNUM)	1998 to 2008	The University of Tokyo, the National Astronomical Observatory of Japan, and the Australian National University have installed a 2-meter telescope in the 9-meter North dome of the LURE complex to support the MAGNUM Project.		
Faulkes Telescope Facility (FTF)	2004	The Faulkes Telescope Facility at HO houses the largest educational outreach optical telescope in the world in support of astronomy research and education for grades K-college in Hawai'i and the United Kingdom. The FTF on Maui is known as the FTF North and its twin in Australia is known as FTF South.		
	1963	Construction begins on the Advanced Research Projects Agency (ARPA) Maui Optical Station (AMOS), designated in 1977 as Maui Space Surveillance System (MSSS).		
	1965	AMOS satellite tracking facility achieves first light.		
Presently known as the Maui Space Surveillance Complex (MSSC)	1967	ARPA designated MSSS site for Western Test Range midcourse observations, with the University of Michigan (UM) conducting operations and maintenance at the site. About 40 scientists, engineers and technicians worked for UM, about half traveling to the summit on any given day.		
	1969	Routine missile tracking operations began under new contractors AVCO Everett Research Laboratory (AVCO) and Lockheed Missiles and Space Company. AVCO adds about 40 additional personnel for research and development, about half at the summit at any given time.		
	1977	The twin 1.2-meter telescope at AMOS is dedicated to the Maui Optical Tracking and Identification Facility, known now as the MSSC, for daily routine satellite tracking operations. No new personnel were required.		
1980		Construction begins at MSSS on Ground-Based Electro-Optical Deep Space Surveillance System (GEODSS). Three new domes are built and approximately 10,000 square feet of office and laboratory space on the south side of MSSS.		
	1982	The GEODSS, with three 1-meter telescopes becomes one of three operational sites in the world performing ground-based optical tracking of space objects. It employs about 15 operations and maintenance personnel.		
	1995 to Present	One part of the MSSC is the MSSS, a facility combining operational satellite tracking facilities with a research and development facility. This also includes the Dept. of Defense's (DoD) largest telescope, the Advanced Electro-Optical System (AEOS). Over the years the Air Force operation has grown to include a total of approximately 125 civilian and military personnel housed at the Kihei Research and Technology Park and approximately 115 more based at MSSS.		
Panoramic-Survey Telescope and Rapid Response	2006	PS-1 South These facilities house a 1.8-meter wide-field optical imaging system equipped with a 1.44-billion pixel charge-coupled device camera. This unique combination of sensitivity		
System (Pan-STARRS)	2009	PS-2 North and field-of-view will address a wide range of time-domain astronomy and astrophysical problems in the Solar System, the Galaxy, and the Universe.		

Existing Uses

Table 1-3 lists existing astronomical research facilities for advanced studies of astronomy and atmospheric sciences at HO. These facilities are discussed in more detail in Section 3.1-Land Use and Existing Activities.

Facility		Primary Function
U.S. Air Force Maui Space Surveillance Complex	Presently, of the 18.166 acres, 4.5 acres are leased to the United States Army Corps of Engineers for the MSSC. MSSC conducts space surveillance and research activities for the DoD.	
Ground-Based Electro- Optical Deep Space Surveillance System	Another major part of the MSSC, which is one of three operational sites in the world performing ground-based optical tracking of space objects.	
C. E. Kenneth Mees Solar Observatory	Emphasizes studies of the solar corona and chromosphere.	
Zodiacal Observatory	Houses the test-bed Scatter-free Observatory for Limb Active Regions and Coronae (SOLAR-C) Telescope Facility, both supported by UH IfA.	
Panoramic-Survey Telescope and Rapid Response System	PS-1 South	These facilities house a 1.8-meter wide-field optical imaging system equipped with a 1.44-billion pixel charge-coupled device camera. This unique
	PS-2 North	combination of sensitivity and field-of-view will address a wide range of time-domain astronomy and astrophysical problems in the Solar System, the Galaxy, and the Universe.
Faulkes Telescope Facility	Faulkes houses the largest educational outreach optical telescope in the world in support of astronomy research and education for grades Kindergarten through college in Hawai'i and the United Kingdom.	
Haleakalā Amateur Astronomers	The IfA dedicated a small building for the Haleakalā Amateur Astronomers to organize and host programs for professors and students at Maui Community College (MCC), K-12, Boy Scout groups, Akamai students, community members and others to conduct astronomy observations at HO.	

Regional Scientific Events and Activities

Table 1-4 lists existing scientific events and activities in the Maui region.

Program or Activity	Description	
Maui Community College Space Grant Program	The Maui Community College Space Grant Program is part of the University of Hawai'i Space Grant College Consortium, funded by a grant from NASA. The program promotes studies in areas concerned with the understanding, utilization, or exploration of space, and with the investigation of the Earth from space. Related fields of study include astronomy, engineering, adaptive optics, computer sciences, geology, meteorology, oceanography, physics, social sciences, and the life sciences. The program offers opportunities to conduct research or participate in internship projects by providing fellowships (monetary awards) to support students working on approved projects.	
Maui Economic Development Board, Inc. (MEDB) - Akamai Internship Program	The Akamai Internship Program offers community college students and undergraduates that are attending college in Hawaii or that are from Hawai'i but studying on the Mainland an opportunity to get involved in high-tech research and industry. Each student is matched with a mentor and is integrated as a member of the mentor's group with daily guidance.	
Maui Economic Development Board - Women in Technology Program	The Women in Technology Project is a Statewide workforce development initiative of the Maui Economic Development Board, funded in part through grants from the U.S. Departments of Labor, Agriculture and Education.	
Haleakalā Amateur Astronomers	The Haleakalā Amateur Astronomers organize and host programs for professors & students at MCC, K-12, Boy Scout groups, Akamai students, community members and others. Observations and programs are frequently conducted at HO.	
Maikalani Advanced Technology Research Center (ATRC)	 The Maikalani ATRC is the University of Hawai'i IfA offices and research space midlevel facility. It is comprised of meeting rooms, and office space as well as four hightech laboratories with isolated slabs for vibration dampening that allows various instruments to be assembled, fielded and tested prior to going on the summit. Community outreach is ongoing and include activities such as guiding Boy Scout troops through earning the Astronomy Merit Badge; two schools on Maui and one on O'ahu are paired with schools in Brazil for the Science Teaching with Astronomical Robotic Telescopes (START) program; workshops for students and teachers; coordinating a live feed of observations from the Faulkes Telescope North. Scientific talks take place once per month with as many as 40 community members in attendance. 	
Maui High Schools and Maui Community College (MCC)	Science curriculum development in collaboration with IfA and science teachers is ongoing. Maui High School is also involved in the START program. MCC, as driven by the needs of the community, is also developing a 4-year Applied Engineering Technology Bachelor of Applied Science (BAS) program. MCC also participates in the above-mentioned Akamai Program.	

Table 1-4. Regional Scientific Events and Activities.

1.5.2 Reference to Related Existing or Planned Projects in Region

Existing Projects at HO and Directly Adjacent Neighbors

Currently there are no existing projects at HO or within the areas directly adjacent to HO.

Recently Completed Projects at HO and Directly Adjacent Neighbors

The U.S. Army Corps of Engineers, on behalf of the Air Force Research Lab (AFRL), constructed an addition to the AEOS structure in 2007 that houses a Mirror Coating Facility for the AEOS primary mirror. A Federal Environmental Assessment was prepared and accepted for the project (AFRL, 2005).

The Maui Television Broadcast site on Pu'u Kolekole, located near the entrance to HO, was decommissioned after the relocation of broadcast towers to the 'Ulupalakua Ranch site. The site was cleaned up of structures and returned to a natural state. This project was completed in February 2009.

Planned Projects at HO and Directly Adjacent Neighbors

Currently there is only one planned action within the foreseeable future at HO. The SLR 2000, proposed to be installed on the southwestern side of the MSO, is an autonomous and eye-safe photon-counting Satellite Laser Ranging station.

Planned Projects at HALE, Park Road Corridor

Two planned projects for HALE are to slurry seal the upper two miles of the Park road in 2011 and to rehabilitate the Park road between MP 11.2 to MP 14.8 within the next five years.

Public Projects

None.

Private Projects

The existing State Land Use District for the proposed ATST Project is designated as Conservation District, General Subzone. The 18.166 acres of HO land are within the Conservation District lands; therefore, no private projects are planned in the existing areas that constitute the General Subzone of conservation lands around the summit of Haleakalā. Section 1.7.2-State Land Use Law, Chapter 205, Hawai'i Revised Statutes, further describes the Conservation District.

1.6 Compliance With Government Agencies

1.6.1 Federal National Environmental Policy Act

This EIS is prepared pursuant to the NEPA of 1969, as amended, Title 42, United States Code §4321 et seq., the implementing regulations of the CEQ (40 CFR Parts 1500-1508). The purposes of this Act are: *"To declare a national policy which will encourage productive and enjoyable harmony between man and his environment; to promote efforts which will prevent or eliminate damage to the environment and biosphere and stimulate the health and welfare of man; to enrich the understanding of the ecological systems and natural resources important to the Nation; and to establish a Council on Environmental Quality."*

1.6.2 State of Hawai'i Environmental Laws

This EIS is prepared pursuant to the State of Hawai'i Chapter 343 HRS, State Environmental Review Law, and Title 11, Chapter 200 HAR, EIS Rules, in that the proposed ATST Project may potentially meet one or more of the significance criteria for effects on Conservation District Land.

1.6.3 Department of Land and Natural Resources

HAR 13-5-31(1) (Permit and Applications) requires an EIS to accompany the required CDUA. A copy of the EIS would be submitted with the CDUA. A copy of the LRDP will also be submitted with the CDUA per the request made by DLNR Office of Conservation and Coastal Lands (OCCL, 2006) (Ref. letter: MA

06-47). The OCCL is responsible for overseeing approximately two million acres of private and public lands that lie within the State Land Use Conservation District. The CDUA will require a public hearing and a Board of Land and Natural Resources (BLNR) permit. The BLNR is composed of seven members, one from each land district and two at large, and the Chairperson, the executive head of the Department. Members are nominated and, with the consent of the Senate, appointed by the Governor.

1.6.4 Approvals and Permits

The proposed ATST Project would require a number of State and Federal Permits and approvals prior to construction. Most of those permit and approval applications that historically have needed iterative consultations, agency review, or formal concurrence, have already been initiated. However, the Conservation District Use Permit (CDUP) application requires an appended Final EIS. In addition, a SUP from HALE to operate commercial vehicles on the Park road during construction and operation of the proposed ATST Project is required. The environmental compliance required to support the issuance of the SUP is being combined with NSF's environmental compliance for the proposed ATST Project. Anticipated permits and approvals required for the proposed ATST Project are shown in Table 1-5.

	PERMIT, CONSULTATION, OR CONCURRENCE	REGULATORY AGENCY	STATUS
	Air Quality Consultation	U.S. Environmental Protection Agency	None
Federal	Consultation in accordance with Section 7, Endangered Species Act (ESA)	U.S. Fish and Wildlife Service	Consultations completed. Biological Assessment Document under Informal Consultation issued stating that action would not likely have adverse effects on Federally endangered species. Consultation will be revisited if Park road repairs are needed.
rederat	Consultation in accordance with Section 106 of the National Historic Preservation Act (NHPA)	DLNR, State Historic Preservation Division , Advisory Council on Historic Preservation	Consultations in progress.
	Special Use Permit (SUP)	U.S. Dept. of the Interior, National Park Service	Pending; environmental compliance underway.
	Conservation District Use Permit (CDUP)	Dept. of Land and Natural Resources	Consultation initiated; EIS and a management plan to be submitted with CDUA.
	National Pollutant Discharge Elimination System Permit	State of Hawai'i Department of Health, Clean Water Branch	Application for permit to be submitted if construction is approved.
State of Hawaiʻi	Individual Wastewater System (IWS) Approval	State of Hawai'i Department of Health, Wastewater Branch	Wastewater system final design in progress. Wastewater Branch reserves right to review final design for conformance.
	Oversized and Overweight Vehicles on State Highways Permit	Department of Transportation, Highways Division (DOT)	Contact Maui District office for appropriate truck permit, traffic coordination, and contingency plans .
	Determination under the Coastal Zone Management Area (CZMA)	State of Hawai'i Office of Planning	Request for determination to be submitted.

Table 1-5. Anticipated Permits and Approvals Required for the Proposed ATST Project.

The proposed ATST Project received a comment letter from the State of Hawai'i Dept. of Health suggesting that the Army Corps of Engineers (ACE) be contacted pursuant to the Federal "Clean Water Act". In a telephone inquiry to Peter Galloway of the ACE, the ATST Project representative was informed that a Water Quality Certification is not likely to be required based on the location and nature of the project. A follow-up letter was sent by Mr. George Young, Chief, Regulatory Branch, in which he stated that after reviewing the DEIS and based on the information provided and other information available to their office, they have "…determined that these areas consist entirely of uplands and that the project would not involve any discharge of fill material into waters of the United States; therefore, Dept. of the Army (DA) permits will not be required." (ACE, 2009).

1.7 State of Hawai'i Land Use Conformity

1.7.1 Chapter 343, Hawai'i Revised Statutes, Environmental Impact Statements

Chapter 343, HRS, Section 343-5, Applicability and requirements, lists the following line items project-relevant scenarios requiring an assessment under the State environmental review process:

- 1. Propose any use within any land classified as conservation district by the State land use commission under Chapter 205, State Land Use Law.
- 2. Propose any use within any historic site as designated in the National Register of Historic Places or Hawai'i Register as provided for in the National Historic Preservation Act (NHPA) of 1966, Public Law 89-665, or chapter 6E.

1.7.2 State Land Use Law, Chapter 205, Hawai'i Revised Statutes

In 1961, the State Land Use Law (Act 187), codified as HRS, Chapter 205, established the State Land Use Commission (LUC) and granted the LUC the power to zone State lands into one of four districts: Agriculture, Conservation, Urban, and Rural. Act 187 vested the DLNR with jurisdiction over the Conservation District. The DLNR formulated subzones within the Conservation District (Fig. 1-12; OCCL, subzone maps) and regulates land uses and activities therein. Conservation District Subzone designations regulated by the DLNR are Protective, Limited, Resource, General, and Special. Since 1964, the BLNR has adopted and administered land use regulations for the Conservation District; and has made major changes to the regulations in 1978 and 1994. (DLNR, Conservation Lands)

The existing State Land Use District for the proposed ATST Project is designated as Conservation District, General Subzone. The objective of the General Subzone is to designate open space where specific conservation uses may not be defined, but where urban use would be premature. During the past few years, the OCCL within the DLNR has administered CDUPs for numerous potential uses, among them astronomical facilities on Haleakalā. The proposed ATST Project would be located in the area of the Conservation District that has been set aside for astronomical research (HAR §13-5-25: Identified land uses in the General Subzone, which is applicable from R-3 Astronomy Facilities, (D-1) Astronomy facilities under an approved management plan); and many facilities conducting astronomy and advanced space surveillance already exist within HO.

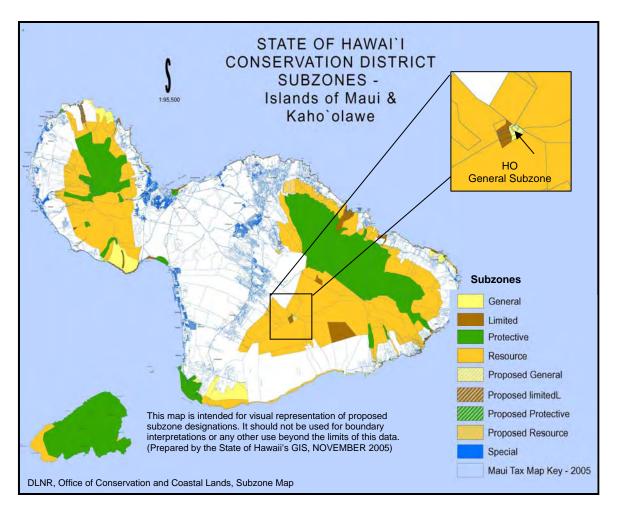


Figure 1-12. State of Hawai'i Conservation District Subzones

1.7.3 Coastal Zone Management Act, Chapter 205A, Hawai'i Revised Statutes

The Coastal Zone Management Area (CZMA) as defined in Chapter 205A, HRS, includes all the lands of the State. The subject parcel is not within the Special Management Area, pursuant to the County of Maui Planning Department map entitled Island of Maui Showing Special Management Area. This map is provided by the County of Maui Geographic Information Systems (GIS) Program Office of the Managing Director, dated July 2002, and is located in the Zoning and Administration Enforcement Division of the Planning Department, Wailuku, Maui, Hawai'i. The map clearly indicates that the proposed ATST Project that would be located in the HO complex would not be in the CZMA.

1.7.4 Hawai'i State Plan, Chapter 226, Hawai'i Revised Statutes

The Hawai'i State Plan, Chapter 226, HRS establishes a set of goals, objectives and policies that serve as long-range guidelines for the growth and development of the State. The Plan is divided into three parts: Part I-Overall Theme, Goals, Objectives and Policies, Part II-Planning, Coordination, and Implementation; and, Part III-Priority Guidelines.

The elements of Part II and Part III of the State Plan pertain primarily to the administrative structure and implementation process of the Plan. As such, comments regarding the applicability of Parts II and III to the proposed ATST Project are not appropriate. The sections of the Hawai'i State Plan Part I directly applicable to the proposed ATST Project are listed below and discussed in Sections 2.0, 3.0, and 4.0 of this EIS.

Part I of HRS 226, The Hawai'i State Planning Act, contains six sections that apply most directly to the proposed ATST Project. These are:

- 1. §226-6 Objectives and policies for the economy in general.
- 2. §226-9 Objective and policies for the economy Federal expenditures.
- 3. §226-10 Objective and policies for the economy potential growth activities.
- 4. §226-12 Objective and policies for the physical environment scenic, natural beauty, and historic resources.
- 5. §226-13 Objectives and policies for the physical environment land, air, and water quality.
- 6. §226-21 Objective and policies for socio-cultural advancement education.

1.7.5 Department of Health Environmental Planning Office

The State of Hawai'i Department of Health's Office of Environmental Quality Control (OEQC) implements Hawaii's EIS law (HRS 343), which was patterned after the NEPA requirements. The HRS law requires that government give systematic consideration to the environmental, social, and economic consequences of proposed development projects prior to allowing construction to begin. The law also assures the public the right to participate in planning projects that may affect their community. The preparation of environmental documentation for the proposed ATST Project is a joint Federal and State process; and, therefore, this EIS follows OEQC requirements for publishing a determination on the need for an EIS and ultimately acceptance or non-acceptance of the EIS. Through OEQC, the proposed ATST Project applicant makes available documents for review and comments and publicizes the public comment processes or public hearings where appropriate. In addition, publication in "The_Environmental Notice" of an acceptance or non-acceptance determination by the Accepting Authority would delineate a 60-day legal challenge period for the proposed ATST Project.

1.7.6 Department of Land and Natural Resources

The DLNR is an integral part of the environmental review process for the proposed ATST Project. Since HO is on Conservation District lands, the proposed ATST Project is required to apply for permit for **conforming use of conservation lands R-3 Astronomy Facilities**, (D-1) Astronomy facilities under an approved management plan. The permit application process will require extensive environmental, biological, cultural, and historic review by various agencies, followed by public hearings and BLNR approval.

1.8 County of Maui Community Plan

The Makawao-Pukalani-Kula Community Plan (County of Maui, 1996) includes a policy that states: "Encourage Federal, State and County cooperation in the preparation of a comprehensive Haleakalā summit master plan to promote orderly and sensitive development which is compatible with the natural and native Hawaiian cultural environment of Haleakalā National Park." The proposed ATST Project conforms to the LRDP for HO, which is the UH contribution to any summit master plan. There are more than twenty-five separate agencies with interests and facilities in the summit area of Haleakalā. If A has taken the lead at the summit in preparing a LRDP for the coming decade, and the proposed ATST Project was an integral part of the If A plan. The LRDP has specific protocols and measures that ensure orderly and sensitive development that is designed to be compatible with the intended land-use and purposes for the 18.166 acres of land under the auspices of If A.

1.9 Agency Notification and Collaboration

The NSF and its collaborating agencies began the process of informal consultation with Federal and State agencies in May 2005, along with State of Hawai'i elected officials, island community groups, and relevant commercial interests (Table 1-6).

Details about agency collaboration and consultation throughout the EIS process can be found in Section 5.0-Notification, Public Involvement, and Consulted Parties. Numerous formal and informal consultations took place with Federal and State agencies; State of Hawai'i elected officials, Maui community groups, and relevant commercial interests to ensure full disclosure and information. These included, but were not limited to discussions and correspondence with the Advisory Council on Historic Preservation (ACHP), the Department of the Interior (DOI), the Federal Aviation Administration (FAA), the NPS, HALE, the U.S. Fish & Wildlife Service (USFWS), and the Hawai'i DLNR, the Office of Hawaiian Affairs (OHA), and MCC.

	U.S. House of Representatives: Congressmen Neil Abercrombie, Ed Case
Elected	U.S. Senate: Senators Daniel Akaka, Daniel Inouye
	Hawai'i State Governor Linda Lingle
Officials	Hawai'i State Senate: Senators Rosalyn Baker, Mele Carroll, J. Kalani English,
Officials	Chris Halford, Kyle Yamashita
	County of Maui Mayor Alan Arakawa
	County of Maui Council Members: Robert Carroll, Mike Molina, Charmaine Tavares
	Advisory Council on Historic Preservation
	U.S. Air Force Maui Optical Supercomputing Site
	U.S. Coast Guard
	U.S. Department of Energy
Federal	U.S. Department of Interior, Fish and Wildlife Service
	U.S. Department of Interior, National Park Service and Haleakalā National Park
	U.S. Environmental Protection Agency
	Federal Aviation Administration
	National Weather Service/ National Oceanic and Atmospheric Administration (NOAA)
	Department of Accounting and General Services Public Works
	Department of Accounting and General Services Public Works,
	Information and Communications Services Division
State of Hawaiʻi	Department of Transportation
	Dept. of Health, Clean Water Branch
	Dept. of Health, Office of Environmental Quality Control
	Dept. of Health, Wastewater Branch

Table 1-6. Agency Consultation.

Table 1-6. Agency Consultation (cont.)

	Department of Business, Economic Developme	ent and Tourism. Office of Planning.	
	Land Use Division	,	
	Dept. of Hawaiian Homelands, Land Management Division (Non-Homestead)		
	Dept. of Land and Natural Resources, Division of Forestry and Wildlife		
	Dept. of Land and Natural Resources, Island Bu		
State of Hawaiʻi	Dept. of Land and Natural Resources, Land Div		
(Cont.)	Dept. of Land and Natural Resources, Maui Na		
	Dept. of Land and Natural Resources, State His		
	Office of Hawaiian Affairs		
	Kaho'olawe Island Reserve Commission		
	Maui Community College		
	University of Hawai'i Institute for Astronomy		
	Chief of Police	Dept. of Parks and Recreation	
County of Maui	Cultural Resources Commission	Dept. of Planning	
M	Boeing LTS	Maui Electric Company, Inc.	
Maui Commercial	Hawai'i Telecom	Raycom Media, Inc.	
Organizations	Maui Economic Development Board	Sandia Laboratories	
	Island Community Gro		
	Alu Like, Inc.	Keokea Hawaijan Homes	
	A'o A'o O Na Loko I'a O Maui	Kilakila o Haleakalā	
	Dept. of Hawaiian Homelands	Kipahulu Community Association	
	Dept. of Hawaiian Homelands Dept. of Hawaiian Homelands Grants Review	Kula Community Association	
	Advisory Committee	Kula Community Association	
	Fishpond Ohana	Lokahi Pacific	
	Friends of Moku'ula	Malu'ohai Residents Association	
	Friends of Polipoli	Maui Outdoor Circle	
	Hawaiian Community Assets, Inc.	Na Kupuna O Maui	
Maui	Hawaiian Homes Waiehu Kou 1	Na Leo Pulama	
1,1001	Historic Hawai'i Foundation	Na Po'e Kokua	
	Hui Ala Nui O Makena	Native Hawaiian Educational Council	
	Hui Kako'o 'Aina Ho'opulapula	Papa Ola Lokahi	
	Hui No Ke Ola Pono	Paukukalo Hawaiian Homestead Community	
		Association	
	Hui of Hawaiians	Punana Leo O Maui	
	Ka Imi Na'auao 'O Hawai'i Nei	Queen Liliuokalani Children's Center	
	Kamehameha Schools Alumni	Royal Order of Kamehameha I	
	Kamehameha Schools	Sierra Club	
	Kawaihapai Ohana	The Nature Conservancy	
Hawai'i	Hawaiian Civic Club of Hilo	Kanu o ke 'Aina Learning 'Ohana	
	Council for Native Hawaiian Advancement	Royal Hawaiian Academy of Traditional Art	
O'ahu	Hawaiʻi Maoli	The Friends Of 'Iolani Palace	
U allu	Hui Kakoʻo ʻAina Hoʻopulapula	The I Mua Group	
	Na Ku'auhau'o Kahiwakaneikopolei		

1.10 Public Disclosure and Involvement

During the course of planning for the proposed ATST Project within HO or in the course of preparing studies or submitting applications for various approvals for the project, agencies, individuals, and organizations were notified, contacted, or consulted. Details of public and agency disclosure and involvement regarding the proposed ATST Project consisting of pre-assessment notification letters, agency and media announcements, documentation distribution lists, and public scoping meetings can be found in Section 5.0-Notification, Public Involvement, and Consulted Parties. The public was encouraged to comment during required disclosure periods and comments during the scoping process can be found in Vol. III-Appendix A- **Public Scoping Meetings Comments and Responses.** Additional public disclosure and involvement throughout the EIS and permitting process were approached using similar methods.

1.10.1 Draft and Supplemental Draft Environmental Impact Statement Public Involvement

The Draft Environmental Impact Statement (DEIS) was made public on September 8, 2006, to coincide with notification in the OEQC "Environmental Bulletin". Notification was also published in the Federal Register on September 6, 2006 (Federal Register, Vol. 71, No. 172). Three public comment meetings were held and the public was encouraged to submit comments during the required 45-day public comment period.

The Supplemental Draft Environmental Impact Statement (SDEIS) was made public on May 8, 2009, and notification was published in the Federal Register and the OEQC "Environmental Bulletin". Public comment hearings on the SDEIS were held during the 45-day comment period ending June 22, 2009, and the public was encouraged to submit comments.

Details about the DEIS and the SDEIS Public Comment Meetings can be found in Section 5.0-Notification, Public Involvement, and Consulted Parties. Public comments and responses to both the DEIS and the SDEIS are included in Vol. IV, Appendices A and B.

1.10.2 Section 106 Public Involvement

During the intervening period between publication of the DEIS, the SDEIS, and the FEIS, numerous formal and informal consultation meetings were held with Native Hawaiian Organizations and individuals, the interested public, and federal and state agencies to solicit input on the proposed ATST Project's effects on cultural and historic resources. These consultation meetings have included, but are not limited to, discussions and input from the State Historic Preservation Division (SHPD), ACHP, OHA, students and faculty of MCC, HALE, the DOI, the Royal Order of Kamehameha I, Kula Community Association, and other interested individuals and community groups. Details about the Section 106 consultations can be found in Section 5.0-Notification, Public Involvement, and Consulted Parties.

2.0 PROPOSED ATST PROJECT AND ALTERNATIVES

2.1 Introduction

The proposed Advanced Technology Solar Telescope (ATST) Project includes construction, installation, and operation at the Haleakala High Altitude Observatories (HO) site on the island of Maui, Hawai'i. It also involves obtaining a SUP from HALE to operate commercial vehicles on the Park road. This section describes the proposed ATST Project at the preferred site and one alternative site, as well as a No-Action Alternative. If approved, the proposed ATST Project would be constructed at one of two currently unutilized sites within HO. The preferred site is near the existing Mees Solar Observatory (MSO) facility and is referred to in the Environmental Impact Statement (EIS) as the Mees site. The alternative site would be at an identified and currently unutilized site within the HO boundary large enough to accommodate the telescope. This site is the previous location of a radio astronomy experiment, referred to at HO as Reber Circle and will be referred to as the Reber Circle site.

This section describes the development of the alternatives and process for identifying scientifically viable sites, construction activities and schedule, the final form the proposed ATST and its supporting facilities would take, and ATST operations. Furthermore, this section includes a discussion of sites considered but not carried forward for full analysis and evaluation due to their failure to meet the purpose and need of the proposed ATST Project.

2.2 Site Selection

2.2.1 Site Selection Chronology

The existing ground-based solar telescope facilities operated by the National Science Foundation (NSF) were built over a generation ago. The proposed ATST Project represents an opportunity to implement a unique astronomical resource that is expected to be useful and innovative for several decades to come. As such, the selection of the site is critically important. Thus, the site selection process was carried out with substantial solar research community oversight and input. An outline of the history of the site selection process is as follows:

1998 to 2000 – The requirements for a large aperture ground-based solar telescope to measure and understand solar magnetic fields and atmospheric structure were articulated in the National Academy of Sciences/National Research Council report entitled "Ground-Based Solar Research: An Assessment and Strategy for the Future", 1998, and in the NSF and National Aeronautics and Space Administration (NASA) "Astronomy & Astrophysics Survey Committee Decadal Survey", 2000. Twenty-two U.S. universities and solar institutions led by the National Solar Observatory (NSO) developed a proposal defining the scientific objectives as well as proposing a conceptual design and development effort for such a telescope. This effort included a set of site survey parameters needed to characterize an optimal ATST site. These included the fraction of time that the sky is clear, atmospheric seeing, sky brightness, and water vapor content. The ATST Science Working Group (SWG) was formed and included representatives from the partnering institutions as well as broad international representation. The SWG further refined the science objectives and quantified the necessary measurements of site parameters.

2000 – An SWG workshop was held in May to discuss the science drivers and flow them down to design requirements, including site properties. The initial membership of the ATST Site Survey Working Group (SSWG) was formed at the American Astronomical Society/Solar Physics Division Meeting at Lake Tahoe, Nevada in June. The membership included representatives of the major solar astronomical observatories. The panel also included experts in interpreting atmospheric seeing measurements, and experts in interpreting coronal sky brightness measurements.

2001 – The SWG produced the ATST Science Requirements Document (SRD) in 2001. The instrumentation to measure the seeing and the sky brightness was selected and development started. An initial list of 72 potential sites was prepared and the sites were evaluated on a broad set of criteria to identify six sites that were testable within the resource constraints of the survey. The criteria that formed the basis for the elimination of the other 66 sites are discussed in Section 2.2.2-Site Selection in Detail.

2002 – The deployment of the atmospheric seeing monitors was completed and data collection was initiated at the six sites designated for testing. The construction of the sky brightness monitors began. The SRD was publicly released by the SWG (March 2002) and included refinement of the seeing specifications required to meet scientific goals (September 2002). The site requirement goals needed to fulfill the scientific objectives (as stated in the SRD) were refined by the SSWG and finalized in October 2002 (ATST Project Document Specification 0006 Rev. A, available on the Internet at: <u>http://atst.nso.edu/library/docs/SPEC-0006.pdf</u>) (ATST, 2002). The development of procedures for analyzing the seeing data was begun.

2003 – The operation of the seeing monitors and analysis of the data continued at the six test sites. The sky brightness monitors were installed in May. A meeting of the SSWG and the SWG was held in October. This meeting concluded that: 1) three of the six sites tested did not fulfill the site requirement goals; 2) the seeing data analysis could be improved by explicitly including two additional measurements of seeing that provided information averaged over the entire atmosphere of the earth (because the seeing data was critical to the site selection process; and, 3) one additional year of data was needed, especially for sky brightness measurements. The decision was made to end the testing at three of the sites and continue for an additional year at the remaining three (Big Bear Lake, Haleakalā, and La Palma).

2004 – As a result of the NSF-funded Design and Development effort, the ATST consortium submitted a construction proposal to NSF in January. This proposal was reviewed, first by writein reviewers and then by a panel convened by NSF. The proposal received excellent ratings in all aspects, including the careful attention devoted to selecting the proposed site. The seeing data analysis was improved and tests to verify the seeing results were successfully conducted. The operation of the seeing and sky brightness instrumentation continued at the remaining three sites, as did the data analysis. In October, the SSWG and the SWG reviewed the completed site survey data analysis and concluded that Haleakalā met the criteria for the primary science outputs — annual required hours of good seeing and dark skies. A final report (ATST, 2004) was produced and is available on the Internet at: <u>http://atst.nso.edu/site/reports_final.html</u>.

2005 – In January 2005, after six months of public review, UH IfA finalized its Haleakalā High Altitude Observatory Long Range Development Plan, which included conceptual descriptions of ATST and the two unused potential sites still available for facilities. Also in January, after review of the final site survey report, and Solar Observatory Counsel (SOC) recommendation, Association of Universities for Research in Astronomy (AURA) notified the NSF that Haleakalā met the criteria for the primary science output — annual required hours of good seeing and dark skies. AURA concluded that La Palma was deemed an acceptable site only for the highest resolution science outputs based on it meeting the requirement for hours of highest resolution seeing.

2.3 Alternatives Eliminated From Further Consideration

2.3.1 Site Selection in Detail

The following major advances in technology and instrumentation make it possible to realize a facility and telescope such as the proposed ATST Project before the end of the coming decade:

1. Functioning solar AO systems in the visible and infrared spectral regions.

- 2. An open-air solar telescope that provides diffraction limited images.
- 3. Large-format cameras operating in the visible and infrared spectral regions.

The astronomical community recognizes that technology has advanced to a point where better data can now potentially be obtained. Two studies established a roadmap for new solar observational capabilities: 1) the National Research Council report titled "<u>Ground-based Solar Research: An Assessment and Strategy for the Future</u>" (Parker and Canizares, 1998); and, 2) in the National Research Council's Astronomy and Astrophysics Survey Committee Decadal Survey, "<u>Astronomy and Astrophysics in the New Millennium</u>" (McKee and Taylor, 2001).

In the late twentieth century, a group of universities and laboratories formed a consortium to develop clear scientific objectives that would address the needs for fundamental measurements of solar magnetic variability and then to submit a proposal to the NSF to develop a concept that would address these needs. These objectives are defined and discussed in Section 1.4.2-Purpose of the Project. In 2000/2001, these groups formed a Science Working Group (SWG) to quantify these science goals and translate them into design specifications for the telescope and site characteristics that would permit the telescope to obtain data that could meet the science objectives. A conceptual design for the telescope was developed that could fulfill the design specifications and hence meet the science goals if properly sited. Via this process, the science drivers were translated or "flowed down" into well-defined demands on both the telescope design and the detailed characteristics required of any potential site.

In 2001 a smaller Site Survey Working Group (SSWG) was formed to evaluate potential sites based on whether they would meet the purpose and need of the proposed ATST Project. The conceptual design for the proposed ATST Project was the basis for a construction proposal submitted to the NSF in January of 2004. The construction proposal is being reviewed on the basis of this design assuming that the selected site could meet required observational conditions.

The charge to the SSWG was as follows (Vol. II, Appendix O-ATST SSWG Final Report, Chapter 2, p. 10):

"The main objective of the ATST site survey is to ensure that the ATST is located at the best feasible site. The task of the SSWG is to advise the ATST Project Scientist on how to perform the ATST site test campaign. The goal of the site survey is to ensure that the ATST is located at a site that allows the ATST to meet its science requirements. The SSWG is composed of solar physics community members with a range of expertise that includes site testing and solar observing. The SSWG reports to the Project Scientist on a regular basis.

The SSWG will:

- Develop, review and evolve a site-testing plan
- Specify site requirements based on science requirements stated in the ATST proposal
- Consult with the Project Scientist and ATST Science Working Group (ASWG) on site requirement specifications
- *Recommend the initial sites to be tested*
- Recommend site test procedures and equipment
- *Review the data reduction methods*
- *Periodically monitor the results*
- *Prepare a report on the site survey results*"

The ATST SSWG Final Report (Vol. II, Appendix O) summarizes the work of the SSWG in the site selection process. The SSWG Final Report is one of the few comparative studies of solar-observing site characteristics to be carried out with consistent instrumentation and analysis methods and is further explained below.

The SSWG site selection process began with the development of a list of potential sites, with the only constraint being that the candidate sites be reasonably sunny (SSWG Final Report, p. 14). The list of candidate sites was then prepared, along with basic geographic and climate data for each site. The SSWG was then required to cull the list down from 72 to six candidate sites, because only six sites could be carried forward for testing, due to resource constraints associated with the cost of operating the testing regime for two years, and taking and analyzing the data of the SSWG survey (SSWG Final Report, p. 14).

The 72 candidate sites were discussed and debated among the SSWG members. Factors considered for each site during these debates included meteorological conditions such as cloud cover; annual precipitation; prevailing wind patterns; presence of aircraft contrails; site access; availability of utilities; and size of the site relative to the anticipated site plan for the proposed ATST facility. Anticipated costs of building on the site were not a factor in these considerations. At the conclusion of these debates, considerations of feasibility and observing conditions as well as, in some cases, changing environmental conditions (particularly drought) revealed in site visits, led to the reduction of the list to six remaining candidate sites (SSWG Final Report, pp. 1, 14-16).

The final list of six sites to be instrumented for detailed study represented a cross-section of geographical locales: continental mountain (Sacramento Peak), continental mountain lake (Panguitch Lake), peninsula mountain (San Pedro Martir), coastal mountain lake (Big Bear), Atlantic island mountain (La Palma), and Pacific island mountain (Haleakalā). Big Bear Lake, La Palma and Sacramento Peak were selected because they are homes to well-established and productive solar observatories. Because island sites often demonstrate atmospheric stability, three potential Hawaiian sites (Mauna Kea, Mauna Loa, and Haleakalā) were also evaluated. Mauna Kea was eliminated from further consideration because only one area within the Science Reserve was available, and it was revealed from a prior site survey to have poor daytime seeing. Mauna Loa was eliminated from further consideration because the plot size was too small to accommodate the proposed ATST Project. Panguitch Lake in Utah was chosen as one of the six candidate sites for further study because lake sites are known to have potentially good seeing characteristics. Further, the Panguitch Lake site is located at high-altitude. Finally, San Pedro Martir in Baia California was included since it is a peninsular mountain site in relative close proximity to large bodies of water, which promote less turbulence. Sacramento Peak, with its very well-studied and known atmospheric conditions, served as a control site against which data from the other sites could be compared. This site was also considered to be a viable candidate based on scientific and feasibility criteria.

After the six candidate sites were identified, the SSWG incorporated a new technique of combined differential image motion and scintillation measurements to estimate the seeing characteristics over a range of heights above each candidate site (SSWG Final Report, p. 98). The site survey equipment to assist in site selection identification included "a multi-band miniature coronagraph to estimate sky brightness and water vapor content" (SSWG Final Report, p. 98). This resulted in a considerable database of information on the remaining six candidate sites as explained below.

A set of objective criteria was developed to determine which of the six candidate sites would meet the science requirements for the proposed ATST Project. These criteria flowed down from the science drivers articulated in the ATST Science Requirements Document (http://atst.nso.edu/files/docs/SPEC-0001.pdf), released by the ASWG (March 2002). Primary among these criteria were:

1. Two hundred (200) annual hours of excellent "seeing" conditions. (As noted in Section 1.0-Introduction, seeing is a term used by astronomers as a measure of the image quality with "excellent seeing" referring to conditions under which the images delivered through the atmosphere are very sharp and "bad seeing" referring to atmospheric conditions that blur the images.) (SSWG Final Report, p. 12); and,

2. Four hundred eighty (480) annual hours of low sky brightness (defined as less than 25 millionths of the brightness of the solar disk) immediately adjacent to the "limb" of the solar disk (SSWG Final Report, p. 14).

The seeing criterion is affected by turbulence in the Earth's atmosphere at all levels. Since solar telescopes operate during the day, a dominant issue is turbulence driven by the solar heating of the ground near the telescope structure. The warm ground heats the air, creating turbulence at low elevation. It is vital that daytime astronomy, such as solar observations, take place in locations that limit these effects. The best way to reduce these "ground effects", as they are called, is to build the telescope in windy (but not gusty) places near large bodies of water, both of which act to equalize air temperature. The shape of the topography around the telescope site also has a strong influence on the effects of wind and water in reducing ground effects.

The sky brightness criterion is important for studies of the tenuous outer most layer of the Sun's atmosphere, the corona. The corona is intrinsically very faint, significantly fainter than the disk, or photosphere of the sun. Light from the photosphere scattered by dust or other aerosols in the Earth's atmosphere makes the sky adjacent to the sun look bright. Accordingly, the brighter the sky, the more the difficult it is to study the faint corona, as the coronal light is overwhelmed by the scattered photospheric light.

Additional criteria considered by the SSWG included precipitible water vapor, dust levels, temperature extremes, the feasibility of construction and proximity to support facilities for telescope operations.

In order to assess the criteria, test towers were set up at each of the six sites (e.g., Fig. 2-1). These towers were instrumented with devices that measure the overall quality of the seeing, the turbulence in the Earth's atmosphere as a function of height above the ground (i.e., where the seeing is coming from), the sky brightness, dust levels, and meteorological conditions. These instruments collected measurements for 12 to 18 months at each site, allowing a uniform comparison of the sites with respect to the criteria listed above.

As a result of those tests at the six candidate sites, it became clear that the six candidate sites could be divided into two groups based on the observing conditions (SSWG Final Report, p. 1). The main scientific goals of the proposed ATST Project require the measurement of the solar magnetic field over extremely small distances on the surface, and the measurement of the magnetic field in the very faint outer solar region known as the corona. To do this, the atmospheric conditions at the site must satisfy two main criteria: a very stable atmosphere with extremely low levels of turbulence, and a very clean atmosphere with extremely low levels of dust. By themselves, these conditions are hard to find, and a site where both conditions are met is extremely rare. The tested sites were found to consist of two groups: one was comprised of three locations (Sacramento Peak, San Pedro Martir, and Panguitch Lake) where the measurements demonstrated that the atmospheric conditions were never of sufficient quality for achievement of the ATST science goals; and the other group consisted of three locations (Haleakalā, La Palma, and Big Bear), where the measurements indicated that conditions might be of sufficient quality over various time periods. The ASWG met in November of 2003 and recommended that because of the results, testing be continued only at the top ranking group of sites. The three remaining sites - Big Bear Lake (California), Haleakalā (Maui, Hawai'i), and La Palma (Canary Islands, Spain) - comprised the top ranking group and were tested for an additional year. After this additional testing, La Palma and Big Bear Lake were ultimately found to have demonstrated deficiencies in one or more of the primary scientific evaluation criteria (SSWG Final

Report, p. 1). The notable characteristics and the deficiencies of the La Palma and Big Bear sites are outlined in more detail in Sections 2.3.3 and 2.3.4 below.

Figure 2-1. ATST Test Tower at Haleakalā High Altitude Observatory Site.

Based on the results of both the preliminary testing and the continued testing of the three remaining sites, Haleakalā met or exceeded the primary scientific evaluation criteria. La Palma was found to meet the requirement for hours of highest-resolution seeing, but was found to be deficient in meeting the required level for one of the primary science outputs — **sufficient** available hours of dark daylight sky close to the Sun's limb. Big Bear Lake was found to be deficient in meeting the required hours of dark daylight sky close to the Sun's limb. Big Bear Lake was found to be deficient in meeting the required levels for both of the primary science requirements — sufficient hours of highest resolution seeing and sufficient available hours of dark daylight sky close to the Sun's limb. All three sites met the requirement of access to infrared wavelengths (Objective 3 in Section 1.4.2-Purpose of the Project). Because siting the telescope at either La Palma or Big Bear Lake would substantially and irrevocably reduce the telescope's scientific output, and thus not meet the purpose and need of the proposed ATST Project, both were eliminated from further consideration. For this same reason – a failure of two of the three remaining sites to meet the required scientific objectives -- a further analysis of "trade-offs" was not warranted.

2.3.2 Response to Public Comment Regarding Alternative Siting on Haleakalā

In addition to the primary and alternative sites described in Section 2.4-Description of the Proposed ATST Project at the Mees Site, a question was raised regarding the viability of a third unused site at HO. The existing infiltration basin and the area immediately to the east of it is the only other HO site large enough to host the proposed ATST as shown in Figure 2-2. This site, which was briefly considered, is restricted by the established lease boundaries of the U. S. Air Force and the Federal Aviation Administration (FAA) and also by the proximity of existing utility equipment that serves other facilities. Thus, it was rejected as a viable alternative. An even more significant drawback to this site, however, is that its use would compromise the effectiveness of the infiltration basin, a topographic depression at the western boundary of HO that is the main repository for stormwater runoff at Kolekole (Vol. II, Appendix L-Stormwater Management Plan for HO, Fig. 3-10-Existing Stormwater Drainage Paths at HO). Since adoption of the erosion prevention practices of the SWMP, the infiltration basin has performed well to limit erosion at the site from unconfined flow along the boundaries of Kolekole. It was determined that reconfiguration of the entire stormwater system for the proposed ATST Project would be impractical and detrimental to the environment at HO and, therefore was not carried forward for further consideration.

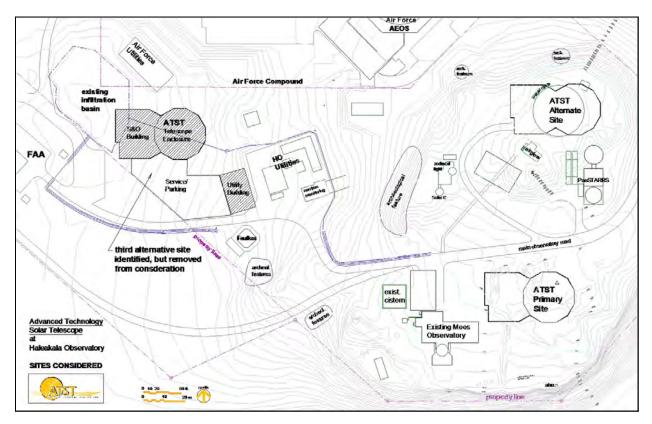


Figure 2-2. HO Infiltration Basin Site – Eliminated From Consideration.

Another comment was raised regarding the viability of the Saddle Area, which currently hosts broadcasters and other Federal, State and private facilities. This area is located within a State of Hawai'i Conservation District. However, the only property on Maui with a designated land use for observatory purposes is the HO site. HO was established in 1961 by Governor Quinn under Executive Order 1987, which set aside 18.166 acres of land at the summit of Haleakalā in a place known as Kolekole to be under the control and management of the University of Hawai'i. The Saddle Area is located outside HO and within the Conservation District and does not have a designated land use for observatory purposes. Under

these constraints, this site could not be considered as an alternative site for the proposed ATST Project. In addition, because the Saddle Area is both lower and downwind from the facilities at HO, the "seeing" quality for the scientific requirements could not be met unless the facility was considerably taller than the proposed 143 feet. Visibility from the Saddle Area to populated areas on Maui would not have the terrain blocking that the primary Mees site enjoys. Therefore, the proposed ATST Project **would** be far more visible to most Maui residents, if located at the Saddle Area than at the preferred Mees site. For these reasons, this alternative was not carried forward for further consideration.

Additional public comments were raised about using advanced space technology and considering spaceoptics, e.g., a space-based solar telescope. The ATST, however, is designed to measure and understand the influence of the outer solar atmosphere on the interplanetary space between the Earth and the Sun. Virtually all of the Sun's dynamic effects on the Earth can be traced back to solar magnetic fields and the proposed ATST Project would measure these outer fields for the first time.

The technology simply does not exist anywhere for doing this measurement from space. While the Japanese/American/British SOLAR-B/Hinode mission looks on the disk of the Sun for solar flares, its mission is complementary to the goals of the ATST. We are many decades away from having the technical capability of launching a solar telescope with the necessary 4-meter mirror, like the proposed ATST Project, into space to measure these coronal magnetic fields. Meanwhile our global communications and the impact of solar changes on terrestrial climate remain a risk for human civilization while we wait to understand solar cycle variability. For these reasons, this alternative was not carried forward for further consideration.

2.3.3 La Palma, Canary Islands, Spain

The Roque de los Muchachos Observatory (ORM) on the Canary Island of La Palma¹ (Fig. 2-3) is an astronomical complex operated by the Instituto de Astrofisica de Canarias (IAC), hosting thirteen European observatories. The results of site testing of La Palma are summarized in Table 2-1. It was ranked second among the top three sites considered for the proposed ATST Project, as summarized on Table 2-1. ORM is named after the highest mountain on the island, Roque de los Muchachos, on which it sits at an elevation of approximately 7,900 feet above mean sea level. The astronomical compound is located in the north-central region of La Palma on the northern rim of the Caldera de Taburiente (the world's largest volcanic crater). The complex can be accessed via paved roads in two directions. The main road, leading from the coastal city of Santa Cruz to the east of ORM, is in good condition albeit with a steep (12 percent) grade. This road is closed due to inclement weather conditions approximately ten times per year. A more reliable road meets ORM from the northwest and extends around the island. The Roque de los Muchachos Observatory is open to the public during the day and entry is controlled during the night via a manned gate.

La Palma - Physical Characteristics

As previously mentioned in Section 2.2-Site Selection, test towers were constructed at the six sites to collect data on the physical characteristics of each site. At ORM, this site was located in the location identified on Figure 2-4 as the proposed site for ATST. This site sits on an approximate 15 percent slope near the crest of the caldera, which creates both construction issues and visibility issues from the adjacent Caldera de Taburiente National Park. Other physical characteristics of the site are relatively favorable. Alternate sites at ORM are also possible for the proposed ATST Project siting, each exhibiting other constraints and benefits.

¹ ORM and the Teide Observatory, located on the island of Tenerife approximately 60 miles to the East of La Palma, constitute the European Northern Observatory consisting of institutions from 19 countries including Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Poland, Portugal, the Republic of Armenia, Russia, Spain, Sweden, Taiwan, Ukraine, the United Kingdom, and the United States (NASA, 2005).

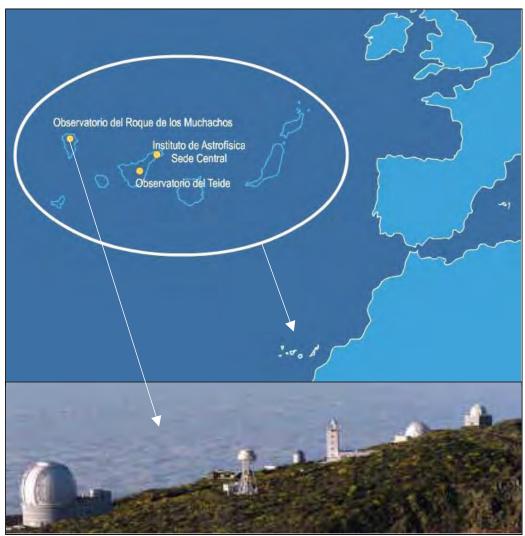
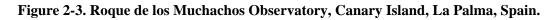



Photo from IAC website, Gallería de Imágenes.

Table 2-1. La	Palma Annua	l Hours of Ac	centable Seeing	and Sky Bright	ness.
1 abit 2-1, La	i I anna Annua	I HOULS OF AC	ceptable beenig	and ony Dright	11035.

Requirement	La Palma
200 annual hours of excellent seeing	225 - PASS
480 annual hours of sky brightness less than 25 millionths of the brightness of the solar disk	384 - <i>FAIL</i>

Figure 2-4. ATST Test Tower at Roque de los Muchachos Observatory.

La Palma - Environmental Issues

As previously stated, the La Palma site was tested for two years. During this period, this site was considered for site-specific design requirements, logistical requirements of bringing the project to La Palma and environmental effects that may result or that may be mitigated through planning, consultations, or design modifications. These occurred concurrently with site testing and continued into the initial planning phase. A complete preliminary assessment was conducted including a detailed consideration of utilities, access, construction requirements, seismicity, weather, physical features, and costs. This study is also available on the Internet at: http://atst.nso.edu/files/docs/RPT-0031.pdf. Six key environmental concerns were identified in consideration of the La Palma site for ATST.

1. Visual Effects

The adjacent Caldera de Taburiente National Park is a popular tourist attraction with numerous hiking trails and scenic viewpoints. The view of the telescope from within the Caldera, and especially from a specific peak called the Cumbrecita, is a particular concern. By statute, the height of the ATST structure would have to be low enough that the rim of the Caldera shields it from public view from the Cumbrecita. The Spanish government has jurisdiction over the National Parks (Instituto Nacional para la Conservación de la Naturaleza [ICONA]) and the entire ORM property. ORM is in the Peripheral Protection Zone for the Caldera de Taburiente Park. A ruling by a Federal agency (ICONA), dictates that observatory structures will not be visible from the Cumbrecita.

At the La Palma site, the telescope would be visible at Cumbrecita if it were constructed where the test tower was placed. However, moving the telescope farther downhill and further west, to place it behind a higher point in the caldera rim, could have addressed visibility if the height of the structure were not increased. The conditions at the site that were tested and characterized would probably pertain to a nearby site given that this would be a relatively minor relocation. However, ground level thermal considerations discussed below in the Technical or Scientific Restraints paragraphs (Turbulence, item 3) suggests that to achieve the same seeing quality at La Palma, an additional 10 meters (32.8 feet) of height would need to be added to the ATST building structure.

2. <u>Effect of Utility Infrastructure</u>

The proper treatment and disposal of wastewater is of particular concern at ORM because the groundwater and streams farther down the mountain are considered to be ecologically sensitive.

3. <u>Topography</u>

Due to the slope of the ORM complex and proposed and alternate sites considered for placement of the ATST facility, **cut and fill excavation** would be required to create a suitable level surface for ATST infrastructure. **This approach** would require the excavation of about 9,000 cubic yards of material, primarily composed of loose volcanic cinder and fractured volcanic rock.

4. <u>Intensity of Site Use</u>

Increased traffic, personnel, and visitors, and their effect on the local environment, would be a concern.

- 5. <u>Endangered or Threatened Species</u> Although this was an initial concern, studies showed that there are no endangered or threatened species of animals or plants in the area affected by the proposed site.
- 6. *Cultural Resources*

Although this was an initial concern, studies showed that there are no known archeological or culturally important features in the area that would be affected by construction of the proposed ATST Project.

La Palma - Logistics

The government of Spain owns the ORM compound. The international scientific community established an Agreement on Cooperation in Astrophysics to allow development and observations at ORM. Each institution enters into a signatory agreement with the IAC, thereby becoming a fully participating member of the International Scientific Community adhering to stipulated protocols set forth by this committee. Each project negotiates the terms, site uses, and compensation (such as percentage of observing time) afforded to Spain in return for providing the site. While siting **the proposed ATST Project** at ORM would not require a new land acquisition or lease, official authorization would require unanimous consent of the International Scientific Committee in accordance with the provisions of the Protocol on Cooperation in Astrophysics. Construction at ORM would also require a building permit issued by the Municipality of Garafia. The permitting process would take approximately six to eight months and, aside from preparation costs, a fee **would be** charged amounting to approximately four percent of the projected building construction cost.

La Palma - Technical or Scientific Constraints

Viability is determined independently of logistics, feasibility, political preferences, environmental effects constraints, or socioeconomic conditions. Viability, in the spirit of the National Environmental Policy Act (NEPA), is determined based on whether a site would reasonably meet the project purpose and need. At La Palma, there are four key constraints that prevent this site from meeting the purpose and need of the proposed ATST Project as stated in Section 1.4-Project Summary.

1. <u>Dust</u>

The air at the La Palma site contains substantial amounts of dust due in part to high altitude and windblown Saharan dust. The presence of this dust has two effects: 1) scattered light from the airborne dust increases the sky brightness, and 2) dust collects on the telescope and its optics, reducing their performance and increasing scattering. The dust issue cannot be mitigated and directly affects the operational capability of the ATST, particularly for studies of the corona. Dust measurements made at La Palma and Haleakalā are summarized in Vol. II, Appendix J(3)-Haleakalā vs. La Palma Dust Comparison. The specific ramifications of substantially higher dust content are:

- a. More frequent cleaning of the optical surfaces resulting in more rapid degradation of the optical coatings,
- b. More frequent recoating of the optics. Re-coating requires removal and transport of the delicate and expensive optics to an aluminizing chamber and subsequent reinstallation in the telescope,
- c. Increased down time of the facility because of the recoating required and increased risk to the optical components. It is impractical to maintain spares of all of the optics, so a catastrophic event associated with cleaning or re-coating would result in a protracted down time for the entire telescope, likely extending for a year or longer; and,
- d. Cleaning and recoating optics increases the annual operations cost and risk and decreases the observing efficiency by reducing the total amount of time available for science.

2. <u>Sky Brightness</u>

The solar corona, the outermost region of the solar atmosphere, is composed of extremely diffuse and hot gas. The corona is very faint relative to the solar photosphere, the apparent surface of the Sun. High quality observations of the corona are then extremely difficult because light from the photosphere must be blocked from entering the telescope. Photospheric light is scattered by dust particles in the earth's atmosphere (and on the telescope's optics) makes the sky adjacent to the corona of the Sun appear bright and swamps the coronal light. Successful coronal observations therefore require a dark daylight sky. During periods of elevated dust levels, the atmosphere above La Palma results in a sky brightness that precludes coronal observations. The abrasive Saharan silica dust has an unknown effect on mirror optical coatings but would certainly increase scattering of light from the optics. As there is no significant record of solar coronal observing done from La Palma, it is unclear whether the low-scattering condition of the coated mirror optics could be maintained even at times other than the periods of extreme Saharan dust-induced telescope closure. High dust levels are present during about three months of the year, making it impossible to obtain simultaneous coronal measurements with space-based experiments, one of the primary considerations in the Astronomy Decadal Survey.

The sky brightness frequently exceeds the maximum level that can enable observations of the corona. Specifically, sky brightness requirements are only met at La Palma less than 480 hours

per year, the threshold established by the SSWG as derived from the science goals (SSWG Final Report, Fig. 10.21). This factor alone would render the La Palma site as insufficient to meet the coronal science goals of ATST.

3. <u>Turbulence</u>

Turbulence in the Earth's atmosphere coupled with temperature variations in the column of air above the telescope blurs the telescope's images. This phenomenon is familiar to anyone who has seen shimmering images over a campfire or a hot highway. In the parlance of astronomy, this results in "bad seeing." Although the seeing above La Palma is generally good, in order to mitigate the bad seeing introduced by ground level turbulence, a La Palma ATST would have significant height requirements. The telescope could be situated above the ground level turbulence by establishing the height of the telescope approximately 10 meters (32.8 feet) above the nominal height in the current design. This would place the center of the telescope at 38 meters (124 feet 8 inches) above the ground, and the overall height of the structure would be 53 meters (173 feet 10 inches) (SSWG Final Report, Appendix 13.10). The 10 meters (32.8 feet) of height above the nominal height in the design would result in a site-specific construction cost increment of over \$4M above that required for the nominal design and degraded telescope performance due to increased wind-induced telescope vibration resulting from a lower resonant frequency. The telescope and its support pier can be thought of as one tine of a tuning fork. A longer tine produces a lower frequency tone at its resonant frequency, whereas a shorter one produces a higher pitched tone. In order to maximize the telescope's mechanical performance, one wants a stiff structure with a high resonant frequency. Reducing the resonant frequency of the telescope mount reduces its ability to track the Sun's motions without jitter introduced by vibrations from wind buffeting and coupling of other vibrations due to systems in the building, nearby traffic, etc. The effect of this degraded performance is to blur the images due to telescope vibration. So, increasing the height of the telescope above the ground layer turbulence in order to improve the image quality would have the attendant effect of reducing the image quality from vibrations.

4. <u>Atmospheric Stability</u>

In order to study the temporal evolution of active regions on the photosphere or gas motion in the corona and chromosphere (the atmospheric layer between the photosphere and the corona), the atmospheric conditions of the telescope site must be stable over the time periods on which the evolution occurs. This requires long periods of low turbulence, clear and dark skies.

La Palma offers excellent high elevation "seeing" capabilities (rating a *PASS*, as shown on Table 2-1), which could be realized by increasing the height of the telescope to reduce turbulence (but at the expense of compromised mechanical performance and financial cost). This potential excellent seeing, however, is offset by sky brightness, facility closures during prime dust periods (particularly in the summer months), the requirement for closures for maintenance and cleaning of the mirrors as a result of dust accumulation, risk of damage to the optics, and degraded telescope performance. These factors cannot be mitigated.

La Palma was deficient in meeting the required level for one of the primary science criteria — **sufficient** available hours of dark daylight sky close to the edge of the Sun's limb (the "limb" of the Sun is defined as the edge of the Sun's disk). These findings are summarized in Table 2-1.

La Palma - Conclusion

As explained in Section 1.4.2-Purpose of the Project, there are three primary objectives of the ATST telescope that must be met:

Objective 1: The ability to efficiently observe the solar atmosphere at or near the diffraction limit of the telescope (in other words when turbulence in the atmosphere is minimal).

- **Objective 2:** The ability to efficiently observe the faintest outer layers of the solar atmosphere, the corona, adjacent to the very bright photosphere.
- **Objective 3:** The ability to observe the solar atmosphere at wavelengths from visible through midinfrared wavelengths.

These three broad objectives define the purpose of the proposed ATST Project. By establishing the height of the telescope at 38 meters (124 feet 8 inches) above the ground level, turbulence could be mitigated and Objectives 1 and 3 could be met to an adequate level. Objective 2, however, <u>could not be met</u> and would result in the coronal science objective being irrevocably compromised. Thus, the coronal science objectives for the proposed ATST Project would be effectively rendered unattainable.

In addition to its adverse and irrevocable atmospheric effect on coronal science, dust from the Sahara would add substantially to telescope down time, both for protecting and cleaning telescope optics and components. The risk of damage to the primary mirror and other optical surfaces due to the required frequency of handling the optics for protection, cleaning, and recoating is of concern. Given the degrading effects that Saharan silicates could produce on a soft optical coatings and the resulting effect on scattered light, building and maintaining a coronagraph, or other instruments with exposed mirrors and lenses, is problematic at the La Palma site. The required height of the facility to overcome the disturbed atmospheric ground layer would impact the performance of the telescope and is incompatible with view plane restrictions at the site.

These La Palma site-specific constraints and requirements result in impacts on the science capability and efficiency, the construction, operation, and maintenance of the facility, and increase project and operational risk. They further result in unique site-specific costs while delivering significantly reduced science output. Given the site-induced constraints on the fraction of time available for solar science, ignoring the impacts on building and operating the facility, it has been determined that siting the telescope on La Palma would alter the objectives and goals of the **proposed** Federal project now under consideration in such a way as to no longer reasonably meet the purpose and need. Combining the loss of solar science, the impacts on the risks for the success of the **proposed** ATST Project, and the operations of the facility leads the NSF to determine that La Palma is not an acceptable site for the proposed ATST Project and **pursuit of it as a scientifically viable site is not warranted.** Hence, it is not considered further in this evaluation.

2.3.4 Big Bear Lake, California

Big Bear Solar Observatory (BBSO) is shown in Figure 2-5 with its ATST test tower. The results of site testing at Big Bear Lake are summarized in **Table 2-2**. BBSO is located in the mountains near San Bernardino on the north shore of Big Bear Lake in southern California. Three towns are within ten minutes of BBSO, including Big Bear Lake, Big Bear City, and Fawnskin. Various California State highways access this region; all are well maintained and adequate for any type of vehicle. The New Jersey Institute of Technology operates BBSO, which is located at the end of a narrow causeway running about 800 feet into Big Bear Lake. The test tower for ATST, as discussed in Section 2.2-Site Selection, is also located on this causeway.

Requirement	Big Bear Lake
200 annual hours of excellent seeing	136 - <i>FAIL</i>
480 annual hours of sky brightness less than 25 millionths of the brightness of the solar disk	2 - FAIL

Table 2-2. Big Bear Lake Annual Hours of Acceptable Seeing and Sky Brightness.

Figure 2-5. Big Bear Solar Observatory and Test Tower.

Two sites in the vicinity of BBSO were considered for this project: (1) on a widened section of the existing causeway or (2) on a branch off the causeway with a site at the end. In either case a predominant wind from the west would give preference to a western position. There is also an onshore support compound adjacent to the lake and causeway with space for additional development for ancillary facilities.

Big Bear Lake - Physical Characteristics

The proposed project considered at Big Bear Lake was **the creation of** a new telescope site either on the existing manmade causeway or **on a currently non-existing** branch **that would extend from the existing** causeway into the lake. This would require developing a cofferdam around the site, dewatering pumps to keep the site dry, and extensive dredging and excavation. The seismic risk at this site is high and heightened by development on a lakebed. Seismic loads in both the building structure as well as the telescope and support equipment were considered in the evaluation of the site-specific design requirements.

<u> Big Bear Lake – Potential Environmental Effects Issues</u>

The Big Bear Lake site was evaluated for two years during onsite testing. Also considered were the sitespecific design and logistical requirements of bringing the project to BBSO, and environmental effects that may result or that may be mitigated through planning, consultations, or design modifications. A complete initial study was conducted, including a detailed consideration of utilities, access, construction requirements, seismicity, weather, physical features, and costs. This study is available on the Internet at: http://atst.nso.edu/files/docs/RPT-0031.pdf. Four key environmental concerns were identified in consideration of the Big Bear Lake site for ATST.

1. <u>Wildlife</u>

Big Bear Lake supports a wide variety of wildlife, one specific example being the bald eagle, a former endangered species that is currently listed as threatened. Surveys have shown that the

north shore area is reportedly not in the designated nesting or perching area for the bald eagles known to frequent the area.

- 2. <u>*Fishing*</u> Big Bear Lake is considered a premier fishing lake for rainbow trout, bass, and other game fish.
- 3. <u>Cultural and Archaeological Resources</u>

The lake is not likely to contain many cultural and archeological resources; however, the onshore area may require surveys.

4. <u>Visual Resources</u>

The existing observatory is a prominent feature seen from all areas of the lake, and because of its long-standing presence, it is accepted by local residents. However, the required size, height, and color of the new observatory may be an aesthetic concern.

Most of these issues could be mitigated or would otherwise not be considered significantly adverse.

Big Bear Lake - Logistics

This existing causeway and entire lake area is owned by the Big Bear Municipal Water District. The onshore support compound and buildings are owned by the California Institute of Technology. Land and existing space would remain in the ownership of these two entities; however, new leases or an amendment to existing leases would be required with both groups.

To construct ATST at Big Bear Lake, approval would be required by at least five government authorities:

- 1. San Bernardino County Building and Safety Division building permit and conditional use permit.
- 2. U.S. Army Corps of Engineers Section 404 of the Federal Clean Water Act permit for the discharge of dredged or fill-materials into U.S. waters, which includes Big Bear Lake.
- 3. Big Bear Municipal Water District Shore Zone Alternation Permit required for any alteration to the lakebed or shoreline.
- 4. California Regional Water Quality Control Board certification ensuring that any discharge into the lake complies with established water quality standards, as stipulated under Section 401 of the Federal Clean Water Act.
- 5. California Department of Fish and Game consultation and review to ensure effects on wildlife in the area and recreational uses of the lake are minimized. A similar consultation at a Federal level may also be required.

Big Bear Lake - Technical or Scientific Constraints

As explained under the La Palma discussion (Section 2.3.3-La Palma, Canary Islands, Spain), viability is determined by whether the site would reasonably meet the purpose and need of the project. The La Palma discussion further summarizes the key objectives defining this purpose and need. **Table 2-2** identifies the results of the testing done at the Big Bear Lake site. Based on the studies and evaluations, there are two key constraints in meeting the project objectives:

1. <u>Sky Brightness</u>

The dark daylight brightness typically exceeds the maximum level required for observations of the solar corona (SSWG Final Report, Fig. 10.21). Specifically, sky brightness requirements are only met at Big Bear Lake far less than 100 hours per year, thus not meeting the 480 hours per year observational threshold set by the SSWG. This factor alone would render the Big Bear Lake site insufficient to meet the coronal science goals of **the proposed ATST Project**.

2. <u>Uninterrupted Observing Time</u>

High quality observations depend in large part on uninterrupted blocks of time (at least a twohour time duration) during which atmospheric conditions are stable and good (i.e., low turbulence, stable atmosphere, clear sky, scattering, further discussed in Vol. II, Appendix J(2)-Supplemental Discussion of the Constraints of Solar Science Development). An adequate observing scenario at a site that would meet ATST requirements would result in a *PASS*. Such periods are extremely rare at Big Bear Lake (SSWG Final Report, Tables 10.2 and 10.5). This would reduce the potential for achieving any of the three project objectives listed under Section 2.3.3-La Palma, Canary Islands, Spain, and would virtually eliminate Objective 2 (coronal observations).

The two deficiencies for Big Bear Lake that would most impact the primary science output are insufficient hours of highest resolution seeing and insufficient available hours of dark daylight sky close to the Sun's limb. These unacceptable levels for high quality observations both for annual required hours of good seeing and dark skies are summarized in Table 2-2.

Big Bear Lake - Conclusion

Similar to the situation at the La Palma site, the Big Bear Lake site exhibits sky brightness that exceeds acceptable levels for observing the solar corona. More specifically, sky brightness requirements are only rarely met at Big Bear Lake. This factor alone would render the Big Bear Lake site as insufficient to meet the coronal science goals of **the proposed ATST Project**. Furthermore it is quite rare to get uninterrupted stable conditions for high resolution observations at Big Bear Lake that enable the highest priority science of ATST (in other words, as shown with *PASS* or *FAIL* on Table 2-3). Both of these constraints render the Big Bear Lake site insufficient for meeting the purpose and **need of the proposed ATST Project**, and, therefore, the NSF determined that Big Bear Lake is not an acceptable site for the proposed ATST Project. Accordingly, because the Big Bear Lake site did not meet the purpose and need of the proposed ATST Project, it is not considered further in this FEIS.

2.3.5 Summary of Site Selection Process

After the site selection process refined the original list of 72 potential sites to six, those six were instrumented for further, detailed study (Section 2.2-Site Selection). Based on the results of those tests, three sites were clearly deficient and were eliminated. The three remaining sites were studied in more detail — Big Bear Lake (California), Haleakalā (Maui, Hawai'i), and La Palma (Canary Islands, Spain). Upon review of the site survey final report, the NSF identified notable reductions of the primary science output were identified for two of the candidate sites, La Palma and Big Bear Lake. The two deficiencies that would most impact the primary science output are substantially insufficient hours of highest resolution seeing and insufficient available hours of dark daylight sky close to the Sun's disk. These unacceptable levels of hours for high quality observations at the Big Bear Lake and La Palma candidate sites are summarized in Table 2-3.

Requirement	Big Bear Lake	Haleakalā*	La Palma
200 annual hours of excellent seeing	136 - <i>FAIL</i>	399 - <i>PASS</i>	225 - PASS
480 annual hours of sky brightness less than 25 millionths of the brightness of the solar disk	2 - FAIL	1004 - <i>PASS</i>	384 - <i>FAIL</i>

* Haleakalā is included in the table for reference, and as shown meets both the criteria for the primary science output — annual required hours of good seeing and dark skies.

The process for identification of scientifically viable sites set forth above was not intended to select one specific site. When the process started, it was unknown whether the application of the scientific criteria developed by experts in the field would ultimately result in the identification of one site, no sites, or multiple scientifically-viable sites. Because it was unknown which, if any, sites would meet the science requirements necessary to fulfill the purpose and need of the proposed ATST Project, NSF did not begin its formal environmental reviews under NEPA and the National Historic Preservation Act (NHPA) until after it was determined whether there were any scientifically-viable sites. It should be noted, however, that during the two years that on-site testing occurred at the various sites, potential environmental effects for project planning purposes were indeed evaluated and considered. Examples of that initial evaluation are set forth in Section 2.3.3 for the La Palma site and Section 2.3.4 for the Big Bear Lake site. The extensive process for identifying scientifically-viable locations for the proposed ATST Project outlined above resulted in two sites located within HO. Again, the result could have been that there were no scientifically-viable sites or multiple ones, but in this case, it turned out that the only scientifically-viable locations were within HO, which formed the basis for the two action alternatives carried forward in NSF's NEPA process.

During the June 2009 SDEIS Public Comment Hearings, a comment was submitted asking what effect the Kilauea volcano emissions of sulfur dioxide (SO_2) might have on seeing. In response, the Haleakalā summit is a superb astronomical site because it is usually above the tropical atmospheric inversion layer. This means that convection normally does not penetrate from below to disturb the seeing or to bring low-level aerosols into the summit line-of-sight to the Sun. On-going summit measurements of the Sun thus far have not been disturbed by the relatively gentle Kilauea SO_2 emission. A major eruption has the potential for introducing aerosols higher into the atmosphere, but the ATST system is designed to study the long-term solar cycle changes and these goals would not be affected by episodic eruptions, even lasting a few years. Note also that if the proposed ATST Project is approved, the ATST would potentially begin looking at the Sun in 2017 at the earliest.

Upon selection of Haleakalā as the proposed site, the procurement process was initiated in January 2005 to identify an environmental engineering company to provide support for the EIS process and related cultural studies and consultations. Several firms responded to this opportunity. After in-person visits to the companies, evaluation by a source-selection committee and negotiation, a contract was awarded in June 2005 and work began on the EIS and National Historic Preservation Act (NHPA) Section 106 historic/cultural resource investigations. A Cultural **and Historical** Resources Evaluation **and Traditional Practices Assessment** (Vol. II, Appendix F(1)) was prepared and pre-consultation and scoping meetings were held.

2.4 Description of the Proposed ATST Project at the Mees Site

The proposed ATST Project would construct and operate a reflecting Gregorian-type telescope that would deliver images of the Sun and the solar corona to instrument stations mounted on the telescope and on a rotating platform located below the telescope. The proposed ATST facilities would include:

- 1. The observatory facility, which includes the telescope, its pier, and the rotating instrument platform,
- 2. The telescope enclosure,
- 3. The Support and Operations Building (S&O Building) adjacent to the observatory,
- 4. A Utility Building attached to the S&O Building by an underground utility chase,
- 5. Parking for the facility as a whole; and,
- 6. Modifications to the existing MSO facility.

The entire facility would include approximately 43,980 square feet of new building space (including the telescope enclosure), within a site footprint of 0.74 acres. Figure 2-6 shows the layout of the site of the proposed ATST Project and Figure 2-7 provides an aerial rendering.

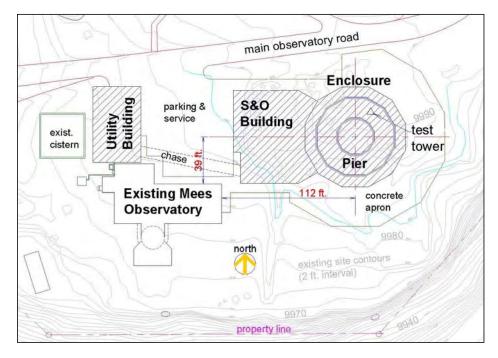


Figure 2-6. Proposed ATST Project at the Mees Site.

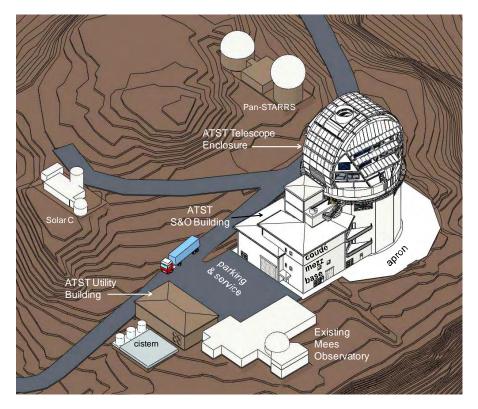


Figure 2-7. Aerial Rendering of Proposed ATST Project.

2.4.1 Features of Infrastructural Design

This section discusses the design features of the proposed infrastructure. Supplemental information is provided in Vol. II, Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure.

To achieve the image resolution dictated by the science requirements, the primary light-collecting mirror (M1) of the telescope would require a minimum clear aperture diameter of 4 meters. The distance between the M1 and the secondary mirror (M2) — the overall length of the telescope mount — together with the M1 diameter and off-axis mounting, effectively establishes the swing radius and the required dimensional clearance of the telescope (in altitude and azimuth) and the size of the enclosure required to protect it. These parameters are fundamental to the determination of the necessary height and width of the telescope enclosure.

Following the selection of the Haleakalā site and the consideration of the typical variation of turbulence with height above the ground, the proposed height of the telescope — defined as the distance from ground level to the rotational center of the telescope — was established to be 28 meters (92 feet). This was determined to be the minimum height at which the image resolution required to meet the specified science goals could be achieved. This would dictate an observatory structure that is 43.5 meters (142.7 feet) in height and 25.6 meters (84.0 feet) in diameter.

The S&O Building would be a multi-story structure attached to the lower enclosure, which accommodates observing-related activities that require direct adjacency to the telescope. It would contain a large docking bay with a 20-ton crane, equipment and equipment storage, telescope maintenance facilities, offices and workrooms, laboratories, and the control room for the telescope. The S&O Building would also contain the large-scale platform lift (elevator) needed to move telescope parts between levels. The equipment in the building would include a hydrostatic oil pump, hydrostatic oil tank, helium compressor, vacuum pump, and liquid nitrogen tanks.

The Utility Building would be a rectangular, steel-framed, metal structure that would provide space for mechanical and electrical equipment that requires complete thermal and vibration isolation from the telescope. The Utility Building would be connected to the S&O Building by an underground utility chase. A preliminary list of the equipment to be housed in the Utility Building includes: a 300 KVA generator and associated automatic transfer switchgear, an 80-ton low-temperature chiller, a 15-ton very-low-temperature chiller, a 10-ton heat pump condenser unit, 2 ventilation fans, an air compressor, a vacuum pump, and 3 uninterruptible power supply units. Because this equipment generates significant levels of audible noise, sound-abatement devices would be built into the equipment, and the walls and roof of the Utility Building would incorporate effective sound blocking materials. An electrical transformer and 3 ice storage tanks would be located outside, adjacent to the Utility Building.

Additional facilities associated with the telescope facility would include the following. (See Vol. II, Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure for more details on these utilities features.):

- 1. A grounding field consisting of a series of shallow trenches around the facility and fanning out to the south of the S&O Building filled with conductive concrete or coke breeze (a granular material with high conductivity) to safely provide an electrical ground for the observatory, which is in an environment with a high risk of lightning strikes.
- 2. A wastewater treatment plant with a capacity of 1,000 gallons/day and an associated infiltration well, designed in compliance with Hawai'i Department of Health regulations.
- 3. A stormwater management system including gutters, catchment drains, an underground tank, and pipes connecting it to the cistern at the MSO facility.

- 4. A new electrical transformer next to the Utility Building.
- 5. A diesel generator for use in case of power outages.

With the exception of the Utility Building, the rest of the proposed ATST facility would be white in order to reduce heat absorption, which would adversely affect telescope operations by heating the adjacent air and thereby introducing turbulence that would degrade the seeing. See Vol. II, Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure for further discussion on these features.

2.4.2 Potential Use of the Mees Solar Observatory Facility

The existing MSO facility is a 45-year-old concrete block structure of approximately 5,440 square feet. The building currently houses a telescope and connecting instrument rooms as well as offices, labs, a shop, kitchen, and restrooms. Early in the feasibility investigation for the Propose Action, it was suggested that utilizing some of the facilities in the existing MSO facility for the proposed ATST Project, would help reduce the need to construct new building space to support some of the construction and operational requirements. The IfA, the owner of the MSO facility, agreed to this potential shared use of building space, with the specific terms to be negotiated as the needs arise. This has allowed the ATST Project to reduce the construction of new enclosed building space, with commensurate reduction in the scope, duration, material delivery, site coverage and other parameters of the project that are inherently related to its overall scope.

The shop area of the existing MSO facility includes separate rooms for a generator and for material storage. This entire shop space would be reconfigured to serve as a general machine shop for both IfA uses and the proposed ATST Project. The generator would be removed (functionally replaced by a new generator in the Utility Building) and the partitions between the separate spaces would also be removed. The existing roof structure of the MSO facility shop area would require modification for a new higher roof with adequate dimension and structural strength to accommodate a 5-ton bridge crane. All of the demolition and reconstruction work would occur within the footprint of the existing building and on the north side of the building – away from the 'ua'u burrows to the south.

2.4.3 Construction Activities

The proposed ATST Project construction would involve land clearing, demolition, grading/leveling, excavation, soil retention and placement, construction, remodeling of the MSO facility, paving, and other site improvements.

Land Clearing

Minimal removal of vegetation would be necessary to clear the primary site for the proposed ATST Project. Existing vegetation is very sparse and no Federally-threatened 'ahinahina (Haleakalā silverswords, or *Argyroxiphium sandwicense*) or other protected species have been identified on the site (see Section 3.0-Description of Affected Environment). Land clearing would be done using bulldozers and other heavy machinery.

<u>Demolition</u>

Facilities to be demolished or removed would include:

- 1. The ATST test tower and foundations,
- 2. Tower and weather station belonging to IfA,
- 3. Driveway, parking area, and rock wall borders at the MSO facility,
- 4. MSO generator and other selective demolition at the MSO shop/utility area; and,

5. MSO facility underground cesspool. (Removal of the cesspool would require testing of the surrounding soil and possible remediation measures. Proper disposal of the cesspool, treatment of the soil, and all other aspects of this work would comply with applicable regulations of the EPA and the State Health Department.)

Demolition would be staged, beginning with the removal of the test tower and other on-site structures and continuing later with the interior work in the MSO facility after the proposed ATST structure is nearly complete. The exterior site demolition would require the use of bulldozers, dump trucks, bobcats, and other heavy machinery. The total duration of demolition activities conducted at different times during the course of the project would be approximately two months.

Grading/Leveling

The construction of the proposed ATST Project would require the creation of a level pad at least 20 feet wider in all directions than the base level footprint of the enclosure and the S&O Building. The critical nature of the structural bearing condition requires that the level area be achieved primarily by cutting or excavating rather than by a cut and fill approach. The proposed grade cut at this site would be at approximately the 9,980-foot contour elevation. This would be done using a bulldozer, backhoe, jackhammer, dump truck, and other standard heavy equipment. An estimated 2,500 cubic yards of soil and rock would be removed for leveling in order to prepare the site for construction. Figure 2-8 shows the extent of the leveling necessary for the proposed ATST Project. The duration of this activity would be approximately one month.

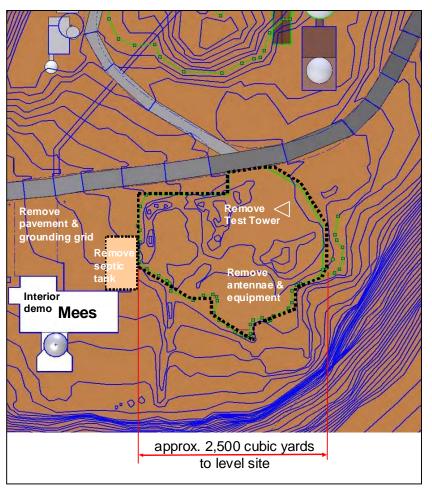


Figure 2-8. Grading/Leveling Footprint.

Excavation

Initial major excavation would include the required removal of rock and soil to accommodate the foundation systems of the telescope pier, the telescope enclosure, the S&O Building, the elevator and platform lift, the Utility Building, and the utility chase. This work would be done using bulldozers, backhoe, trencher, a truck-mounted augur for drilling down to bedrock, and a hydraulic hammer or jackhammers to break up large rock formations. Additional excavation would be needed in order to trench for utility lines, all of which would be installed underground. Approximately 2,150 cubic yards of soil would be excavated for construction purposes, for a total of 4,650 cubic yards when combined with the 2,500 cubic yards of soil removed during grading/leveling activities. The major structural excavation is expected to follow the leveling work and is anticipated to take approximately two months to complete.

Soil Retention or Repair Measures

Some soil retention and fill are likely to be advantageous to provide support for the extended apron around the base of the enclosure and at other non-structural fill areas. The retention would be achieved using on-site native rock to form a sloped rip-rap embankment. In some places, especially in the area where the existing cesspool is removed, there is an expected requirement for over-excavation, fill, and recompaction. In this area, and anywhere else that fill would be required, every effort would be made to utilize existing on-site soil. Any required importation of outside fill would comply with sterilization procedures and other required precautions against unintentional importation of invasive biological species.

Placement of Excess Soil and Rock

At an average volume of 20 cubic yards per truckload, approximately 250 truck trips would be necessary to relocate excess rock and soil. Native soils and rock would be spread on the hillside along the Main Observatory Road, approximately 328 feet west of the existing MSO facility. All native rock and soil removed from the site would be placed at locations within HO boundaries under supervision of a cultural monitor. The proposed placement areas are shown in Figure 2-9.

Soil Placement Area.

The primary site for locating excavated material would be within the HO boundary, most likely below the Faulkes Telescope facility. The material removed in the initial site leveling and structural excavation for the proposed ATST Project would be deposited in this location to a maximum thickness of about 6 feet at the east end, tapering down to be level with the existing site at the west end of HO property near the Federal Aviation Administration (FAA) facility. This new fill would be configured to maintain the established stormwater management flow paths for HO. An alternative location for excavated material that would be more efficient from an engineering perspective would be the open area to the southwest of HO as shown in Figure 2-9. This area would provide better erosion control for the southwest part of the cinder cone, however, use of this area would first require FAA approval.

Alternate Soil and Rock Placement Strategies

A significant percentage of the material that would be excavated from the site is expected to be in the form of large intact pieces of rock. Subject to approval by IfA, other HO tenants, and the Cultural **Specialist**, these large rocks may be placed at locations around the HO property. As an additional strategy for beneficial use of on-site soil material, sand and silt may be taken from the infiltration basin area to be utilized for backfill around the proposed ATST structures. This could potentially eliminate the need for imported backfill material and would also augment periodic removal of sand and silt that must be done to maintain the capacity and percolation of the infiltration basin to help reduce potential erosion.

Construction

To determine the extent of excavation and underground work required for the proposed ATST Project, a preliminary design for the telescope and enclosure foundations has been established. After presenting the overall design in public meetings **following** publication of the DEIS, it **became** evident from subsequent descriptions of the foundations by concerned members of the community, that this aspect of the proposed

ATST Project **had** not been well understood. This section **was** added in order to clarify the nature and dimensions of the proposed foundations.

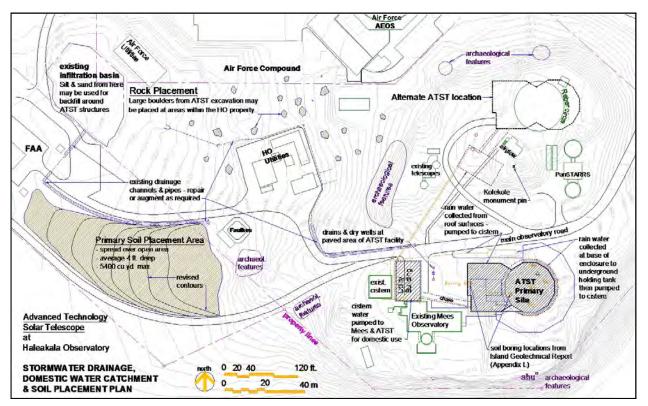
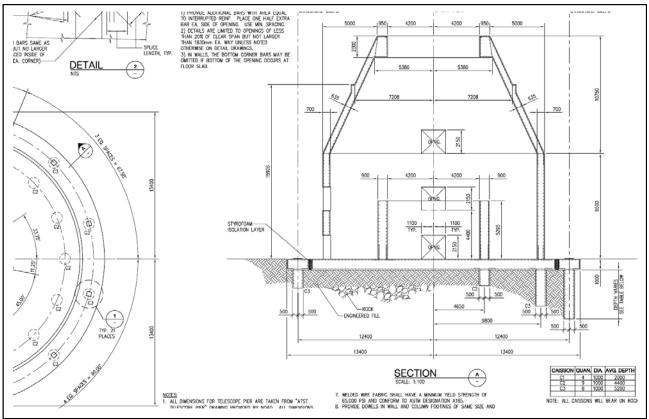
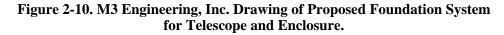
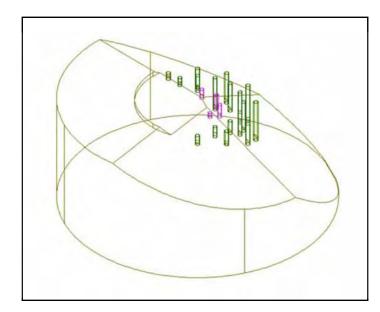



Figure 2-9. Most Efficient Soil Placement Plan for Stormwater, Erosion Control, and Water Catchment.

To determine the bearing capacity of the natural rock and soil, a geotechnical investigation was conducted and a Soils Investigation Report (Vol. II-Appendix K) was prepared by Island Geotechnical Engineering, Inc. (http://atst.nso.edu/contracts/Reports/CON-0014_IslandGeotech.pdf). Subsequent to that, M3 Engineering and Technology, Inc., a firm knowledgable in the design of telescope facilities, was contracted to review the Soils Investigation and recommend an appropriate foundation system for the proposed ATST Project on Haleakalā.


Figures 2-10 and 2-11 are from the M3 report. http://atst.nso.edu/contracts/Reports/CON-0017_M3.pdf. Their recommndation is for a concrete mat foundation approximately 1 meter thick supported from the solid basalt layer that underlies the site. Because the basalt layer is sloping, poured concrete caissons (underground columns) extending from underneath the mat down to the solid basalt layer would be necessary in some locations. A total of approximately 21 caissons would be required 1 meter (3 feet 3 inches) in diameter and of lengths varying from 2 meters (6 feet 6 inches) to a maximum of approximately 6 meters (20 feet). These caissons would be installed by drilling holes, using a truck-mounted auger, and then pouring concrete into the holes. No blasting or impact driving of piles would be done. Figure 2-12 shows the depth and location of the caissons in relation to the telescope pier, the enclosure, and the natural rock layer of the site.


In addition to this caisson/mat system, proposed ATST foundations would include relatively shallow (less than 1 meter deep) pad and strip footings for the building columns and walls. There would also be a utility tunnel 3 meters (10 feet) deep connecting the telescope enclosure to the utility building, and other utilities buried up to approximately 2 meters (6 feet) deep.

1. All dimensions are in millimeters.

Caissons are drilled-and-poured, underground, concrete columns extending down to solid rock layer.
 Abbreviations: Quan. – Quantity, Dia. – Diameter, Avg. – Average, Opng. – Opening, Eq. – Equal, Typ. – Typical.
 Other abbreviations and technical terms refer to internal reinforcing steel and are not material to this EIS.

Figure 2-11. Diagram of Caissons on Rock Layer.

Shows an abstract depiction of a portion of the rock beneath the site and the approximate distribution of the required caissons.

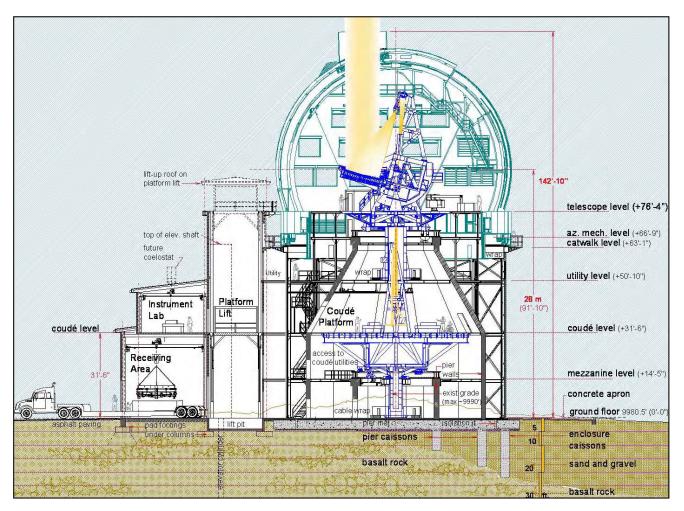


Figure 2-12. Proposed ATST Facility Section Drawing Showing Depth of Foundations in Relation to Building and Natural Rock

This is the extent of the anticipated underground installations for the proposed ATST Project. Concerns expressed by the community in public meetings, letters, and Internet sites describing a base that is five stories deep or foundations requiring blasting or pile driving are inaccurate.

The buildings would be constructed of steel, poured-in-place concrete, pre-cast concrete panels, manufactured siding and roofing panels, insulation, standard utility materials, and standard interior finish materials. After excavation, facility construction would require the use of trucks, lifts, concrete pumps, welders, pneumatic tools, and a 160-ton capacity mobile lattice-boom crane.

During construction, there would be no fencing of the construction site or contractors' storage areas. The construction crane and other tall lifting devices would be lowered at night and when not in use to avoid creating a hazard to flying birds and for personnel safety in the potentially high-wind environment. Existing roads at HO would continue to be open for traffic for other HO facilities. If barricading roads becomes necessary, it would be temporary (less than a day) and would be prearranged with other HO facilities. Some temporary road widening may be necessary to allow through-traffic during construction. The access road that leads from north of the MSO facility down to the main staging area would be reopened for use during construction. This would require removing rock and soil that is currently placed

at the entrance to the road as a surface water diverter. The diverter would be reconstructed after completion of the proposed ATST Project.

The foundations of the telescope and enclosure would be constructed concurrently with the excavation and concrete work required for the support facilities. The telescope pier would also likely be included in that early phase of work. The lower enclosure would be constructed concurrently with the steel erection and exterior construction work on the S&O Building. Following substantial completion of these activities, the on-site erection of the rotating upper enclosure would begin and would be completed over a period of approximately one year. Following this, the telescope mount would be erected, which is also anticipated to take approximately another year. These phases of construction would require the continued use of the staging areas, a large crane, and the other temporary construction facilities described above.

<u>Staging</u>

Following receipt of comments on the SDEIS from the FAA, the primary staging area has been revised to be on-site at HO. The space directly around the construction site would be utilized for staging and storage of only the essential construction facilities. Any activities requiring space-intensive staging would take place at the material manufacturers' facilities or other off-summit locations. On-site administrative space for contractors would be limited to shared work areas in one or two common job site trailers. Only the materials and assemblies required for immediate installation would be transported to the site, with limited availability of space for advanced stockpiling or storage of future required materials.

A more efficient and cost-effective alternative area for staging would be the open area southwest of the Faulkes Telescope which is approximately 0.9 acres (Fig. 2-13) and managed by the FAA. The majority of on-site construction materials and temporary facilities could be confined to this area. Contractors' trailers and storage containers, parking for large construction equipment and vehicles, lunch/break area for workers, roll-off dumpsters and other trash receptacles, portable toilets, and other temporary facilities normally needed for construction sites would be accommodated at this location. A large open area would be reserved for lay down and pre-assembly of large structural pieces or other staging activities that can be done away from the main site. At this time, however, the use of that area is neither approved nor allowed by the FAA. Therefore the site space around HO would likely be the primary staging area.

In order to limit construction traffic on the Park road and also to be able to continue work during petrel nesting periods at HO, the Project team has investigated the availability of off-site staging areas on Maui. The most likely possibilities are private ranch land properties in the Upcountry (Kula) area which would be leased from the owners for the duration of the construction period. While no specific site has yet been identified, the most likely possibilities are private ranch land properties in the Upcountry (Kula) area which would be leased from the owners for the duration of the construction period. Any such use of an off-site area for staging activities would **need to** comply with all applicable land-use regulations and all applicable permitting requirements.

Regardless of the off-site and primary on-site staging area strategy, space would also have to be reserved immediately adjacent to the construction site (Fig. 2-14). This would serve as maneuvering space for cranes and lifts, an unloading area for construction materials, a lay-down area for materials to be picked up by the crane, and a temporary parking area for concrete trucks and other vehicles. The areas identified at this site are the service area to the west of the S&O Building and the relatively flat area northeast of the enclosure and south of the road. The area south of the S&O Building and the MSO facility may also serve this purpose, if not otherwise occupied by the staging and storage requirements described above.

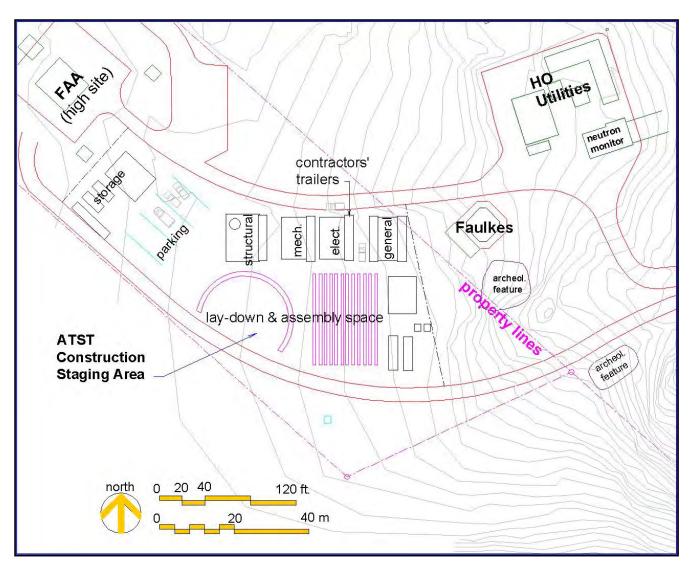


Figure 2-13. Alternative Construction Staging Area Configuration.

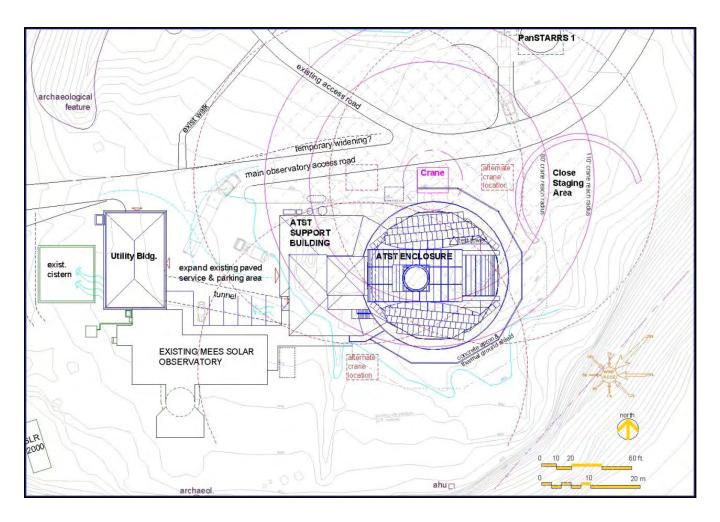


Figure 2-14. Staging Area in Close Proximity to Proposed Construction Site.

Construction Traffic

As a result of the public comment period that followed the publication of the DEIS and **subsequent** meetings with HALE, NSF agreed to assess the extent of construction traffic traversing through HALE. Early in the assessment process, HALE contracted with the Federal Highway Administration (FHWA) for field investigation and preparation of a study defining the current condition of the Park road and the extent of potential increased wear from construction traffic related to the proposed ATST Project. As a follow-up to that initial study, the FHWA recommended an additional Park road condition investigation. **The FHWA was contracted** to perform this additional work, which included borings of the existing pavement, Falling-weight Deflectometer testing, and a more thorough assessment of the drainage structures along the Park road. A report was prepared by the FHWA summarizing the findings of both the initial and follow-up investigations. That report was presented in the SDEIS and is included in this FEIS in Vol. II, Appendix P-FHWA HALE Road Report.

In cooperation with those studies, ATST Project engineers estimated the required use of the Park road by all vehicles during the course of construction, integration, and commissioning of the proposed ATST Project. This information was provided to HALE and FHWA for their reference in assessing potential effects. ATST project engineers have continued to refine that estimate based on logistical planning and discussions with contractors. The total number of truck and automobile trips that are anticipated to be

required over the 7-year construction, integration, and commissioning phases of the proposed ATST Project is approximately 25,000, as listed and described in Table 2-4.

				Vehicle Class ⁴	
Duration ⁶	Activities ⁶	Use of Park Road	FHWA	HI DOT	
3 months	Contract start-up,	Delivery of trailers and excavation equipment – 8 flatbed trucks.	9	3S-2	
	mobilization,	Test tower, cesspool, and other items removed -4 truckloads.	5	2D	
	demolition and	Pick-up trucks, vans – 360 roundtrips.	3	2P or 2S	
	clearing	Passenger vehicles – 360 roundtrips.	2	Р	
3 months	¹ Major earthwork	Exchange of equipment, approximately 6 large loads.	9	3S-2	
	and leveling,	Water for dust control – 30 tank trucks.	6	3X	
	utility trenching,	Soil testing support – 3 trucks.	3	2S	
	testing as required	Soil remediation support – 3 trucks.	5	2D	
		Pick-up trucks, vans – 360 roundtrips.	3	2P or 2S	
		Passenger vehicles – 360 roundtrips.	2	Р	
3 months	¹ Foundation	Drill rig and specialized equipment to site - 4 truckloads.	6	3X	
	excavation,	Concrete for caissons - approximately 15 truckloads.	7		
	drilling/pouring	Utility/electrical equipment pipe, cable - 5 truckloads.	3	2S	
	caissons, drilling	Pick-up trucks, vans – 360 roundtrips.	3	2S or 2P	
	for shafts, utility install	Passenger vehicles – 360 roundtrips.	2	Р	
3 months	Pouring	² Concrete delivery – 100 truckloads.	7		
	foundations,	Concrete waste removal – 3 truckloads.	6	3X	
	placement of	Rebar and embedded steel items - 5 truckloads.	5	2D	
	utilities	Utility materials – 6 truckloads.	6	3X	
		Pick-up trucks, vans – 360 roundtrips.	3	2S or 2P	
		Passenger vehicles – 360 roundtrips.	2	Р	
5 months	Pouring of	Concrete delivery – 170 truckloads.	7		
	telescope pier	160-ton crane delivered and erected - 2 large trucks.	10	3-3	
		Concrete pump and support – 6 trucks.	7		
		Concrete waste removal – 5 truckloads.	7		
		Rebar and embedded steel items – 10 truckloads.	5	2D	
		Scaffolding and concrete formwork – 30 truckloads.	7		
		Pick-up, vans – 600 roundtrips.	3	2S or 2P	
		Passenger vehicles – 600 roundtrips.	2	Р	
3 months	Completing slabs,	Approximately 50 truckloads of concrete.	7		
	pits and other	Concrete waste removal – 2 truckloads.	7		
	building concrete	Rebar and embedded steel items – 5 truckloads.	5	2D	
		Pick-up trucks, vans – 360 roundtrips.	3	2S or 2P	
		Passenger vehicles – 360 roundtrips.	2	Р	
5 months	Steel erection	Delivery of steel for building and lower enclosure - 10 flatbeds.	5	2D	
		³ Ancillary materials and equipment – 10 truckloads.	5	2D	
		Pick-up trucks, vans – 600 roundtrips.	3	2S or 2P	
		Passenger vehicles – 600 roundtrips.	2	Р	
3 months	Roof and wall	Approximately 20 truckloads of materials.	6	3X	
	panel installation	Ancillary materials and equipment – 20 truckloads.	7		
		Pick-up trucks, vans – 360 roundtrips.	3	2S or 2P	
		Passenger vehicles – 360 roundtrips.	2	Р	

Table 2-4. Anticipated Major Use of the Road for Construction of the Proposed ATST Project.

Table 2-4. Anticipated Major Use of the Road for Construction of the Proposed ATST Project (cont.).

			Vehicle Class ⁴	
Duration ⁶	Activities ⁶	Use of Park Road	FHWA	HI DOT
6 months	Dome framing,	Dome contractor's trailers and containers – 4 truckloads.	9	3S-2
	major utility	Delivery of upper enclosure structure - 10 large, heavy,		
	equipment	possibly wide loads on flatbeds.	12	2S-1-3
	installation,	Delivery of platform lift and elevator - 4 large loads.	4	В
	S&O, building	Delivery of building fixtures and materials – 20 truckloads.	9	3S-2
	interior	Ancillary materials and equipment – 10 truckloads.	7	
	construction	Pick-up trucks, vans – 720 roundtrips.	3	2S or 2P
		Passenger vehicles – 720 roundtrips.	2	Р
9 months	Enclosure work:	Delivery of enclosure cladding panels, plate-coil, and mechanical		
	cladding	equipment - 20 large, heavy, flatbed loads.	9	3S-2
	mechanical	Ancillary materials and equipment – 10 truckloads.	7	
	fit-up, testing	Pick-up trucks, vans – 1,080 roundtrips.	3	2S or 2P
		Passenger vehicles – 1,080 roundtrips.	2	Р
12 months	Telescope and	Telescope contractor's trailers and containers – 4 truckloads.	9	3S-2
	coudé rotator	Delivery of telescope assemblies to site - 20 large, heavy,		
	installation.	often wide loads on flatbeds ⁵ .	12	2S-1-3
		Construction crane other equipment disassembled		
		and trucked away from site – 6 truckloads.	7	
		Ancillary materials and equipment – 10 truckloads.	7	
		Pick-up trucks, vans – 1440 roundtrips.	3	2S or 2P
		Passenger vehicles – 1440 roundtrips.	2	Р
3 months	Finish site work:	Concrete delivery – 50 truckloads.	7	
	Paving of apron	Concrete waste removal – 3 truckloads.	7	
	and service yard.	Rebar and embedded steel items – 5 truckloads.	9	3S-2
	Concrete walks,	Asphalt paving materials and equipment – 10 truckloads.	9	3S-2
	finish utilities.	Water for dust control – 10 tank trucks.	6	3X
		Pick-up trucks, vans – 360 roundtrips.	3	2S or 2P
		Passenger vehicles – 360 roundtrips.	2	Р
6 months	Primary mirror	Delivery of primary mirror – 1 heavy, wide, slow moving flatbed.	12	2S-1-3
	and other optics	Delivery of coating chamber – 1 heavy, wide, slow, flatbed.	10	3-3
	coated and	Ancillary materials and equipment – 10 truckloads.	9	3S-2
	installed.	Pick-up trucks, vans – 720 roundtrips.	3	2S or 2P
		Passenger vehicles – 720 roundtrips.	2	Р
2 years	Integration	Delivery of materials – 204 truck trips.	6	3X
	Testing and	Pick-up trucks, vans – 2,920 roundtrips.	3	2S or 2P
	Commissioning	Passenger vehicles – 2,920 roundtrips.	2	Р
Annually	Operational life of	Deliveries – 15 truck trips.	6	3X
2	proposed ATST	Pick-up trucks, vans – 1,095 roundtrips.	3	2S or 2P
	Project	Passenger vehicles – 1,095 roundtrips.	2	Р

Table 2-4. Anticipated Major Use of the Road for Construction of the Proposed ATST Project (cont.).

			Vehicl	e Class ⁴
Duration ⁶	Activities ⁶	Use of Park Road	FHWA	HI DOT
NOTES:				
FHWA: Fede	eral Highway Adminis	tration; HI DOT; State of Hawai'i Dept. of Transportation		
 ¹ All excavated material is to remain on Haleakalā and would not be transported over the Park road. ² All concrete deliveries in this table assume 8 cubic yards of concrete per truckload. ³ Ancillary equipment and materials includes: lifts, scaffolding, special equipment and related installation items. ⁴ Vehicle class rating assumptions for vehicles are taken from FHWA Report (Table 11). ⁵ The exact dimensions and weights of potentially wide and heavy loads would not be fully determinable until contracts with vendors and fabricators are in progress. Limitations on maximum loads would be stipulated in their contracts. For this analysis, the ATST engineers have estimated that the maximum width of a load would not exceed 10 m (32 feet 10 inches) and the maximum weight would not exceed 40 tons, plus the weight of the truck. These estimates were conveyed to the FHWA to be factored into the Park road study. ⁶ Some of the activities described in the table have potential to generate noise or vibration between March and November. These activities would be curtailed or restricted during the 'u'au nesting and egg-incubation periods, as required by the mitigation measures identified in the USFWS Informal Consultation Document (Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document, 2007). The durations indicated here are approximations for the purposes of assessing the duration and intensity of the vehicular traffic and do not correlate to any specific calendar schedule. 				s analysis, the A to be er. These ation nal

Less than 800 of the anticipated vehicle-trips listed in Table 2-4 are by large trucks (FHWA class 5 and larger). The majority of the anticipated trips are by small pick-up trucks, vans and passenger vehicles, as required for the commuting of workers, small equipment or material deliveries, and passenger car traffic for inspection and supervision. During all phases of the proposed ATST Project, carpooling by workers to the summit would be mandated, to the maximum extent practicable, in order to minimize traffic effects and to address parking space limitations on the site.

Following the defined 5-year construction phase of the proposed ATST Project, the integration, testing and commissioning phase would extend for approximately two years, during which the anticipated traffic on the Park road would be limited to approximately 4 passenger vehicles per day, 4 pick-up trucks or vans per day and 2 truck deliveries per week. The total volume of large vehicle traffic (defined by the FHWA as Class 5 or larger) during the integration, testing and commissioning phase would be approximately 204 truck trips. Following that, and extending for the operational life of the project, the ATST-related use of the Park road would be approximately 3 roundtrips for a van shuttle per day, 3 roundtrips for passenger vehicles per day, 1 truck-trip per month for delivery of domestic water, liquid nitrogen, or diesel fuel for the generator, and 3 truck trips per year for occasional transportation of scientific instruments. Traffic during these phases is also included in Table 2-4.

HALE Entrance Station Clearance

During the investigation of potential road and traffic issues, the current configuration of the existing entrance station for HALE was identified as a restriction to wide truck loads. The conveyance of large unitary pieces of the ATST telescope, the primary mirror in its protective crate, and other constituent elements of the proposed ATST Project would require truck loads of up to 32 feet 10 inches in width. The HALE entrance station currently provides one paved driving lane approximately 12 feet wide on both the entrance and exiting sides, as shown in the top graphic of Figure 2-15.

Development by ATST engineers of alternative proposals for wider clearance and subsequent consideration by HALE staff identified a mutually preferred option to widen and improve the shoulder on the entry (uphill side) of the entrance station, as shown in the bottom graphic of Figure 2-15. This would consist of installing compacted fill and a gravel driving surface out to a maximum distance of approximately 12 feet beyond the existing paved roadway at the widest point, and tapering back to the roadway on each end, so as to provide a widened, drivable lane capable of supporting the widest and

heaviest of the anticipated ATST loads. Other requirements of this **proposed ATST** Project would include protecting underground utilities, relocating an existing light pole, upgrading utility pull boxes to withstand the anticipated loads, and other related work.

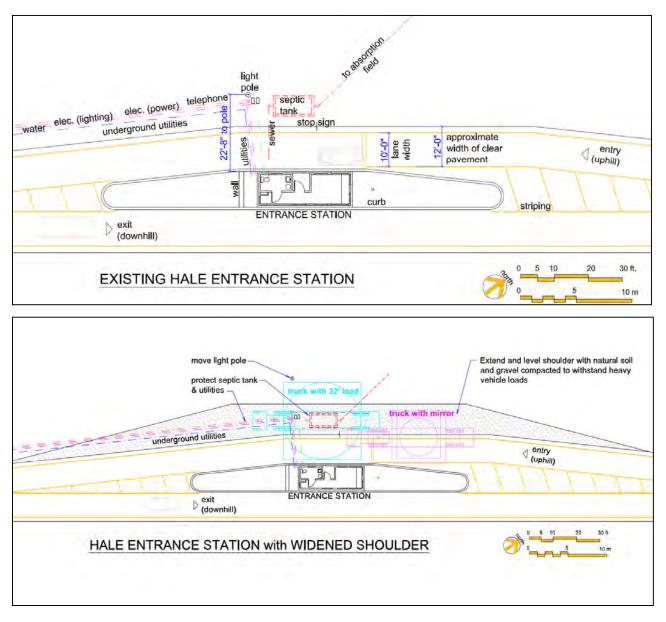


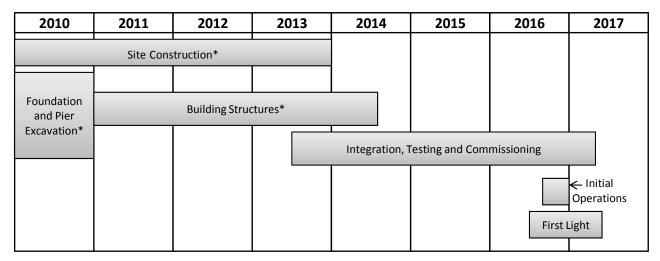
Figure 2-15. Existing HALE Entrance Station and Proposed Widened Shoulder.

Specific stipulations with regard to this entrance station work have been formulated by HALE staff and further elaborated by the ATST engineering team:

1. The ATST Project would assure that the septic system is adequately protected. Metal plate covers, grade beam structures or similar protective devices would be deployed. If protection proves impractical, relocation of the septic tank could be considered as an option.

- 2. The ATST Project would protect the existing utility man-hole covers, including the following measures:
 - a) avoid direct axle loading on the covers,
 - b) replace the existing covers with heavier gage steel; or,
 - c) reinforce the existing covers with additional steel bracing.
- 3. The ATST Project would ensure that the improved shoulder would be adequate for the heavy loads anticipated by ATST engineers.
- 4. Periodic maintenance of the widened shoulder area, such as recompaction, regrading, etc. as necessitated by settling, erosion, or washout, would be the responsibility of the ATST Project.
- 5. A barricade system, such as a gate, removable bollards or similar devices, would be installed by the ATST Project on the widened shoulder to deter Park visitors and staff from driving on it.
- 6. This area contains native plants and is nēnē (Hawaiian Goose) habitat. Widening of the shoulder would be completed outside the nēnē nesting season, which is November through March. Native plants would be protected when possible HALE staff would work with the ATST Project team on this.
- 7. When the widened shoulder is no longer needed for the proposed ATST Project, it would be required to be fully restored and rehabilitated. The ATST Project would consult with HALE staff and would review and approve the final restoration/rehabilitation plan.

Best Management Practices


A variety of best management practices (BMPs) (required practices established in the LRDP and policies reflecting public consultation during the EIS process) would be implemented during construction, in order to prevent damage to the natural **and cultural** environment. These BMPs would include the following:

- 1. Implementation of the Stormwater Management Plan (SWMP), specific to HO, which is included as Appendix L. This would include all BMPs in Sections 3.1 and 3.2 of Appendix L for recommended construction practices and stormwater control.
- 2. During construction temporary diverters and hard surfaces would be utilized to direct surface water flow to the existing stormwater drainage system. As soon as possible, permanent gutters and leaders would be installed on the buildings to capture rainwater and direct it to the underground cistern.
- 3. Portable toilets with containment tanks would be utilized during early construction work. As soon as possible, a permanent wastewater treatment facility would be installed, which uses aeration and biologically accelerated treatment techniques that achieve effluent standards acceptable for infiltration back to groundwater.
- 4. Cultural resources monitoring during all leveling and excavation activities in order to prevent damage to undiscovered cultural resources.
- 5. Using native soils to fill holes upon completion of construction, and replanting grounding trenches, other excavated areas, and soil deposition areas with native vegetation to prevent erosion.
- 6. Scheduling deliveries of concrete and other materials at times that minimize conflict with tourist traffic on the Park road to Haleakalā.
- 7. Using signage at the project site and along the roadways to ensure vehicle, pedestrian, and bicycle safety during construction.

8. Dust control would be done by watering the disturbed ground using non-potable water trucked to the site by the contractor specifically for that purpose. Potable water would not be used for dust control.

Proposed Construction Schedule

If approved, the earliest possible construction start would be during the Federal fiscal year 2010, which is October 1, 2009 to September 30, 2010. Excavation and construction of the foundations and pier would take place in the first year of construction (2010) and erection of the enclosure and building structures would follow in the second, third, and fourth years (2011 to 2013). Once the enclosure is in position, the telescope mount would be installed and the majority of the remaining work would be inside the buildings and enclosure. The optics, control systems, and instrumentation would progress toward the end of construction and into integration, testing, and commissioning of the various systems and instruments. The final phase of construction would be in full operation during 2017. Figure 2-16 shows a graphic timeline of these activities.

*Tasks related to these activities that have potential to generate noise or vibration between March and November would be curtailed or restricted during the 'u'au nesting and egg-incubation periods, as required by the **mitigation measures identified** in the USFWS Section 7 Informal Consultation Document (Vol. II, Appendix M).

Figure 2-16. Proposed ATST Construction Schedule.

2.4.4 Telescope Operation Activities

During the final stages of construction, including telescope and first-instrument commissioning, initial operation of the **proposed ATST Project** would begin. The first scientific use of the facility would mark a shift in priorities from telescope commissioning activities to early scientific observational priorities. The management and science teams would work together for a smooth transition, starting with this first scientific use of the telescope. A ramp-up of full operational support would begin during telescope integration and continue through final commissioning of the first major science instrument.

As the facility is staffed for telescope operations, construction staff on site would begin to decrease. Additionally, as new instruments become operational, more facility staff would be hired to conduct operations. Estimates indicate that an operations staff of approximately 20 people would be needed for telescope commissioning. This would be slowly ramped up over the final year of commissioning to the full operations staffing level, currently estimated at approximately 30 to 40 personnel on Maui. As with

other observatories at HO, the operations staff would be drawn from available local Maui personnel to the fullest extent possible.

Shift Schedule

The proposed daily schedule for operations would be dictated by solar observing hours from sunrise to sunset. Preparing the dome and telescope for observing would begin approximately one hour before sunrise and shutdown procedures would continue until approximately one hour after sunset. This observing day would likely be divided into two shifts of approximately six to eight persons to provide full support of observing activities. An eight-hour nighttime shift of four to six persons for maintenance work beginning approximately at sunset is also anticipated. These would make up the onsite crew. The remaining staffing would work offsite on Maui or at the NSO offices which are currently sited in Sunspot, New Mexico and Tucson, Arizona.

Transportation

During operation, ATST-related Park road traffic to the summit of Haleakalā is expected to be relatively minimal. There would be a van shuttle for observatory employees scheduled for approximately three trips per day, back and forth between the base facility in the Kula/Waiakoa area and the facility at HO. Additionally, there would typically be two to four separate passenger cars per day driven by staff or visiting observers making a round trip to HO and back.

Commercial service-vehicle traffic to support the operation of ATST is estimated to be an average of two round trips per week of vehicles up to Class 5 size. These would primarily be small trucks and vans of maintenance and service personnel. The frequency of these service-vehicle trips would be sporadic, with multiple daily trips occurring when repair or maintenance activities are in progress and extended periods with no such trips. Larger commercial vehicles, Class 6 and above, primarily for delivery of water, liquid nitrogen and other utility commodities would make approximately one round trip per month to HO in support of ATST operations.

This operations-level traffic would follow the initial 7-year period of the project and continue for the operational life of the facility. It is expected to be significantly lower in volume than the traffic related to the 7-year construction, integration and commissioning traffic, as described in Table 2-4.

Hazardous Materials

Operations at HO facilities sometimes require the use, handling, storage, and disposal of hazardous materials. These activities are performed in compliance with 40 CFR §260-299, Solid Wastes, and the Resource Conservation and Recovery Act (U.S. EPA, RCRA). Facilities within HO maintain various hazardous materials and waste plans as required by Federal guidelines and/or facility protocols, which outline procedures for handling materials and carrying out response measures in the event of a release or spill. A Hazardous Materials Management Plan specific to the proposed ATST Project has been prepared and is included as Vol. II, Appendix D-ATST Hazardous Materials **and Hazardous Waste** Management Program. Hazardous materials that would be used at the proposed ATST facility and their uses are shown in Table 2-5. The transportation of these materials associated with the proposed ATST Project also occurs along the Park road corridor and State roads leading up to the Park road. Transportation along these roads is, likewise, governed by the authorities set forth below.

The transportation of hazardous materials for the proposed ATST Project would be fully consistent with Title 49 CFR Parts 100-185 Hazardous Materials Regulations – Hazmat Transportation as prescribed by the Federal Department of Transportation. Only properly licensed companies and individuals would be contracted to transport hazardous materials. All materials would be in approved containers, clearly labeled as to the nature and quantity of material. Trucks would display diamond-shaped placards to identify hazardous materials as required. Material Safety Data Sheets (MSDS) for each hazardous material and/or chemical item transported would accompany all shipments. This information would be

readily available to the first responders at the scene of any potential spill to determine appropriate measures for protection and safety of the public and the environment.

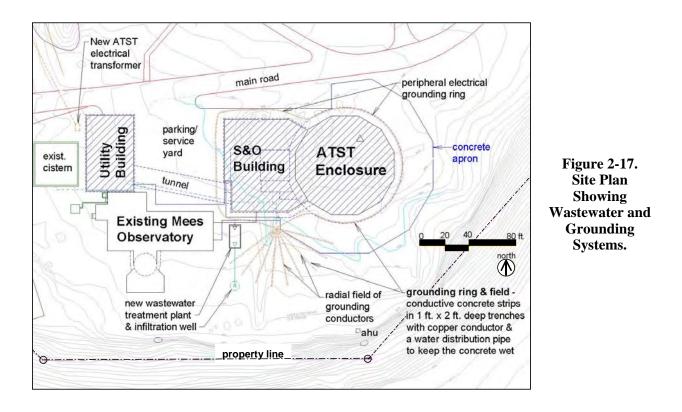
Operation	Hazardous Material	Volume	
	Green River (hydrochloric acid and cupric sulfate)	2.72 kilograms HCl 37 percent and 227 g CuSO4 5H2O, dissolved in 10 liters (2.5 gallons) of distilled water. None stored on site.	
Mirror stripping and	Potassium hydroxide	16 oz KOH pellets, dissolved in distilled water. None stored on site.	
cleaning (once every two years)	Nitric acid	3.2 kilograms (7 pounds) HNO3 70 percent, dissolved in distilled water. None stored on site.	
	Total stripping/ cleaning effluent	Approximately 1,000 gals, plus wipes.	
	Aluminum		
Mirror recoating	Silver	< 2 ounces. None stored on site.	
Wintor recounting	Silicon nitride		
	Nickel chromium		
Cooling/ heat transfer Propylene glycol Dynalene HC [®] heat-transfer fluid		Total volume of the cooling system is approximately 2,400 gallons diluted to 30 percent solution. The heat-transfer fluid propylene glycol or Dynalene HC [®] , is delivered in concentrated form. Approximately 10 gallons of this concentrate would be stored on site.	
Maintenance of telescope hydrostatic bearing system	Synthesized hydrocarbon-based hydraulic oil	1,400 gallons would be utilized and contained within the piping, tank, and other elements of the system installed in the enclosure and in the S&O Building	
Cooling instruments	Compressed (liquid and gaseous) helium and nitrogen	Approximately 1,000 gallons of liquid nitrogen would be stored and utilized on site. Less than 100 gallons of liquid helium would be utilized on site.	
Generator fuel	Commercial grade 1 diesel fuel	Approximately 200 gallons. Stored in on-site tank.	

Table 2-5. Hazardous Materials.

As described in Vol. II, Appendix D-ATST Hazardous Materials **and Hazardous Waste** Management Program, prior to transport, the materials would be prepared per:

- 1. 40 CFR 262.30 package per DOT 49 CFR 173, 178, and 179.
- 2. 40 CFR 262.31 label per DOT 49 CFR 172.
- 3. 40 CFR 262.32 mark each package in accordance with DOT 49 CFR 172 and 172.304.
- 4. 40 CFR 262.33 Placard or offer Placard to initial transporter in accordance with DOT requirements.

Transportation of the mirror stripping, cleaning and recoating materials and the effluent from this process would occur approximately once every two years. Transportation of the heat transfer fluid concentrate would occur as needed for replenishment of the system, approximately once per year. None of the mirror coating materials or heat transfer fluids is defined as hazardous under Title 49 CFR Federal Department of Transportation. Liquid nitrogen and helium would be transported to the ATST facility on a periodic basis approximately four times per year. In the event of accidental release to the outside air during shipment, these elements would immediately vaporize presenting no ecological or life-safety hazard. Synthesized hydrocarbon-based oil is expected to be transported to the site only during the construction phase for the initial fill of the system. The self-contained hydrostatic oil system is not expected to require any significant replenishment during operation. Diesel fuel for the generator would be transported to the site approximately once per month to refill the tank following periodic testing or use of the generator during power outages. Transportation of all these materials would be in containers and vehicles fully compliant with Title 49 CFR and other applicable regulations. Containment of spills during the transport of any of these materials would be in accordance with the ATST Hazardous Materials **and Hazardous Waste** Management Program (Appendix D) and the written requirements of the MSDS documentation accompanying the shipment. Given these safeguards and the relatively benign nature of these materials, their transport presents minimal potential for effects to the public, the natural environment, or cultural resources.


<u>Utilities</u>

Stormwater Management. Rainwater on roof and building surfaces and on the concrete apron around the enclosure would be collected and utilized as a source of domestic water for observatory operations. Gutters and rainwater leaders at the roof eaves and catchment drains around the enclosure would be piped to an approximately 40,000-gallon underground holding tank in the vicinity of the enclosure. From there it would be pumped to the existing on-site 64,000-gallon cistern that currently serves the MSO facility. This additional captured water would augment the existing domestic water supply, currently replenished by water captured from the MSO facility roof (UH IfA, 2006).

The combined capacity of the underground holding tank and cistern (104,000 gallons total) would be adequate to capture all the rainwater flowing off of the roof and building surfaces of the existing Mees facility and the proposed ATST Project during the maximum defined 5-year rainfall event (8 inches in 24 hours, see Table 3 in **Vol. II**, Appendix M-USFWS Section 7 Informal Consultation Document). In the infrequent case of rainfall events greater than that (for reference, the 25-year defined event is 10 inches in 24 hours), the additional rainwater would be allowed to overtop the cistern and would be distributed over a broad area of the natural cinders to maximize percolation and minimize erosion-causing run-off.

The surface of the paved service yard to the west of the S&O Building would be contoured to direct surface water flow to the existing stormwater drainage system. The slope would generally be away from the buildings and northwestward, toward the existing concrete drainage channel north of the main access road. The drainage channels and culverts would be cleared of sediment and repaired as required to ensure adequate capacity to convey the surface water flow from the service yard to the existing main infiltration basin for the HO complex. An assessment of and management plan for the existing HO surface drainage system and the infiltration basin is in Vol. II, Appendix L-Stormwater Management Plan for HO. The placement of excess soil from the proposed construction would be done so as not to result in blockage of the existing drainage system or erosion onto roadways or drainage channels.

<u>Wastewater Management.</u> Under the Mees Site alternative, a new individual wastewater treatment plant would be installed near the MSO facility after removing the cesspool and remediation of the site. The treatment plant would have adequate capacity to process the domestic wastewater from both the proposed ATST Project and the MSO facility. This would be a small individual treatment plant (less than 1,000 gallons per day) installed underground in the same vicinity as the previous cesspool. This plant would utilize aeration and biologically accelerated treatment to achieve effluent standards (biological oxygen demand, total suspended solids, and pH levels) acceptable for infiltration directly to ground. Effluent would be disposed of in an on-site infiltration well (Fig. 2-17). The specification of the treatment plant and its related piping/discharge system would be based on the anticipated utilization of the facility and the applicable regulations of the State of Hawai'i Department of Health.

Domestic Water Supply. Appropriate systems for treatment, piping, and pumping the cistern water for use in the S&O Building would be provided. The cistern water would be used directly for the domestic fixtures of the proposed ATST Project and would be required to meet basic potability standards. Water for human consumption would be provided separately through commercial bottled sources.

<u>Grounding and Lightning Protection.</u> The grounding system for the proposed ATST Project would employ several methods to achieve a safe effective electrical ground connection to the very dry, high-resistance volcanic soil. A series of shallow trenches would be dug that extend peripherally around the entire facility and branch out to form a grounding field in the area to the south of the S&O Building (Fig. 2-17). The trenches would be approximately 1 foot wide by 2 feet deep. The bottom half of the trench would be filled with conductive concrete, which is like normal concrete except that it contains a high concentration of a conductive aggregate material, such as iron or carbon fibers. These aggregates would be completely encapsulated in the cured concrete and would not migrate into the surrounding natural soil.

The total volume of concrete required would be approximately 30 cubic yards. Embedded within the concrete would be a continuous metal ground cable near the bottom and a perforated plastic pipe near the top. A gravity-fed water distribution system would be connected to the perforated pipe to keep the concrete wet (approximately 30 percent saturated) at all times. The water distribution system would use no more than 25 gallons per day of potable water from the collected rainwater pumped into the cistern.

As an alternative to the use of conductive concrete, coke breeze, a black granular material with high electrical conductivity may be specified in the future final design of this system. Coke breeze is a chemically stable substance consisting of sand-sized particles of coke, the processed coal that is used in smelting iron ore. The only potential health hazard of coke is from long-term exposure (inhalation or eye-contact) to airborne coke dust. In the proposed underground installation this hazard would not be present.

If coke breeze were utilized, the bottom and sides of the trenches would be lined with jute matting or other durable, flexible fabric to contain the material and allow it to be completely removed in the future. The same grounding cable and water distribution system would be contained within the coke breeze.

The top of the trenches would be covered with native soil to blend into the surrounding terrain. The metal grounding cable would be connected to the steel framework of the building, to the ground leads and protective covers of equipment, and to the main ground bus in the Utility Building.

This proposed system is based on best-proven practices at existing observatories and other critical facilities at high lightning risk sites. During final facility design, a grounding consultant would be retained to fully consider the site conditions, to evaluate the proposed system, and to recommend potential refinements.

Electricity. Electrical power for the proposed ATST Project would be provided by connection to the MECO substation on HO. The maximum peak electrical demand of the proposed ATST Project is estimated to be 960 kVA. The current reserve capacity of the main power line to Haleakalā is estimated by MECO to be approximately 1900 kVA. The ATST project team has been in cooperative contact with MECO engineers who would incorporate the power requirements of the proposed ATST Project into their overall systems planning process, along with other potential future HO needs. A MECO-funded study has been conducted to identify economizing strategies for the proposed ATST Project such as ice storage to reduce peak-hour power consumption. During the night, mechanical chillers would be used to freeze tanks of water. Operation of the chillers could then be minimized during the day, as the tanks of ice would be used to cool the heat transfer fluid that cools the enclosure.

The power line for the proposed ATST Project would generally follow the path of existing service lines in order to minimize excavation of previously undisturbed soil. The proposed route is southward from the MECO substation across the MSSC facilities to the proposed location of the Utility Building. The new service would utilize existing conduits and pull boxes wherever possible. New ducts and boxes would be installed where the capacity or condition of those existing are insufficient. All service lines would be underground and routed around identified archeological features.

To provide electrical power in the event of service outages the proposed ATST Project would include a 300 kVA diesel generator to provide for safe shutdown of the telescope and enclosure and for maintaining power to critical systems. Other than during power outages, this generator would normally only be operated for a short period approximately once a month for testing.

<u>Solid Waste Management.</u> The non-hazardous solid waste (office refuse, food waste, etc.) from operation of the proposed ATST Project would be collected and transported off site regularly for proper disposal in a landfill. The volume is expected to be approximately three standard 30-gallon trash containers per week. Recyclable material in the solid waste (office paper, cardboard, aluminum cans, etc.) would be separated out and taken to an appropriate recycling center.

<u>Communications</u>. The existing facilities at HO are currently served by a microwave link for data transmission. The U. S. Air Force facility is served by a fiber link. Telephone service for all facilities is provided by Hawaiian Telcom, which has spare fiber lines already in place to the summit. The proposed ATST Project would require connection to those existing data/communications service lines. No upgrade to the current capacity of the lines is anticipated to be necessary. Connection would be made at the closest convenient point and new lines would be placed in the path of existing lines and in adjacent roadways in order to minimize excavation of previously undisturbed soil. Arrangements would be made with the commercial provider to lease the necessary capacity. The hardware to implement the connection and the service agreement with the commercial provider would be supplemental to the existing communications connections.

The proposed ATST Project would require data connectivity of approximately 1 Gigabit per second and transmit data from Haleakalā to locations throughout the world via the Internet. Communications off the summit will use existing fiber optic cables owned by Hawaiian Telecom that stretch from Haleakalā to the Maui High Performance Computing Center in Kihei. Data will also be transmitted to the ATST base facility on Maui using the same fiber optic cables. The location of the Maui base facility and ATST data repository has not been determined.

If the proposed ATST Project is approved for construction, the project team would be required to contact Hawaiian Telcom prior to excavation work and make a request for toning, as excavation work would be in close proximity to existing Hawaiian Telcom underground facilities (copper and fiber). Submittal of electrical designs and/or drawings would also be provided to the Hawaiian Telcom engineering office for review and approval for a new service request.

2.5 Description of the Proposed ATST Project at the Reber Circle Site

As an alternative to the Mees site described in Section 2.4 above, the proposed ATST Project **could be constructed** on another site within HO boundaries. This proposed site is the previous location of a radio astronomy experiment referred to as Reber Circle (Fig 1-4). The principal area of this site is currently unutilized and is the only other area identified at HO that would be large enough to accommodate the proposed ATST Project.

The site is northeast of the preferred Mees site and is about 6 meters (20 feet) higher in elevation. It is currently bounded by the two Panoramic-Survey Telescope and Rapid Response System (Pan-STARRS) facilities (PS-1 and PS-2) to the south, the Airglow facility to the south, and the Zodiacal Light facility to the southwest. As discussed in Section 2.3-Alternatives Eliminated from Further Consideration, the site selection process for the proposed ATST Project determined that Haleakalā is the only reasonable location for the proposed ATST Project, and the Reber Circle site would fulfill all the science criteria as well as the Mees site adjacent to the MSO facility. Environmental conditions for both the Mees site and the Reber Circle site at HO are discussed in Section 3.0-Description of Affected Environment.

Most of the critical construction characteristics of the **proposed ATST** Project would be the same for the Reber Circle site as for the Mees site. The following sections and descriptions will discuss only those aspects that are unique to the Reber Circle site.

2.5.1 Features of Infrastructural Design

The proposed design of the telescope and instruments is the same as described for the Mees site.

The control dimensions at the proposed Reber Circle site for the location of the center of the telescope pier are as shown in Figure 2-18. The dimensions are taken from an existing survey monument pin called "Kolekole", which is a primary reference datum for much of the development at HO. This locates the center of the telescope approximately 7.9 meters (26 feet) due east of the center of the Reber Circle concrete ring. This telescope center point also establishes the center of the enclosure and the relative location of the S&O Building, which is attached to the west side of the enclosure. The detached Utility Building would be located to the southwest as shown in Figure 2-19.

The S&O Building would have the same exterior dimensions and the same interior spaces as described for the Mees site. Figure 2-19 shows the proposed relationship of the telescope enclosure, S&O Building, and Utility Building to the topography of the Reber Circle site and to the existing adjacent structures.

While the Utility Building would be located in a different spot relative to the S&O Building and Telescope enclosure, it would have the same exterior dimensions and would house the same equipment as described for the Mees site.

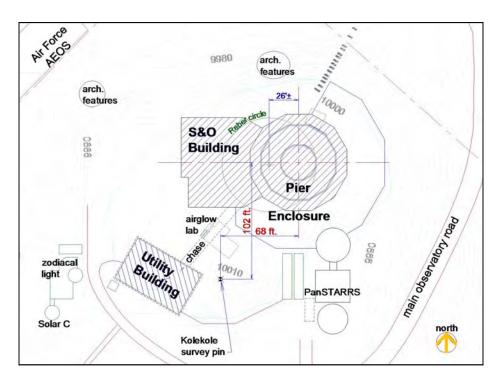


Figure 2-18. Site Layout of Proposed ATST Project at the Reber Circle Site.

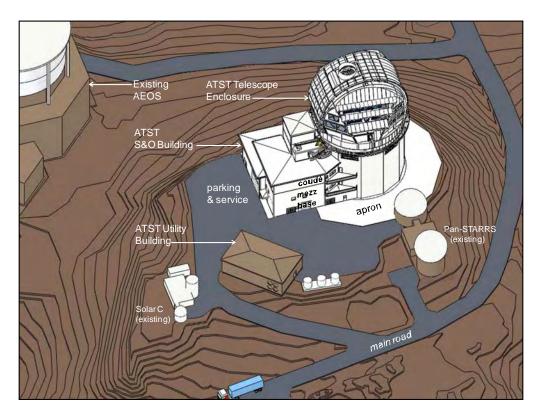


Figure 2-19. Aerial Rendering of Proposed ATST Project at the Reber Circle Site.

A new wastewater treatment plant would be installed near the ATST Reber Circle site and the MSO facility would continue to use the existing cesspool. Installation of the treatment facility and the method of effluent distribution would be in accordance with the permits and procedures of Maui County and the State Department of Health.

All the same facilities would be constructed at the Reber Circle site as at the Mees site. However, at the Reber Circle site, a new above ground fuel storage tank to support the back-up generator would be required, which would comply with all applicable EPA and safety regulations. The proposed location and capacity for this tank has not yet been determined. It could be integral with the base of the generator or installed at a suitable exterior location near the Utility Building.

2.5.2 Potential Use of Existing MSO and Airglow Atmospheric Facilities

Mees Solar Observatory Facility

The use of the Reber Circle site would likely still require modifications and use of the MSO facility. The proposed Reber Circle site is approximately 121.9 meters (400 feet) north and uphill from the existing MSO facility and shared use of that building to support the proposed ATST Project would be less convenient. However, this site would also be more constricted by topography and adjacent structures than is the Mees site. Areas for additional shop space or other indirect support functions would not likely be available at the Reber Circle site. As such, the **project team** would still propose to modify the existing shop in the MSO facility to allow it to serve the needs of both IfA and the proposed ATST Project.

It may not be feasible to remove the existing MSO facility generator at this site, which would limit the amount of total modified shop space available. The on-site shop space for the proposed ATST Project would therefore be somewhat smaller and farther away than would be the case with the Mees site. The long-term effect on the proposed ATST Project would be some loss of man-hour efficiency due to the occasional need for work activities to move from one facility to the other. Also, because the shop would be somewhat smaller, work would more often have to be done at the proposed ATST Project base facility or at another off-site location.

The other potential shared uses for the MSO facility are the same as described for the Mees site.

Airglow Atmospheric Facility

The existing UH Atmospheric Airglow instrument platform is a 57-year-old concrete block structure of approximately 300 square feet. Should the proposed ATST Project be constructed at the Reber Circle Alternative Site, the UH Atmospheric Airglow instrument platform would be removed to provide sufficient building space.

2.5.3 Construction Activities

As at the Mees site, project construction would involve land clearing, demolition, grading/leveling, excavation, soil retention and placement, construction, remodeling of the MSO facility, and paving. Most of these activities would be approximately the same in duration and quantity as at the Mees site, with the following exceptions.

Demolition and Removal

Demolition techniques and equipment would be the same as used at the Mees site. The following facilities would be demolished in order to make room for the proposed ATST facilities at the Reber Circle site:

1. The Reber Circle (concrete ring and steel track in deteriorated condition). This would be done in accordance with the data recovery plan for Reber Circle (Vol. II, Appendix B(1)-Data Recovery Plan for Site 5443).

- 2. The existing Airglow Observatory.
- 3. A small abandoned rock utility building northeast of Reber Circle.
- 4. A section of the existing access road and a paved pedestrian path.
- 5. Selective demolition at the MSO shop/utility area.

Grading/Leveling

The existing topographical features at this site consist of a level pad previously created for the Reber Circle project, the adjacent sloping terrain around this level area, and a small peak south of the existing Airglow Observatory (Fig. 1-2). The proposed ATST Project would require a level pad significantly larger than the existing one. This would be 20 feet wider in all directions than the base level footprint of the enclosure and the S&O Building, plus additional level areas for the Utility Building and a service yard. The critical nature of the structural bearing condition requires that the level area immediately around the telescope be achieved primarily by cutting rather than by a cut and fill approach. At the Reber Circle site, the proposed grade cut would be down to approximately the 9,996-foot contour elevation.

Approximately 5,000 cubic yards of soil and rock would be displaced during the leveling phase in order to prepare the site for construction. The proposed placement area for this material would be the Primary Soil Placement Area, as described above for the Mees site. At an average volume of 20 cubic yards per truckload, approximately 250 truck trips would be necessary to relocate excess rock and soil.

Excavation

Excavation techniques would be approximately the same as those for the Mees site structures, using the same types of equipment. There could be more use of hydraulic hammers and jackhammers than at the Mees site, because preliminary geotechnical investigations indicate that there is more subsurface rock at this site.

Approximately 7,150 cubic yards of soil and rock would be excavated from the Reber Circle site during construction (Fig. 2-20), of which approximately 5,000 cubic yards would be removed for leveling and approximately 2,150 cubic yards in excavation for caissons, pad foundations, the tunnel and utility trenches. The amount of material removed for leveling would be approximately twice what would be required at the Mees site. This is primarily because no level area currently exists at the Reber Circle site for the Utility Building and service yard, as was the case at the Mees site.

Placement of Excess Soil and Rock

Excavated soils would be placed in the Primary Soil Placement Area, as discussed above for the Mees site. This placement area would accommodate a calculated maximum of about 5,400 cubic yards of material, which likely would not be sufficient for all the soil and rock that would be required to be removed from the proposed Reber Circle site. For this site, other approved placement areas within HO would have to be found. All native rock and soil removed from the site would be placed in a culturally appropriate manner at locations within HO boundaries.

Construction

Construction techniques, equipment and materials would be the same as for the Mees site. The Utility/Ventilation Tunnel would essentially be the same as described for the Mees site, except the tunnel would be approximately 36 feet shorter.

<u>Staging</u>

As described for the Mees site, staging and storage space would be required immediately adjacent to the construction site. The areas available, however, for close-in staging and maneuvering are much more limited at this site due to the topography and the adjacent structures. More assemblies would have to be

staged remotely and fewer space-intensive activities could be conducted simultaneously at the site. This would result in a less efficient construction operation and a proportionally longer schedule.

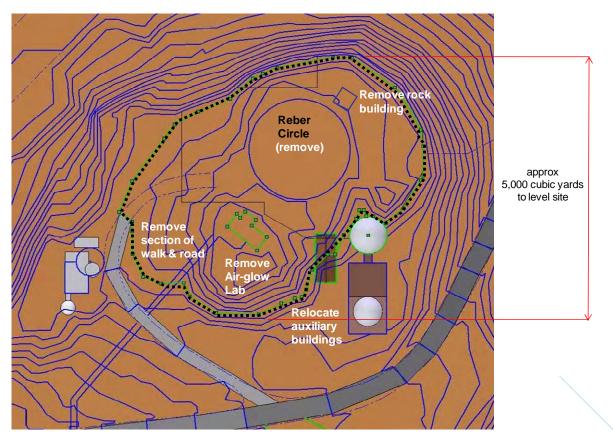


Figure 2-20. Excavation Footprint for the Reber Circle Site.

Construction Traffic

The extent and nature of the traffic required for construction of the proposed ATST Project at the Reber Circle site is expected to be the same as characterized in Section 2.4.3 and Table 2-5 for the Mees site construction.

Best Management Practices

The same BMPs (required practices established in the LRDP and policies reflecting public **input** during the EIS process) would be implemented during construction at the Reber Circle site, **the same as it** would be during construction at the Mees site.

Construction Schedule

The construction schedule for the Reber Circle site would be approximately the same as that for the Mees site, although there may be some minor effects to the schedule associated with the greater amount of leveling excavation required and the limited area available for staging.

2.5.4 Telescope Operation Activities

All proposed ATST **Project** operations would be the same at the Reber Circle site as at the Mees site.

2.6 No-Action Alternative

Under the No-Action Alternative, should the proposed ATST Project not be funded, both the Mees and the Reber Circle sites would remain available for development for other projects within the Conservation District of HO. The No-Action Alternative would limit solar astronomy to current technologies and delay critical measurements of the "reach" of the Sun's coronal magnetic field into the Sun-Earth space environment, and the measurement of the small scale evolution of magnetic fields that control the decay and evolution of sunspots. Since existing instrumental capabilities at facilities such as the MSO facility no longer are sufficient to take this next step toward understanding the fundamental physical processes that govern the behavior of the Sun, and because no facilities capable of observing the magnetic phenomena in the solar atmosphere at the required level of detail, knowledge of the direct effects of solar activity on life on Earth would not be forthcoming.

3.0 DESCRIPTION OF AFFECTED ENVIRONMENT

This section is an overview of the baseline physical, biological, social, and economic conditions that occur within the **relevant** Region of Influence (ROI) for **each resource potentially affected by** the proposed ATST Project, as well as other areas. These baseline conditions are referred to as the affected environment. This section is organized by resource area. The ROI is defined at the beginning of each resource section as it applies to that resource. For example, the ROI for geology may be relatively contained to the Hakeakalā High Altitude Observatories (HO) complex; however, the ROI for air quality or socioeconomics may be much larger. As applicable, each section includes a background on how the resource is related to the proposed ATST Project and a general overview of relevant legislative requirements governing the resource. This section also is a discussion of the general conditions of the resource within the ROI.

The affected environment of the Proposed ATST Project is primarily on land that was designated and assigned to the University of Hawai'i (UH) in 1961 for scientific purposes by Governor Quinn's Executive Order (EO) 1987. The 18.166 acres of land assigned to IfA is located on State of Hawai'i land (shown on the Tax Map Key [TMK] of Fig. 1-5) within a Conservation District (Section 1.0, Fig. 1-12). The property boundaries for HO are wholly within Pu'u Kolekole near the summit of Haleakalā. The EO land is about 0.3 mile from the highest point in Haleakalā National Park (HALE), which is known as Pu'u Ula'ula Overlook. The Kolekole cinder cone lies just to the southwest of the topographic apex of the Southwest Rift Zone of Haleakalā. The rift zone forms a spine separating the Kula Forest Reserve from the Kahikinui Forest Reserve, both of which are pristine lands along the rift zone. The environment at Kolekole has been extensively studied for many years and has been well characterized.

The affected environment of the Proposed ATST Project also includes portions of HALE. The primary area affected by the proposed ATST Project includes the Park road corridor, specifically, a 50-foot corridor along the Park road measured from the mid-point of the road extending out 25 feet on each side. The Park road corridor is included because a Special Use Permit (SUP) is required by HALE to operate commercial vehicles within the Park.

3.1 Land Use and Existing Activities

The ROI for determining the affected environment for this section includes HO, the adjacent **Federal Aviation Administration** (FAA) facilities, and the Park road corridor.

In 1961, the State Land Use Law, Act 187, which has been codified as Hawai'i Revised Statutes (HRS), Chapter 205, established the State Land Use Commission (LUC) and granted the LUC the power to zone all lands in the State into three districts: Agriculture, Conservation, and Urban (the Rural District was added in 1963). Act 187 vested the Department of Land and Natural Resources (DLNR) with jurisdiction over the Conservation District, which was able to formulate subzones within the Conservation District, and to regulate land uses and activities therein. Since 1964, the Board of Land and Natural Resources (BLNR) has adopted and administered land use regulations for the Conservation District and has made major changes to the regulations in 1978 and 1994. **"Land Use" is defined in Hawai'i Administrative Rules (HAR) 13-5 as follows:**

1. The placement or erection of any solid material on land if that material remains on the land more than fourteen days, or which causes a permanent change in the land area on which it occurs;

2. The grading, removing, harvesting¹, dredging, mining or extraction of any material or natural resource on land;

3. The subdivision of land; or,

4. The construction, reconstruction, demolition, or alteration of any structure, building, or facility on land.

The objective of the Conservation District is to conserve, protect, and preserve the important natural resources of the State through appropriate management and use in order to promote their long-term sustainability and the public health, safety, and welfare. The potential use(s) of Conservation District lands are numerous. During the past few years, the DLNR Office of Conservation and Coastal Lands (OCCL) has administered Conservation District Use Applications (CDUAs) for: open ocean aquaculture projects, telescopes on top of Haleakalā and Mauna Kea, major power line projects on scenic ridges, telecommunication facility projects, single family residences, Parks; and, Commercial Forestry projects.

The Conservation District has five subzones: Protective, Limited, Resource, General and Special. Omitting the Special Subzone, the four subzones are arranged in a hierarchy of environmental sensitivity, ranging from the most environmentally sensitive (Protective) to the least sensitive (General); the Special Subzone is applied in special cases specifically to allow a unique land use on a specific site.

Each subzone has a set of identified land uses which may be allowed by discretionary permit. The OCCL can only accept permit **applications** for an identified land use listed under the particular Subzone covering the subject property. Most of the identified land uses require a discretionary permit or some sort of approval from the DLNR or BLNR. Major permits are required for land uses which have the greatest potential **impact** and a State environmental assessment and/or an EIS is required (and may also require a Public Hearing); minor permits are required for land uses which may have fewer **impacts**, decision making is delegated to the Board Chairperson (and may not require a Public Hearing) or to the OCCL for other minor uses. Section 1.6.4 includes further discussion of specific State and Federal approvals and permits required for this project.

In accordance with Title 13 Chapter 5, HAR, a CDUA would need to be submitted if the proposed ATST Project were to be located within HO. All land uses pursuant to HAR 13-5-30 must qualify as an identified land use and, thus, a CDUA must be filed with the DLNR and approved by the BLNR prior to the initiation of any land use.

The proposed ATST Project is a land use that falls within the intended purpose behind the conveyance of the HO area to UH pursuant to the Governor's Executive Order (EO) 1987. This area of the Conservation District has been set aside for "...Haleakalā High Altitude Observatory site purposes only." Other consistent land uses for HO include the many facilities conducting astronomical research and advanced space surveillance that already exist within HO (Section 1.0, Fig. 1-2).

3.1.1 Land Use for the Proposed ATST Project

The proposed ATST Project **qualifies as an** identified use in the General Subzone (Section 1.0, Fig. 1-12) and would be consistent with the objectives of the General Subzone of the land. The objectives of the

¹ For purposes of this section, harvesting and removing does not include the taking of aquatic life or wildlife that is regulated by State fishing and hunting laws nor the gathering of natural resources for personal, non-commercial use or pursuant to Article 12, Section 7 of the Hawai'i State Constitution or Section 7-1, HRS, relating to certain traditional and customary Hawaiian practices.

General Subzone (HAR Chapter 13-5-14) are to designate open space where specific conservation uses may not be defined, but where urban uses would be premature.

The proposed ATST Project is in close proximity to other previously developed facilities for astronomy and advanced space surveillance. No changes to the identified land use within HO would occur to complete the proposed ATST Project. Subdivision of land would not be utilized to increase the intensity of land use in the Conservation District. The Mees site is currently on undeveloped land. The Reber Circle site is on previously-disturbed land that is currently vacant with a remnant foundation of the structure used for a former radio astronomy experiment.

HALE was initially established as a unit of Hawai'i National Park on August 1, 1916. Hawai'i National Park had three units: the Summit area of Haleakalā on Maui, Kilauea Volcano on Hawai'i Island and portions of Mauna Loa on Hawai'i Island. The Park was established "as a public park or pleasure ground for the benefit and enjoyment of the people of the United States...and [to] provide for the preservation from injury of all timber, birds, mineral deposits, and natural curiosities or wonders within said park, and their retention in their natural condition as nearly as possible."

On September 13, 1960, Congress authorized the establishment of HALE as a separate unit of the National Park System. This effectively redesignated the units of Hawai'i National Park as two new national parks: HALE on Maui and Hawai'i Volcanoes National Park on Hawai'i Island. These parks were to be administered in accordance with the National Park Service Organic Act of 1916, which created the National Park Service. Thus, the purpose of HALE is further reflected in a key provision of the Organic Act, which states "to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations."

Since 1960, HALE has had several boundary expansions which enable the National Park Service to continue its conservation work and meet its guiding mission of preservation. The pristine rainforest of Kipahulu Valley was authorized for addition to the Park on March 26, 1951. The Kipahulu coastal area of 'Ohe'o was authorized for addition to the park on January 10, 1969. The adjacent coastal area of Puhilele was added to the Park in 1998. Ka'apahu was added to Haleakalā National Park in February 1999. On October 20, 1964, the Wilderness Act, **Public Law 88-577**, authorized the designation of a large portion of Haleakalā **as Wilderness Area.**, **as such areas are defined in Section 2 (a) of the Act.** Today, of its 30,183 acres, 24,719 acres are designated wilderness.

3.1.2 Existing Activities

Park Road Corridor

Haleakalā Highway (State Route 37) is a 37-mile road that begins at the Kahului Airport in central Maui and continues as Haleakalā Highway at the Kula Highway junction, becoming State Route 377 until the junction with Kekaulike Avenue in upper Kula. At the Kekaulike Avenue junction it becomes Haleakalā Crater Road (State Route 378) until the entrance to HALE. (DOT, 2007a) The Park road corridor is a 10.6 mile stretch of road that begins at the entrance to HALE and ends at the summit of Haleakalā. Along this entire course, the highway climbs from sea level to approximately 10,000 feet, attaining this height in a shorter distance than any other road in the world (NPS, 2008b, p. 2).

The corridor along the Park road is owned and managed by the NPS. It begins at the Haleakalā National Park boundary at the northwestern corner of the park and ascends the northwest slopes of the Haleakalā Crater with a series of switchbacks. Hosmer Grove, Park Headquarters Visitor Center, Halemau'u Trailhead, Leleiwi Overlook, Kalahaku Overlook, Haleakalā Visitor Center (or Pa Ka'oao Observation

Station), and Pu'u 'Ula'ula Overlook are all accessed from the road. Significant vehicular and bus traffic traverse the Park road each year. In 2007, there were 248,224 vehicular visits and approximately 3,650 buses that traversed the Park road; in 2008, there were 205,977 vehicular visits and approximately 6,570 buses (FHWA, 2008).

Existing access into and out of HO is exclusively via HALE (Fig. 3-1) and then through the entrance to the HO complex just past Pu'u 'Ula'ula. There is no general public access to HO and "AUTHORIZED ENTRY ONLY" is posted on the sign (Fig. 3-2) located at the entrance to the facilities. Native Hawaiians, however, are welcome at any time to enter HO for cultural and traditional practices, as the sign also indicates.

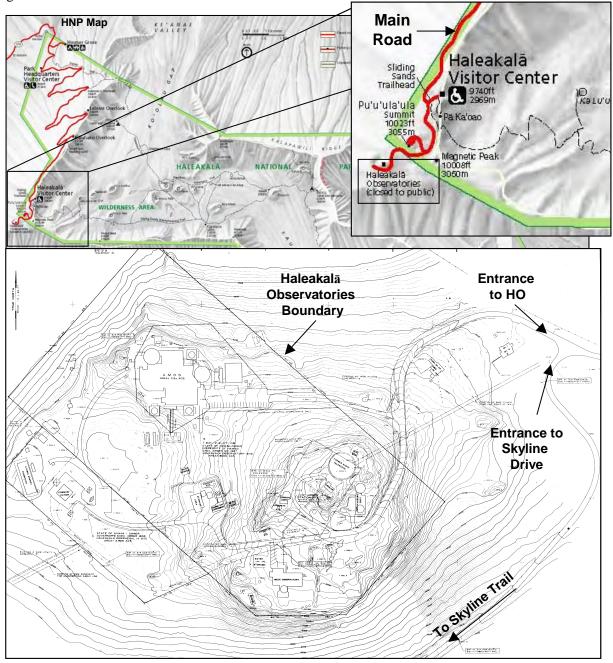


Figure 3-1. Existing Access to HO.

Figure 3-2. Sign at Entrance to HO.

An unimproved access road known as Skyline Drive (Fig. 3-1) originates 0.5 mile **southwest of HO** at the Saddle Area. It traverses the Southwest Rift Zone, ultimately leading to the Spring State Recreation Area (also known as Polipoli State Park), which is located at 6,200 feet above sea level (ASL) within the fog belt of the Kula Forest Reserve (DLNR, Hawai'i State Parks). Its entire length is located on State land within the Forest Reserve. A locked gate near the Saddle Area restricts vehicle access to the road from the Haleakalā summit to only those holding DLNR permits. Hikers, hunters, and bicyclists use the unpaved road. There are sections of this trail that have a steep grade and soft cinder roadbed that will not support standard construction truck traffic, only smaller vehicles with four-wheel drive.

<u>HO Facilities</u>

This area of the Conservation District is set aside for "...Haleakalā High Altitude Observatory site purposes only." Presently, facilities located within HO (Fig. 1-2) observe the Sun, provide a world-class telescope for education and research outreach to students all over the world, use lasers to measure the distance to satellites, track and catalogue man-made objects, track asteroids and other natural potential space threats to Earth, and obtain detailed images of spacecraft. It is a principal site for optical and infrared surveillance, inventory and tracking of space debris, and active laser illumination of objects launched into earth orbit, activities that are all crucial to the nation's space program.

Over the past 45 years, HO has experienced managed growth (**Tables 1-2 and 1-3**) of scientific research within its boundaries (UH IfA, 2005. The major IfA facility at HO is the Mees Solar Observatory (MSO) facility. IfA has operated the MSO facility since 1964. The scientific programs at the MSO facility emphasize studies of the solar corona and chromosphere. The former Lunar Ranging Experiment (LURE) facility was utilized from 1972 until 1993. LURE was operated by IfA under contract to the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, had supported the NASA Space Geodesy and Altimetry Projects, provided NASA with highly accurate measurements of the distance between LURE and satellites in orbit about the earth, and was involved in the NASA Crustal Dynamics Project.

If A has a support staff that serves the MSO facility. Services include administration, personnel and purchasing support, as well as vehicle and building maintenance functions. The support staff serves a total of 17 technical, scientific, and engineering staff on Maui. A support facility located at HO consists of an office building, electronics lab, and vehicle maintenance shop. If A also operates a modest dormitory facility at HO, primarily for use by MSO observers.

The Panoramic-Survey Telescope and Rapid Response System (Pan-STARRS) (PS-1) observatory was dedicated on June 30, 2006, and is within the footprint of the former LURE observatory. The testing of extremely high resolution camera imagery will lead to development and deployment of a small, economical, four-telescope system for observing the entire available sky several times each month to discover and characterize Earth-approaching objects, both "killer asteroids" and comets, that might pose a danger to our planet. The Pan-STARRS (PS-2) was housed in the former MAGNUM observatory and became operational in early 2009.

The University of Tokyo, the National Astronomical Observatory of Japan, and the Australian National University previously installed a 2-meter (6.6-foot) telescope in the 9-meter (29.5-foot) north dome of the LURE complex to support the Multi-color Active Galactic Nuclei Monitor (MAGNUM) Project. This project was decommissioned in 2008. A second Pan-STARRS facility (PS-2) became operational in 2009 and utilizes the former MAGNUM facility.

The Faulkes Telescope Facility (FTF) was originally built by the Dill Faulkes Educational Trust and became operational in 2004. Ownership was assumed by the Las Cumbres Observatory Global Telescope Network, Inc. (LCOGT) in 2005 and continues to be a joint effort with IfA. The goal of this facility is to give students and teachers in Hawai'i and the United Kingdom (UK) access to a research grade telescope. With its 2-meter diameter primary mirror, this telescope (along with its twin in Australia) is the largest telescope designated solely for educational use in the world. This 2-meter (6.6-foot) telescope is operated remotely over the Internet, without need for permanent on-site operational staff. Control centers at Maui Community College and in the UK provide for remote operations.

The IfA also allocates sites on Haleakalā for optical and infrared experiments and observations carried out by the Air Force Research Laboratory (AFRL), which is the host command having responsibility for the MSSC. One part of the Maui Space Surveillance Complex (MSSC) is the Maui Space Surveillance System (MSSS), a state-of-the-art electro-optical facility combining operational satellite tracking facilities with a research and development facility. The MSSS houses the largest telescope in the Department of Defense (DoD) inventory, the 3.67-meter (12-foot) Advanced Electro-Optical System (AEOS), as well as several other telescopes ranging from 0.4 to 1.6 meters (1.3 to 5.2 feet).

Another major part of the MSSC is the Ground-Based Electro-Optical Deep Space Surveillance System (GEODSS), which is one of three operational sites in the world performing ground-based optical tracking of space objects. The main telescope has a 102-centimeter (3.3-foot) aperture and a 2-degree field-of-view and is used primarily to search the deep sky for faint (+16 magnitude), slow-moving objects. The auxiliary telescope has a 38-centimeter (15-inch) aperture and 6-degree field-of-view, and does wide area searches of lower altitudes where objects travel at higher relative speeds. The telescopes are able to "see" objects 10,000 times dimmer than the human eye can detect.

Federal Aviation Administration Facilities

The FAA operates and maintains a rectangular 2.96-acre property along the southwest boundary of HO, which is referred to as the Haleakalā Peripheral Hi Site. This property was originally granted to the Civil Aeronautics Authority (predecessor to the FAA) in 1957 through an Executive Order from the Governor of the Territory of Hawai'i. The site is dedicated to remote air/ground interisland and trans-Pacific communications to and from aircraft. A small support building on the rectangular site contains transmitter

and electronic equipment, in support of multiple dipole antennas on two towers to the East of the support building. The towers are located approximately 800-feet West of the MEES Solar Observatory, at a lower elevation, e.g., the tops of the towers are slightly below the highest natural topography at HO to the East and North. The antennas on the towers transmit at 50 Watts in both the Very High Frequency (VHF) and Ultra-High Frequency (UHF) radio bands, and receive voice communications on the same frequencies from transiting aircraft at altitudes from 8,000 to 50,000-feet. Other antennas on towers of various heights around the site support communications between other Federal and State agencies.

3.2 Cultural, Historic, and Archeological Resources

"Haleakalā is the sacred home of our Sun, and the ancient Path to Calling the Sun as depicted in its ancient name: Ala Hea Ka Lā. Why is this critical to our survival?
The Sun's energy is the source of all life, and governs our most basic rhythm of day and night. Ancient cultures have venerated its being, and we as a human race follow its course without thought and are insignificant in respect of its power. However, our Native Hawaiian Culture praises its existence, until this very day the Sun is praised for its cycle." (E Mälama Mau Ka La'a, p.8, Haleakalā's Importance)

Cultural, historic, and archeological resources were evaluated within the ROI which, for these resources, falls within both HO and relevant areas within HALE, including the Park road corridor. Cultural resources contain significant information about a culture and are tangible entities or cultural practices (NPS-28). For NPS resource management purposes, tangible cultural resources are defined as "districts, sites, buildings, structures, and objects for the National Register of Historic Places and categorized as archeological resources, cultural landscapes, structures, museum objects, and ethnographic resources." The term, "ethnographic resources" is defined in NPS-28 as: a site, structure, object, landscape, or natural resource feature assigned traditional legendary, religious, subsistence, or other significance in the cultural system of a group traditionally associated with it (NPS-28). The term, "historic resources" includes districts, sites, structures, or landscapes that are significant in American history, architecture, engineering, archeology or culture (NPS-28). Archeological resources are defined as "any material remains or physical evidence of past human life or activities which are of archeological interest, including the record of the effects of human activities on the environment" (NPS-28). They have the "potential to describe and explain human behavior" (NPS-28). Each of these resources within the relevant ROI was evaluated in the subsections below.

All of the areas within the ROI are also within the boundaries of the Crater Historic District, which is listed on both the State Inventory of Historic Places SIHP (SIHP 50-50-11-12-1739) and on the National Register of Historic Places (NRHP) listed in November 1, 1974 (**Fig. 3-3**). All eligible cultural, historic, and archeological resources within the Crater Historic District, even if not formally listed, are nevertheless required to be protected and preserved as though they were formally listed on the NRHP.

Several assessments were conducted to evaluate the presence of cultural, historic and archeological resources within the ROI, and the results of these assessments are discussed below.

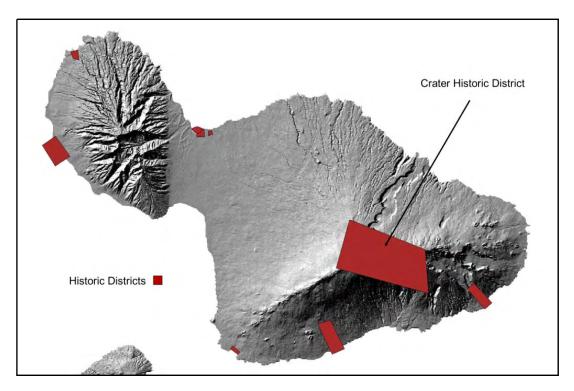


Figure 3-3. Crater Historic District Map.

3.2.1 Cultural Resources

A number of traditional cultural practices are conducted within the ROI. These practices require silence and solace and may also require uninterrupted view plane and sacred space. The sign at the entrance to HO states that Native Hawaiians are welcome to enter to conduct their traditional cultural practices within HO. The NPS also supports the perpetuation of traditional cultural practices within areas of HALE, as appropriate under NPS policy.

Initial Cultural Resource Assessments

A cultural resource report entitled, "Cultural Resources Evaluation for the Summit of Haleakalā" was prepared in 2003 for the entire HO property and appended to the LRDP. The 2003 report concluded "Kolekole, known as the summit of Haleakalā, or 'Science City' as it is sometimes referred to, is a very sacred place for the Kanaka Maoli (Native Hawaiian), past and present" (CKM, 2003). The summit is still revered by the Kanaka Maoli in present times and some people express feeling "the 'essence' of Haleakalā" when visiting there and numerous publications have been produced setting forth peoples' "feelings of being 'one with the gods' at the summit" (CKM, 2003). The study concluded that, "Hawaiian's history, from the beginning of their ancient culture, shows that they consider lava, cinders, rocks and other material from the land sacred because it was created by Pele (Goddess of the Volcano)" (CKM, 2003). The 'essence' being the rock, cinders, and ash, which are the Kinolau (supernatural forms taken by Pele" (CKM, 2003).

For the proposed ATST Project, a cultural resources study entitled "Cultural and Historical Compilation of Resources Evaluation and Traditional Practices Assessment" was conducted in 2006 as part of the environmental compliance process (Vol. II, Appendix F (1). These reports were used to prepare the initial DEIS.

Supplemental Cultural Impact Assessment

As a result of specific concerns by the commenting public to the cultural and historical evaluation included in the September 2006 draft EIS (DEIS), Cultural Surveys Hawai'i, Inc. (CSH) was commissioned to conduct a Supplemental Cultural Impact Assessment (SCIA) for the proposed ATST Project (Vol. II, Appendix F(2)). The SCIA was performed in accordance with the guidelines for assessing cultural impacts as set forth by the Office of Environmental Quality Control (OEQC) (OEQC, 1997) and was intended to supplement the initial DEIS Cultural Resource Evaluation (Vol. II, Appendix F(1)). The primary purpose of the SCIA was to widen community outreach and gather additional information on "the Traditional Cultural Property of Haleakalā" as an additional means to assess the potential effects of the proposed undertaking on Native Hawaiian traditional cultural practices and/or beliefs. The preparation of the SCIA included gathering supplementary information through community input and local knowledge of the summit area. Table 3-1 lists individuals in the community who were consulted by CSH staff. Table 3-2 lists consultation with residents of the Kahikinui Homestead Community Board meeting held on March 17, 2007 by CSH staff. Table 3-3 lists consultation with students enrolled in the Maui Community College (MCC) Hawaiian Studies Program by CSH staff. The complete commentary of these consultations can be found in Vol. II, Appendix F(2) in Section 6-Community Contacts and Consultations.

The SCIA contains considerable additional historical perspective on Haleakalā. It discusses in great detail the symbolism of the mountain, the mountain's role in the history of Maui Island as a living entity, as well as the mountain's archeological record. The results of the SCIA describe the cultural significance of Haleakalā, including its spiritual sacredness and the cultural relationship of Hawaiians to Haleakalā as a whole and to the summit area in particular.

Name	Affiliation	Contacted	Personal Knowledge	
Ms. Wallette Pelegrino	Cooperative Education Program Coordinator-	Y	S	
	Maui Community College	-	5	
Ms. Rose Marie Duey	Alu Like, Inc.	D	N	
Ms. Rose Marie Duey	Kamaʻāina	Y	S	
Ms. Sheila Ople	A'o A'o O Na Loko I'a O Maui	U		
Ms. Vanessa Medeiros	Dept. of Hawaiian Homelands	N		
Mr. Hinano Rodrigues	Dept. of Land and Natural Resources, SHPD	Y	Y	
Mr. Akoni Akana	Executive Director, Friends of Moku'ula	D		
Mr. Patrick Ryan	Fishpond Ohana	Y	N	
Mr. Brian Jenkins	Friends of Polipoli, President	Y	Y	
Mr. Jim Wagele	Hawaiian Community Assets, Inc.	А		
Mr. Clifford Nae'ole	Hawaiian Cultural Advisor, Ritz-Carlton Resorts	А		
Kekealani Ishizaka	Hawaiian Homes Waiehu Kou 1	А		
Ms. Blossom Feiteira	Hui Kakoʻo 'Aina Ho'opulapula and Na Po'e Kokua	U		
Mr. Edward Ayau	Hui Malama I Na Kupuna o Hawai'i Nei	А		
Ms. Julie Oliveira	Hui No Ke Ola Pono	Y	N	
Mr. Don Atai	Hui o Va'a Kaulua	А		
Ms. Kehaulani Filimoeatu	Hui of Hawaiians	Y	N	
Ms. Roselle Bailey	Ka Imi Na'auao 'O Hawai'i Nei	Y	Y	
Mr. Norman Abihai	Kahikinui Homesteaders Community President	Y	S	
Ms. C. Mikahala Kermabon	Kahikinui Resident	Y	N	
Mr. Quintin Kiili	Kahikinui Resident	Y	N	
Key: Y=Yes				
S=Some knowledge of project area D=Declined to comment U=Unable to contact				

 Table 3-1. Supplemental Cultural Impact Assessment Community Consultations.

Name	Affiliation	Contacted	Personal Knowledge	
Mr. Aimoku Pali and	Kahikinui Resident	Y	S	
Mrs. Lehua Pali				
Mr. Earl Mo Moler	Kahikinui Resident	Y	S	
Ms. Donna Sterling	Kahikinui Resident	Y	S	
Ms. Chad Newman	Kahikinui Resident	Y	N	
Mr. Charlie Lindsey	Kaho'olawe Island Reserve Commission	Y	N	
Dr. Rod Chamberlain	Kamehameha Schools Oahu Campus	Y	N	
Ms. LeeAnn Delima	Kamehameha Schools Maui Campus	Y	N	
Ms. Dancine Takahashi	Kamehameha Schools Alumni	Y	Ν	
Robin Newhouse	Keokea Hawaiian Homes	U		
Mr. Alan Kaufman	Kula Community Association President	Y	Y	
Ms. Uilani Kapu	Kuleana Kuʻikahi LLC	Y	Y	
Ms. Kamaile Sombelon	Lokahi Pacific	D		
Mr. Lui Hokoana	Maui Community College and	А		
	Hawaiian Civic Club			
Mr. Stan Solamillo	Maui County Cultural Resource Commission	Y	N	
Ms. Patty Nishiyama	Na Kupuna O Maui	A		
Ms. Lei Ishikawa	Na Leo Pulama	A		
Ms. Ohua Morando	Na Pua No'eau	Y	N	
Mr. David Keala	Native Hawaiian Educational Council	U	11	
Ms. Velma Mariano	Paukūkalo Hawaiian Homestead	U		
	Community Association	e		
Mr. Nainoa Thompson	Polynesian Voyaging Society	A		
Ms. Kili Namauu	Punana Leo O Maui	Y		
Ms. Iris Mountcastle	Queen Lili'uokalani Children's Center	D		
Kahu Poʻo Iki	Royal Order of Kamehameha	A		
Clarence Solomon	Royar Order of Ramonaniena	11		
Ali'i Sir	Royal Order of Kamehameha	Y	N	
William Garcia Jr. CK	Office of the Ku'auhau Nui	1	1	
Mr. Leslie Kuloloio	Hawaiian Cultural Practitioner	Y	Y	
Mr. Stanley H. Ki'ope	Hawaiian Language Professor,	Y	Y	
Raymond	Maui Community College	1	1	
Mr. Sam Kaʻai	Hawaiian Cultural Practitioner			
Pastor Wayne Carroll	Pastor, Kahana Door of Faith/	Y		
rastor wayne carton	Hawaiian Cultural Practitioner	1		
Mr. Ke'eamoku Kapu	Hawaiian Cultural Practitioner	А		
Mr. Kaʻiʻini (Kimo) Kaloi	U. S. Department of the Interior	Y	S	
	Office of Hawaiian Relations	1	5	
Mr. Perry O. Artates	Hawaiian Homes Waiohuli	Α		
Uwekoolani Family	Kama'āina	Y	N	
Cecilia K. Hapakuka	Kama'āina	U	11	
Kali Hapakuka	Kama'āina	Y	N	
Michael Purdy	Kama'āina	Y	N	
Merton Kekiwi	Kama ana Kama ana	Y	N	
AK Kahula	Kama'āina	N I	1N	
Clyde Kahula	Kama'āina	Y N	N	
Key: Y=Yes	N=No	A=Attempted, w		

 Table 3-1. Supplemental Cultural Impact Assessment Community Consultations (cont.)

S=Some knowledge of project area

N=No D=Declined to comment A=Attempted, with no response U=Unable to contact

	4 00014 - 14		Personal
Name	Affiliation	Contacted	Knowledge
Lisa Marie Kahula	Kama'āina	U	
Jacob Mau	Kama'āina	U	
Ms. Gordean Bailey	Kama'āina	Y	N
Mr. Tim Bailey	Kama'āina	Y	Y
Mrs. Cathleen Natividad			
Bailey	Haleakalā National Park Wildlife Biologist	Y	Y
Mr. Walter Kanamu	Living Indigenous Forest Ecosystem (LIFE)	Ν	Y
	Kahikinui Game and Land Management,		
Mr. Kawika Davidson	Kama'aina	Y	Y
Mr. George Kaimiola	Kama'āina	Ν	
	Cultural Advisor for the		
Mr. Kaponoai Molitau	Kaho'olawe Island Reserve Commission	А	
Mr. Ethan Romanchak	Kama'āina	Y	S
Key: Y=Yes	N=No	A=Attempted, wi	th no response
	wledge of project area D=Declined to comment	tact	

Table 3-1. Supplemental Cultural Impact Assessment Community Consultations (cont.).

Table 3-2. Kahikinui Homestead Community Board Meeting Consultation.

Name	In Attendance or Via Phone
Mr. Norman Abihai, President	In Attendance
Mr. Quintin Kiili	In Attendance
Mr. Earl Moler	In Attendance
Mr. Aimoku Pali and Mrs. Lehua Pali	In Attendance
Ms. C. Mikahala Kermabon	In Attendance
Mr. George Namauu and Mrs. Gertrude Uwekoolani Namauu	In Attendance
Ms. Chad Newman	Via phone
Ms. Donna Sterling	Via phone

Table 3-3. Maui Community College Hawaiian Studies Program Student Consultation.

Name
Kama'āina, Student (name not given)
Ms. Cheyenne Sylva
Mr. Walter Kozik
Ms. Kathleen Zwick

Haleakalā Summit as a Traditional Cultural Property

The summit of Haleakalā is considered a significant cultural resource in and of itself. It is eligible for listing on the NRHP as a "Traditional Cultural Property" (TCP) through consultation with the State Historic Preservation Division (SHPD under Criterion "A" for its association with the cultural landscape of Maui and this is reflected in the number of known uses, oral history, *mele* and legends surrounding Haleakalā. The term, "Traditional Cultural Property" is used in the NRHP to identify a property "that is eligible for inclusion in the NRHP because of its association with cultural practices or beliefs of a living community that, (a) are rooted in that community's history, and (b) are important in maintaining the continuing cultural identity of the community" (DOI, 1994). The summit is also eligible under NRHP Criterion "C" because it is an example of a resource type, a natural summit, a source for both traditional materials and sacred uses. The value ascribed to Haleakalā as a TCP can be expressed in five distinct attributes, solidifying the role of the summit as a place of value.

- 1. Haleakalā summit is considered by Kanaka Maoli, as well as more recent arrivals to Hawai'i, as a place exhibiting spiritual power.
- 2. The summit of Haleakalā is significant as a traditional cultural place because of practice. For both Hawaiians and non-Hawaiians who live and visit here, the summit is a place of reflection and rejuvenation.
- 3. The *mo'olelo* and *oli* surrounding the summit present a cluster of stories suggesting the significance of Haleakalā as a TCP.
- 4. Some believe that the summit possesses therapeutic qualities.
- 5. The summit provides an "experience of place" that is remarkable.

In recognition of the traditional cultural importance of Haleakalā, Native Hawaiian stonemasons erected the West and East *ahu* (altar or shrine) for ceremonial use by Kanaka Maoli (Figs. 3-4 and 3-5) at HO in 2005 and 2006, respectively. Each *ahu* represents a sacred ceremonial site. A *Ho'omahanahana* (dedication or "warming" offering) for each *ahu* was held. The West-facing *ahu* is named *Hinala'anui* and the East-facing *ahu* is named $P\bar{a}$ 'ele $K\bar{u}$ Ai I Ka Moku. Although the purpose of this construction was to restore structures previously existing on Haleakalā, the original structures were not necessarily in the particular locations where the new *ahu* were erected. As mentioned in Section 3.1.2-Existing Activities, Native Hawaiians are welcome to utilize these sites for cultural practices.

Summary of Haleakalā in Native Hawaiian Traditional Cultural Resource

The SCIA provides a comprehensive discussion about the role of Haleakalā in Native Hawaiian tradition. Excerpts from that discussion are provided below:

In order to gain an understanding of the importance and significance of Haleakalā, it is necessary to look at the symbology of the mountain, as well as the mountain's role in the history of Maui Island as a living entity. It has been said that the island of Maui was once known as Ihikapalaumaewa (Kamakau in Sterling 1989:2 and McGuire and Hammatt 2000). The name suggests a meaning of sacred reverence and respect (from $h\bar{o}$ '*i*h*i*). In former times, Maui was also known as Kūlua, a probable reference to the East and West Maui districts, which were separate polities by A.D. 1400-1500 (Sterling 1998:2; Kolb *et al.* 1997:16).

There are many legends and stories about Haleakalā that were identified in the SCIA. The following are some accounts from Kupuna, as described in the SCIA:

Kapi'ioho Naone (McGuire and Hammatt, 2000) recalls a story told by Kupuna Pale, a Hawaiian woman that he cared for as a young boy. According to Naone, she always referred to Haleakalā as the entire mountain and to Halemahina as the West Maui mountains:

(S)he would refer to Haleakalā as the house of the male and, this one over here as Halemahina, the house of the female or the house of the moon ... The whole West Maui mountains, she considered the *piko ka honua*, the navel of the earth, the woman. She would tell me that Maui was lucky because Maui had a male and female — Maui was complete. It wasn't all male and it wasn't all female. It was complete. And, so we would talk about Haleakalā as the male part of the island ... (Kapi oho Naone in McGuire and Hammatt 2000: Appendix B).

Sam Ka'ai (McGuire and Hammatt, 2000:13) also indicated that Haleakalā was "male" and related that the best adze material comes from a cliff at Nu'u where Māui's *ule* (penis) struck the side of the mountain.

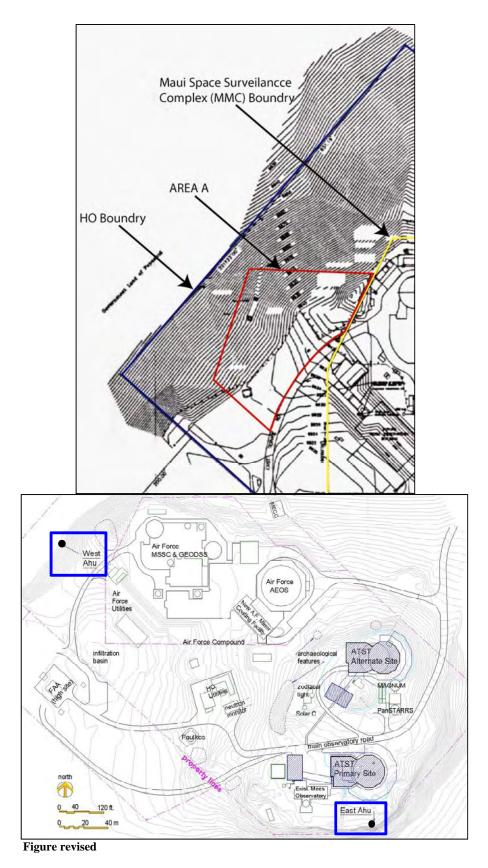


Figure 3-4. Set-aside "Area A" and East and West Ahu Locations at HO.

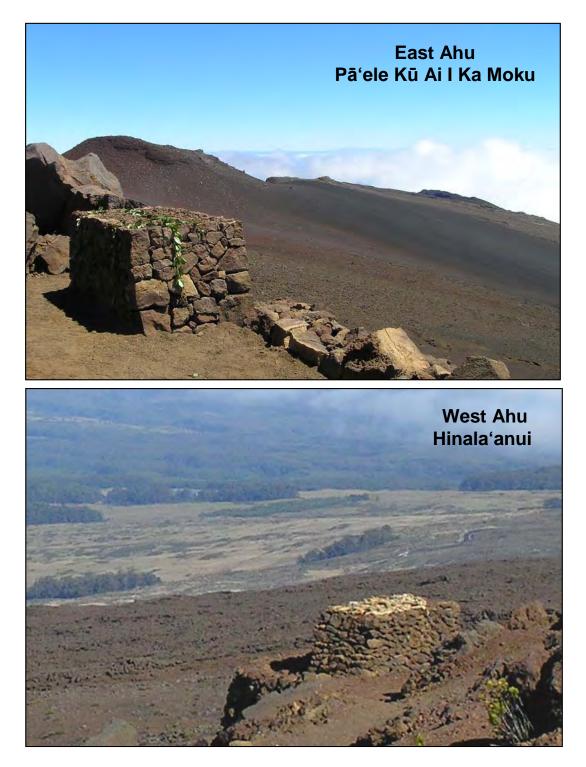


Figure 3-5. East- and West-facing Ahu.

According to Abraham Fornander, the name "Haleakalā" is said to be a "misnomer" and is incorrect: Aheleakala is the correct name (Fornander 1919, V, III: 536). He goes on to explain that Ahelekalā is:

The ancient name of Maui's famous crater, which means, "rays of the sun," and it was these which the demigod Maui snared and broke off to retard the sun in its daily course so that his mother might be able to dry her kapas (Fornander 1918-1919: V:534-36).

Fornander (1918-1919:V: 538) further states that an informant, Lemuel K.N. Papa Jr., gives the correct name is Alehelā "on account of Māui's snaring the rays of the sun, where the word *'alehe* is a variant form of *'ahele*. Both words literally mean "to snare". "Haleakalā" refers to not only the literal meaning, but the fact that the sun's path passes through Haleakalā each morning, thus the common interpretation of the name, "house of the rising sun". Today, the practice of driving up to the summit of Pu'u 'Ula'ula to see the sunrise, by both tourist and *kama 'āina*, serves to reinforce this perception of the name "Haleakalā".

Inez Ashdown (1971:68) disagrees with Fornander and writes that "Aleha-ka-lā" (Sun-snarer) is a more recent name attributed to the Māui traditions and Māui's feat of slowing the sun. She goes on to say that the name is really "Hale'a-ka-lā" which refers to the "entire east mountain of Maui", while "Hale-a-ka-lā" is the peak over by Kaupō Valley. She writes:

The proper name means Consecrated to, or by the sun and is poetically associated with Nā Mele o Nā Māhele of that mountain of legends and creation. (Ashdown 1971:68.)

...or a sacred place of rejoicing because Wa-na-ao, the Dawn, brings the new day from that mountain mass (Ashdown 1971:30).

Included in the first U.S.G.S survey of Haleakalā Caldera report was also an analysis of the place name "Haleakalā":

Some of the white residents, learned in the native language, suggest that this name should be Heleo-ka-lá, which means the trap in which the sun was caught. *Hale* means a house, but *hele* means a trap. The prepositions *a* and *o* both signify *of*, but the former implies an active relation of the *la*, or sun, while the latter implies a passive relation; that is to say, a-ka-la means that the sun did something – perhaps built the house or dwelt in it. But o-ka-la means that something was done to the sun. Now there is a well-known myth that Maui, the great hero and Ulysses of the Hawaiians, laid a snare for the sun and caught him, compelling him to make the daylight twelve hours long instead of eight (Dutton 1883:199).

The mountain of "Hale-a-ka-la" (terminology of Westervelt 1910) is the setting for the greatest deed of the legendary demi-god of Hawaiian literature, Māui. The myth depicting Māui's power over the travels of the sun is known throughout most of Polynesia, and although many of the details of Māui snaring the rays of the sun may be different (the composition of the snare, etc.), the importance of Māui capturing the sun as it rose in the east, from the underworld, is a universal detail. The many deeds of the demi-god Māui have become united into a continuous series, known universally to cultural anthropologists as the "Maui Cycle" (Luomala 1949).

Legends of the goddess Pele are also well known throughout Polynesia. In Rarotonga, Pere, the fire goddess, is the daughter of Mahuika, and it is from her that Māui (the demi-god of Hawai'i) obtains fire for his family. Pere is driven away from Raratonga by Mahuika, and she flees to Va-ihi (Hawai'i). In French Polynesia, Pere exists as the goddess of volcanoes, and in Aotearoa (New Zealand), she is known as Pele-honua-mea. In Hawai'i, Haleakalā was once her home, but she is now believed to reside on the island of Hawai'i, at the active volcanic vents of Kīlauea.

See SCIA, pp. 7-10. The SCIA also notes that early visitors to the Pacific Islands recorded traditional stories regarding the Hawaiian demi-god Māui, the fire goddess Pele, and references to Mauna Haleakalā (SCIA, pp. 10-14). These stories are summarized below in Table 3-4.

		SCIA Page	
Legend	Source	No.	Synopsis
How Māui snared the Sun	Armitage, George T. and Henry P. Judd (Ghost Dog and other Hawaiian Legends)	61	Reference to the sun rising over the Ko'olau Gap: ("He made a trip over the mountain ridges and across the plains until he came to Mount Haleakalā. He first saw the Sun through the Koolau Gap and then, like a giant disc, it wheeled over the top of the black crater walls and thence up into the heavens.") Māui's grandmother was said to have lived in Haleakalā Crater, and baked bananas in an oven near a <i>wiliwili</i> tree where the sun would stop for a meal.
Māui snares the Sun	Colum, Padraic	22,26	Māui observes the Sun rising over Haleakalā through a break in the chasm sides. The correct name for the crater is given as "A- hele-a-ka-lā (rays of the sun)". As the Sun comes through the chasm, it eats the bananas cooked by Māui's grandmother, who lives at Haleakalā. Māui forces an agreement with the Sun, making longer days in the summer and shorter days in the winter.
How Māui snared the sun so that his mother's <i>kapa</i> could dry.	Colum, Padraic (Legends of Hawai'i)	47-52	A hele-a-ka-lā (rays of the Sun) is given as the old name for Haleakalā. Māui's grandmother lives on the side of Haleakalā. The legend explains the longer days of summer and the shorter days of winter.
Legend of Māui snaring the Sun	Fornander, Abraham (Fornander Collection of Hawaiian Antiquities and Folk-Lore	Vol. V: 536,538	Māui climbs Haleakalā to slow the sun and gives "Aheleakala" as the correct name of the mountain. Māui broke some of the Sun's rays with a coconut husk snare. Fornander's informant, Lemuel K.N. Papa Jr. gives the correct name as "Alehela" for the mountain. The name given to the Sun's rays which Māui found sleeping in a cave was "Moemoe".
Māui conquers the Sun	Hapai, Charlotte ("Legends of the Wailuku")	4-6	Māui travels to Haleakalā from Rainbow Falls, outside of Hilo, to battle the Sun. This account gives the explanation for shorter winter days and longer summer days.
Māui slows the Sun	Lyons, Barbara ("Māui, The Mischievious Hero")	15-19	From the tip of Mauna Kahalawai (the meeting place between heaven and earth) Haleakalā could be seen. Māui's grandmother lives at the edge of the crater, near a <i>wiliwili</i> tree with red seeds.
How Māui snares the Sun	Metzger, Berta ("Tales Told in Hawaii")	81	Māui climbs Haleakalā to snare the Sun.
Slowing the Sun	Pukui, Mary Kawena ("Tales of the Menehune")	19-21	Collected from Harriet Coan, island of Hawai'i. The Sun is described as rising through an opening in Haleakalā. The seasonal variation of summer/winter is explained.
How Māui slows the Sun	Thrum, Thomas ("Hawaiian Folk Tales")	31-33	Māui observes the Sun rising directly over Haleakalā and battles it to allow his mother, Hina, to dry her <i>kapa</i> . The word for sun snarer is given as "Alehekalā".
Māui destroys Kuna Loa	Armitage, George T. and Henry P. Judd ("Ghost Dog and other Hawaiian Legends")	72-73	Māui rests near the <i>wiliwili</i> tree on Haleakalā and sees a warning cloud ("ao 'ōpua") over his mother's cave.

Table 3-4. Summary of Traditions Related to Haleakalā.

Legend	Source	SCIA Page No.	Synopsis	
Māui and Kuna Loa: the long eel	Colum, Padraic ("At the Gateways of the Day")	34	From Haleakalā, Māui sees the warning cloud ("ao 'ōpua") over his mother's cave in Wailuku.	
Māui and the eel, Kuna Loa	Lyons, Barabara ("Māui, the Mischevious Hero")	25-29	Māui makes the long trip to Haleakalā to visit his grandmother. From Haleakalā, he sees the danger signs of the "ao 'ōpua".	
Kana, the youth who could stretch himself upwards	Colum, Padraic ("At the gateways of the Day")	145	A "groove" was made in Haleakalā by Kana, as he stepped over the sea and mountain to reach his grandmother's door on the island of Hawai'i. The groove remains to this day.	
Legend of Kana and Niheu	Fornander, Abraham	Vol. IV: 448	Kana bends himself over the top of Haleakalā, creating a groove in the mountain which "can be seen to this day".	
Story of the Great Flood	Fornander, Abraham	Vol. V: 526	A flood accompanied the arrival of Pele in Hawaiki [Hawai'i] after she left Tahiti. Pele and her brothers and sisters went to live at Haleakalā, where she excavated the crater with her digging stick.	
Pele and the Deluge ("Kai a Kahinali'i")	Thrum, Thomas ("Hawaiian Folk Tales")	36-38	Pele travels to Hawai'i in search of a new home. A flood accompanies her. The sea rises and only the tops of the highest mountains can be seen. Pele digs the crater of Haleakalā.	
How Māui lifted the sky	Armitage, George and Henry P. Judd ("Ghost Dog and other Hawaiian Legends")	49	Storms and storm clouds plague Haleakalā, forcing Māui to push them further skyward.	
Māui lifts the sky	Lyons, Barbara ("Māui the Mischeivious Hero")	7-9	Māui lifts the sky above Haleakalā.	
Māui lifting the sky	Westervelt, W.D.	31	"Nevertheless dark clouds many times hang low along the eastern slope of Māui's great mountain-Haleakalā -and descend in heavy rains upon the hill Kauwiki; but they dare not stay, lest Māui the strong come and hurl them so far away that they cannot come back again".	
Māui fishes for an island	Armitage, George and Henry P. Judd ("Ghost Dogs and Other Hawaiian Legends")	51	Mentions Haleakalā in the distance as Māui sets out to dislodge the islands from the hold of a supernatural being at the bottom of the ocean.	
Māui fishing for the islands	Westervelt, W.D.	12	"The bottom of the sea began to move. Great waves arose, trying to carry the canoe away. The fish pulled the canoe two days, drawing the line to its fullest extent. When the slack began to come in the line, because of the tired fish, Māui called for the brothers to pull hard against the coming fish. Soon land rose out of the water. Māui told them not to look back or the fish would be lost. One brother did look back-the line slacked, snapped, and broke, and the land lay behind them in islands".	

Table 3-4. Summary of Traditions Related to Haleakalā (cont.).

Legend	Source	SCIA Page No.	Synopsis
Māui discovers the secret of fire	Armitage, George and Henry P. Judd ("Ghost Dogs and other Hawaiian Legends")	66, 68	Māui sees smoke rising from the slopes of Haleakalā and discovers the secret of fire from the mudhens. The mudhens ['alae] have a red mark on their foreheads as punishment after they tried to trick Māui and not give up the secret of fire.
The secret of fire- making	Collected by Pukui, Mary Kawena ("Tales of the Menehune")	26-32	From a translation by A.O. Forbes in Thrum's "Hawaiian Annual". Tells how man accidently discovered that the fire from lava could cook food ('ulu, mai'a), but did not know how to create it himself. Explained how the head of the mudhen was turned red.
Keoua, a story of Kalawao	Gowan, Herbert H. ("Hawaiian Idylls of Love and Death")	106	Keoua goes to Kalawao, Kalaupapa (Moloka'i) in search of his wife, Luka, a resident of the leper colony. The rising sun revealed "the majestic ridges of Haleakalā".
The Tomb of Pu'upehe (A Lāna'i legend)	Thrum, Thomas ("Hawaiian Folk Tales")	181-185	The beauty of Pu'upehe was described: "Her glossy brown spotless body shone like the clear sun rising out of Haleakalā".
Halemano and Princess Kama	Colum, Padraic ("At the Gateways of the Day")	102	While at the grove at Ke-a-kui, Halemano makes a maile lei (a wreath) and describes Haleakalā: "like a painted cloud in the evening".
Legend of Halemano	Elbert, Samuel H., editor, Selections from Fornander (1959)	266-68, 274	Halemano describes the sight of Haleakalā from Lele (Lahaina) on Maui as "like a painted cloud in the evening, as the other clouds drifted above it".
Legend of Halemano	Fornander, Abraham	Vol. V: 238, 240	Halemano describes the sight of Haleakalā from Lele (Lahaina) on Maui as "though floating above the clouds". The vision was enough to entice Halemano to travel to Kaupō and live there awhile.
The Jealous Wife	Metzger, Berta ("Tales Told in Hawaii")	81	The story of Aukele mentions Pele's travels and her work at Haleakalā. Her fires were too small to heat the large crater, so she moved to Kīlauea.
The Legend of Pu'ulaina	Fornander, Abraham	Vol. V: 534-36	Details the two ancient names of the mountain (Aheleakala and Alehela). "Formerly there was no hill there, but after Pele arrived, this hill was brought forth".
Hua, the unjust king, and the famine he caused	Skinner, Charles M. ("Myths and Legends of our New Possessions")	243	Luaho'omoe of Hāna sent his two sons to live in Haleakalā to escape the wrath of Hua. Hua is cursed after the unjust death of Luaho'omoe, and dies. The two sons meet a visiting chief from O'ahu at Kaupō, and leave Haleakalā to form a new government in Hāna.
Travels of Pele and Hiʻiaka	Emerson, Nathaniel	XIV- XV	Pele made her home in Haleakalā but left because it was too large to keep warm. Pele fights with queen Namakaokaha'i.
Travels of Pele and Hi'iaka: "Legend of Aukelenuiaiku"	Fornander, Abraham	Vol IV: 104-106	Pele digs a pit at Haleakalā and starts her fires burning there. The battle with queen Namakaokaha'i ends in Pele's death, but Pele returns as a spirit.

Table 3-4. Summary of Traditions Related to Haleakalā (cont.).

Legend	Source	SCIA Page No.	Synopsis
The Story of Pele and Hi'iaka	Green, Laura ("Hawaiian Stories and Wise Sayings")	18-19	Reference to Pele's travels through the islands looking for a home and her short stay at Haleakalā.
Dwelling places of Pele	Lawrence, Mary Stebbins ("Stories of the Volcano Goddess")	63	Tells of Pele's travels in Hawai'i, and of her arrival at East Maui, whereupon she began building up the mighty crater of Haleakalā.
Pele goddess of the volcanoes	Nakuina ("Hawaii: Its People, Their Legends")	25	Tells of Pele's arrival at Haleakalā and her short stay there.
Pele and her fight with her sister, Namakaokaha'i	Westervelt, W.D. ("Hawaiian legends of Volcanoes")	11	Pele dug the crater at Haleakalā with her pāoa, her special divining rod by which she tested the suitability of areas for excavation. Pele dies in the fight with Namakaokaha'i and her torn body is thrown across the coastline of Kaupō at Kahikinui.
Legend of Kihapiʻilani	Fornander, Abraham	Vol. V: 180	Warfare in East Maui spreads to Haleakalā, where Pi'imaiwa'a followed Ho'olae until he caught him on the eastern side of the mountain of Haleakalā.
The Story of the 'Ōhelo	Fornander, Abraham	Vol. V: 576	Ka'ōhelo, one of Pele's sisters, dies, and a portion of her body was thrown over to Haleakalā. She is remembered in the volcanic areas of the islands of Hawai'i by the proliferation of ' $\bar{o}helo$ berry shrubs.
Description of the powers of the demi-god Māui, and his relationship to Haleakalā	Westervelt, W.D. ("Hawaiian Legends of Volcanos")	12	"One legend says that he crossed the channel, miles wide, with a single step. Another says that he launched his canoe and with a breath the god of the winds placed him on the opposite coast, while another story says that Māui assumed the form of a white chicken, which flew over the waters to Haleakalā."
Burials, relating to the dead in ancient times.	Fornander, Abraham	Vol. V: 572	"Here are the secret graves of wherein the chiefs of Nu'u are buried, all on the side of Haleakalā."
Battle of the Alapa Regiment of Kalaniopu'u	Fornander, Abraham	Vol IV: 286	The Alapa Regiment of Hawai'i's chief Kalaniopu'u were annihilated at the Battle of Waikapū Commons, but not before they laid waste to Honua'ula, an area of Maui described as "the rugged slope of Haleakalā".
Pele and the snow- goddess	Westervelt, W.D.	56	"Lilinoe was sometimes known as the goddess of the mountain Haleakalā. In her hands lay the power to hold in check the eruptions which might break forth through the old cinder cones in the floor of the great crater. She was the goddess of dead fires."

A complete list of legends and chants which depict stories of Haleakalā can be found in Vol. II, Appendix F(1)-Cultural and Historical Evaluation.

Traditional Cultural Practices

The SCIA also provides information about Haleakal \bar{a} as an important place where traditional cultural practices take place. There are several types of traditional cultural practices that have and continue to take place with the ROI. These are described below:

Gathering of Plants

Several plants have had and continue to have particular cultural importance with the ROI. The SCIA reported that traditional gathering for plants resources continues to take place today with the upper elevations surrounding the summit; however, no gathering of plant resources occurs with the proposed ATST Project sites (SCIA p. 102).

In the past, *`ōhelo* berries (*Vaccinum sp.*) were traditionally offered to Pele by those who frequented the upper elevations of the mountainous regions (SCIA, p. 102). Today, upland hikers and those in transit often pick *`ōhelo* berries as a food resource when found ripe. Another example of plant gathering is the collection of *pūkiawe* (*Syphelia tameiameiae*) and *lehua* blossoms used for lei making (SCIA, p. 102). The SCIA also reported that *pūkiawe*, *lehua*, māmane and other plants and flowers are used for this same purpose (SCIA, p. 102). The trunks and branches of the *`a`ali`i* (*Dodonaea viscosa*) and *māmane* (*Sophora chrysophylla*) were traditionally harvested and used for *hale*, or house, posts. Present day efforts have revived the construction of traditional structures, however, it is unknown at this time whether these plants are actively harvested (SCIA, p. 102). *Māmane* timber has also been traditionally used for weaponry, particularly spears; however, it is unknown whether modern craftsmen of traditional harvest this timber today (SCIA, p. 102). *Pōpolo* (*Solanum americanum*) leaves, which are also found along the upper elevations and summit of Haleakalā were traditionally used (and appear to continue to be used) in *la`au lapa`au*, or Hawaiian medicinal practices. Specifically, they have been used for alleviating sore tendons, muscles, and joints (SCIA, p. 102).

Hunting Practices

Traditional hunting of birds for food and feathers was documented at least 100 years ago (SCIA, p. 103). The 'ua'u (Hawaiian petrel, *Pterodoma phaeopygia sandwichensis*) was particularly sought after; they were considered to be very tasty, especially the nestlings, which were reserved for the exclusive enjoyment of the chief (SCIA, p. 103 and NPS 2008 Ethnographic Study, p. 36). In addition to the 'u'au and nēnē (*Nesochen sandvicensis*) and the extinct flightless birds *Platochen pau* and *Branta hylobadisies* were hunted. Today, hunting practices continue. Specifically, "deer, goats, pigs, pheasant, chukar partridges, francolin and other game birds has become a culturally- supported subsistence practice" (SCIA, p. 104). Feathers from some of the game birds "are highly prized for their use in hatbands (SCIA, p. 104).

Basalt Collection

One of the reasons people came to the mountain was to collect, such as basalt for use in tool-making. Physical evidence from several archeological sites on the mountain seems to indicate that there were areas used for collection, reduction, and transport of basalt to lower elevations (NPS 2008 Ethnographic Study, p. 36). Evidence exists of areas that were used to quarry the basalt are areas that were used for "lithic workshops" which "are surface scatters of basalt debitage, with very few finished tools: this suggests that the scatters are related to reduction activities rather than sites where tools were used" (NPS 2008 Ethnographic Study, p. 36). Many of the lithic workshops are associated with cave shelters, structures, or natural rock formations (such as cliff faces) that would have afforded protection from inclement weather (NPS 2008 Ethnographic Study, p. 36).

<u> Pōhaku Pālaha – The Piko of East Maui</u>

Traditionally, Maui Island was separated into 12 *moku*, or districts during the time of the *Ali'i* Kakaalaneo and under the direction of the *Kahuna* Kalaiha'ohi'a (Beckwith 1940:383). The western portion Maui Island, dominated by Mauna Eke, the range commonly referred to as the West Maui Mountains, was subdivided into three *moku*: Lāhaina, Ka'anapali, and Wailuku. The eastern portion of Maui Island, dominated by Mauna Haleakalā, was subdivided into the remaining nine *moku*: Hāmākua Poko, Hāmākua Loa, Ko'olau, Hāna, Kīpahulu, Kaupō, Kahikinui, Honua'ula, and Kula. There is a naturally circular stone plateau, referred to as Pālaha (Sterling 1998:3), along the summit of Haleakalā where one *ahupua'a* from each *moku*, with the exception of Hāmākua Poko, originate. Pōhaku Pālaha (SCIA Fig ref), as it is commonly known today, is located on the northeast edge of Haleakalā Crater, at Lau'ulu Paliku and is considered as the *piko* (navel or umbilical cord [Pukui and Elbert 1986]) of east Maui (Mr. Timothy Bailey, personal communication (References omitted).

The term, *Pōhaku Pāloha*, is used to describe a place in the northeast corner of the crater. The origin of the term is complex, perhaps interpreted as smooth and flat, or flat rock, but essentially referring to a convergence point where eight of the nine districts of Maui meet, which is a unique spatial organization of the islands (NPS 2008 Ethnographic Study, p. 24). There are more prominent points on the mountain, e.g., Haleakalā Peak, which is the high point on the south rim of the crater, but the cultural significance of this location originates with the concept of a *piko*, or mouth, which has been described as that of an octopus (SCIA, p. 106) from which eight tentacles spread out over a rock, making it difficult to pry loose, in essence, they are stuck flat to the rock. The symbolic significance of the *piko* to Native Hawaiians as the center, or source life, would apply to this locus of interlocking districts, or *moku* (SCIA, p. 107).

Birth and Burial Practices

Native Hawaiians frequently buried their dead in the crater. In addition, the umbilical cords of newborns, or *piko*, were left in the crater as well. Burial sites have been identified in the crater and one possible burial feature has been described at HO (E. Fredericksen, 2003). Haleakalā is vital to the birth and death life cycle for Native Hawaiians who were and continue to be ma'a (familiar or accustomed) to this place (SCIA, p. 103).

<u>Haleakalā as a Sacred Mountain</u>

There is much historical research, testimonies, and other views that Haleakalā is a sacred place. As such, those who view Haleakalā as sacred consider development of the summit area to be desecration. Different individuals explain this viewpoint in various terms, or as expressed by one Maui *kupuna* (elder), "[w]hen a culture depends on these natural wonders of their environment for survival and reverence communications to a higher power than themselves, all care must be given to this practice" (SCIA, p. 105). Some Native Hawaiians involved in the Section 106 consultation process for the proposed ATST Project shared similar sentiments, and their testimonies, letters, and research have been included in Section 5.0 of the FEIS.

The summit area is referred to as *Wao Akua* and is considered to be the realm of the gods, and, as such, is a place to be revered. It is an area that is described to have been *kapu*, or restricted to all but the highest ranking of Native Hawaiians, such as their *kahuna*, or priests. Even today, visitors "...must go in a sense of humbleness and in a sense of asking and in a sense of not disturbing unduly..." (SCIA, p. 106).

There is a protective instinct among Hawaiian people to properly care for Haleakalā, not just for themselves but for future generations. That care is expressed as a strong feeling for responsibility to prevent development on Haleakalā, rather than propose or agree to mitigation for the adverse cultural effects that may result from construction at the summit (SCIA, p. 106).

Ceremonial Practices

Most of the cultural rituals and ceremonies that may be practiced on Haleakalā are not known to the general public because they are kept secret for personal reasons or to maintain the integrity or particular rituals from generation to generation (SCIA, p. 107). This is not uncommon in the Hawaiian culture, and during consultations with Native Hawaiians only a few specifics of these practices have been shared (SCIA, p. 107). The best known ritual to non-Native Hawaiians is the calling of the Sun, or *e ala e*, which is a chant used to greet ancestors, kupuna, and [also] greet the Sun as it rises (SCIA, p. 107). Some consulted parties have shared other rituals that include such practices as annual pilgrimages to honor certain trees, conducting solstice ceremonies, visiting special sites at certain times of the year for offerings, and going to the summit for chanting. Certain times of the day, month, or year are considered important because at these times the Sun is at zenith. The zenith has particular significance in that there would be the greatest amount of $h\bar{a}$, or spiritual breath that comes from above. For example, ceremonies at Leleiwi, about two miles from HO, have been described that involve the time when one's shadow is completely absent. These are described as being a time of *hālāwai*, or meeting, where everything in the world meets (Leleiwi is famous for "Specter of the Brocken", an unusual effect in which one can see his/her own shadow in the clouds surrounded by a rainbow, if the clouds are low and the Sun is behind the viewer. The *hālāwai* can also provide an opportunity to simply sit, with a sense of being with one's ancestors, doing what they did for generations (SCIA, p. 109).

Another example of the importance of Haleakalā for ritual practices is the ability to honor the Sun during the solstices and equinoxes in ways that are not possible at sea level. With visibility to the horizon over long distances, it is possible to see, for example, the Sun track across the sky and touch particular points around the summit, e.g., Pu'ukukui. These practices essentially use Haleakalā as a calendar (SCIA, pp. 107-108).

<u>Astronomy</u>

As described in oli (chants) and the *mo olelo* (stories) about the summit of Haleakalā, the area around Kolekole was used for a training ground in the arts of reading the stars and being one with the celestial entities above and was considered sacred because of its height and closeness to the heavens.

Astronomy has a very large role in the cultural importance of Haleakalā:

Astronomical matters, both practical and ceremonial, may have been the basis for the most important activities at Haleakalā. All of the possible traditional names for the mountain are associated with tales of the demi-god Maui and his efforts to catch and slow the Sun. These tales involve two aspects, one is the perception of Haleakalā reaching to the sky, and the other is Haleakalā as a place where the observation of solar movement (that is, the marking of seasons) took place.

The recognition of Haleakalā as a place to study the Sun, astronomy, astrology, and the constellations continues into modern times (NPS 2008 Ethnographic Study, p. 31).

<u>Travel</u>

Haleakalā has long been recognized as a traditional traveling route through East Maui. Travel from one side of Maui Island to the other side often resulted in experiencing Haleakalā. The Kaupō and Koolau Gaps provided an excellent route to connect these two districts, and it traversed through the crater (NPS 2008 Ethnographic Study, p. 33). A trail once led from Nuu (in Kaupō) directly up the steep southern flank of the mountain to the south rim of the summit of Haleakalā (NPS 2008 Ethnographic Study, p. 33).

3.2.2 Historic Resources

Historic resources were identified at both the HO site and within the HALE Park road corridor. Those resources are discussed more fully below.

<u>HO Site</u>

To augment the comprehensive survey from 2002, a field investigation of the proposed project site was conducted during fall 2005 (Vol. II, Appendix A-Archaeological Field Inspection). One historic site was identified at the Reber Circle site. This site remnant lies at the peak of Pu'u Kolekole. It is designated by the SIHP as Site 5443 (UH IfA, 2005) and is eligible for listing on the NRHP under Criterion "A" because of its association with mid-20th century scientific studies at Haleakalā, and under Criterion "D" for its information content **associated with the former radio telescope facility**.

This site remnant consists of a concrete and rock foundation that was part of the former radio telescope facility that was constructed in 1952 by Grote Reber, an early pioneer of radio astronomy. The bulk of this structure was dismantled about 18 months after the facility was completed. This site is composed of a concrete and rock foundation that is approximately 25 meters (82 feet) in diameter, the outer rim of which is up to 1 meter (3.28 feet) in width and approximately 80 centimeters (2.62 feet) in height.

HALE Park Road Corridor

The HALE roadway has been determined eligible for listing in the **NRHP** as an historic cultural landscape with contributing historic features. The applicable eligibility criteria include Criterion "A" (for its development of the National Park System, the development of early NPS landscape architectural design styles, and the craftsmanship of the Civilian Conservation Corps (CCC) and Criterion "C" (for its association with rustic Park design, that characterized early NPS development during the 1930s). In addition, the Park road corridor is within the boundaries of the Crater Historic District, which is listed on both the SIHP (SIHP 50-50-11-12-1739) and on the NRHP. The period of historical significance for the Park road corridor extends from 1933, when development began to provide access to additional views of the Haleakalā Crater in addition to those provided by White Hill, to 1966, when the improvements and expansions of development modes (such as Pu'u 'Ula'ula) along the road designed to enhance the visitor's access to the Haleakalā Crater were built (NPS, CLI, pp 14-17). The end of the significance period is important to recognize because the last development areas, including the Pu'u 'Ula'ula, Leleiwi, and Kalahaku Overlooks, were built as part of the "NPS Mission 66 Program". This Program, which was intended to modernize or update Park facilities and, at the same time, decrease the cost of development, ended in 1966; the date was chosen to commemorate the NPS' 50th year anniversary (NPS, CLI, pp. 14-16).

The 10.6-mile portion of the highway within the Park boundaries was designed by the Bureau of Public Roads (BPR) between 1925 and 1933 with input from the Hawai'i National Park superintendent and NPS landscape architects. Road construction on this segment of the road began in 1933 and was completed in 1935 with improvements made at Pa Ka'oao (White Hill) and the Kalahaku Overlook. Modifications and improvements to the transportation corridor continued until 1941 before the U.S. entered World War II and picked up again following the war as part of the Mission 66 Program. Alignment and construction techniques of the road, buildings, and structures were carefully employed to decrease its visual and physical impact on the landscape and to showcase the spectacular views of the island and ocean below as tourists would drive to the top of Haleakalā Crater and culminate at the summit with views into the crater (NPS, 2008b, p. 2.).

The entire Haleakalā Highway is a 37-mile road that stretches from central Maui's main town of Kahului to the summit of Haleakalā (NPS, 2008b, p. 2). The portion of the highway up to the HALE entrance is a

State road and was built prior to the Park road corridor. This part of the highway traverses through private property comprised of land used for both residential and ranch purposes.

The contributing landscape characteristics of the Park road corridor are discussed in detail below.

Natural Systems and Features

The principal feature of HALE is the Haleakalā Crater. The crater is located at the summit of a massive 10,000-foot dormant shield volcano. The crater is a 3,000-foot deep depression that is approximately 7.5 miles by 2.5 miles wide. Surrounded by jagged mountain peaks, the crater is home to numerous endangered flora and fauna, most notably the 'ahinahina (Haleakalā silversword) and nēnē (Hawaiian goose).

* * *

To reduce the expense of the road, engineers and designers had to carefully consider the rough terrain to avoid building costly bridges and box culverts. The largest obstacles were two large ravines that almost paralleled each other about a half-mile apart. Road engineers avoided the need to build expensive bridges by aligning the road between the two ravines, using switchbacks as necessary until the line reached an elevation at which the ravines were small enough to cross without using a bridge. In order to keep the road between the gullies, additional switchbacks were added to the original road plans and as a result, only one bridge was necessary.

* * *

...the landscape through which the [Park road corridor] traverses to reach the crater is predominantly characterized by fields of black lava deposited by thousands of years of lava flows (with the last two flows occurring sometime between AD 1480 and 1600). The dark color of the landscape influenced design and construction methods of buildings and structures associated with the road, following standard design philosophies during the Rustic-era. Native lava stone was used for construction of culverts and buildings (both 1930s and Mission 66) to help blend them in with the natural environment.

[Due to extreme weather conditions, including wind, cold, mist and fog.] the Park has maintained a center stripe (referenced as a fog line during the historic period) on the road as early as 1935.

* * *

* * *

As a landscape characteristic, natural systems and features have influenced the historic alignment and experience of the road ranging from the natural topography to the native vegetation and contributes to the historic character of the [Park road corridor] historic district.

(NPS, CLI, pp. 60-63).

Spatial Organization

Spatial organization of the [Park road corridor] cultural landscape is based on the road's alignment and the development nodes along its path up the volcano. Historically, the 10.6-mile segment of the highway within the Park's boundary was designed to create the most pleasant and scenic driving experience, while working within the constraints of a budget and rough, steep terrain of the volcano's northern slope. Following rustic design guidelines, the road's designers were careful to keep the grade of the road as low as possible and to blend it in with the landscape by allowing it to follow the contours of the land and using native lava stone as building material. Following the contours of the hillside also helped cut costs, by requiring less fill material. The switchbacks were carefully located to keep the road between two large gullies, thus eliminating the need for expensive bridges. Since the period of significance, the road's alignment has remained the same, with the addition of road spurs and observation points along the way (NPS, CLI, pp. 63).

Land Use

The Park road corridor was a massive construction project funded by the Federal government. It was developed in cooperation with the Maui government and local business leaders with the goal of

increasing tourism on the island. It resulted in converting "the arduous horseback trip up the crater into a route accessible by automobile" (NPS, CLI, p. 67). The road easily accommodated more visitors ascending the mountain to experience the sunrise view. The use of the road was later enhanced with the expansion of access routes for the United States military, Federal Aviation Administration and scientific organizations that use the mountain (NPS, CLI, p. 67).

Buildings and Structures

Structures built in association with the Park road over the course of the historic period reflect the spectrum of development periods from the naturalistic and rustic design philosophy of the 1930s to the more modern philosophies of the 1950s and 60s. The buildings, bridges, box culverts, and culverts along the road corridor were designed by architects and landscape architects over the course of the period of significance to minimize the visual impact of the structures and accentuate the picturesque qualities of the natural surroundings. Use of native materials, along with strict design principles and construction standards, ensured the structures blended with the scenery, matching the color and character of natural rock outcrops and surrounding terrain. The consistency in design and materials among the different structures along the road creates a visual unity and helps define the character of the road landscape (NPS, 2008b, pp. 67-69). The CLI also includes a chart (Table 3-5) that lists contributing buildings and structures (NPS, 2008b, pp. 96-99).

Contributing Structure Name	Date Built
Haleakalā Highway	1933-1935
Haleakalā Highway Bridge	1934
Haleakalā Highway Box Culvert (MP 1.993)	1933-1935
Haleakalā Highway Box Culvert (MP 2.621)	1933-1935
Haleakalā Highway Box Culvert (MP 2.937)	1933-1935
Haleakalā Highway Box Culvert (MP 2.950)	1933-1935
Haleakalā Highway Box Culvert (MP 3.966)	1933-1935
Haleakalā Highway Box Culvert (MP 4.209)	1933-1935
Haleakalā Highway Box Culvert (MP 4.985)	1933-1935
Haleakalā Highway Box Culvert (MP 5.212)	1933-1935
Haleakalā Highway Box Culvert (MP 5.819)	1933-1935
Haleakalā Highway Box Culvert (MP 5.840)	1933-1935
Haleakalā Highway Box Culvert (MP 5.910)	1933-1935
Haleakalā Highway Box Culverts (29)	1933-1935
White Hill (Pa Ka'oao) Observatory/Haleakalā Visitor Center	1936
White Hill Trail	1934
Red Hill (Pu'u 'Ula'ula) Observatory	1963
Red Hill Stairs	1963
Red Hill Road	1963
Red Hill Parking Lot	1963
Red hill Walkway (Asphalt)	1963
Kalahaku Overlook	199
Kalahaku Stairs	1954
Kalahaku Silversword Enclosure Walls	1966
Kalahaku Overlook Walkways	1954-1966
Silversword Trail at Kalahaku Overlook	1957
Leleiwi Overlook	1966

Ref.: NPS, 2008b

<u>Circulation</u>

The Park road corridor has served as the primary circulation route within the northwestern section of HALE. Features of the Park road corridor that are relevant to circulation include "the roadbed itself, as well as development nodes with their associated spur roads, parking areas, sidewalks, and trails" (NPS CLI, p. 83). "These development nodes are found at Halemau'u Trailhead, Leleiwi Overlook, Kalahaku Overlook, White Hill and Red Hill" (NPS CLI, p. 83).

Topography

The term "topography," as used here refers to that topography that has been manipulated by human activity. Within the Park road corridor, the majority of manipulation of topography is associated with the road construction itself, which is still evident throughout the corridor (NPS CLI, p. 95):

The volcano's west slope is cut by deep gullies, lava dykes, and spurs, requiring engineering techniques to create a pleasant, scenic road for Park visitors. As with any road construction, the [Park road corridor] required grading. Although great care was taken to minimize disturbance to the surrounding landscape, the use of rick cuts and cut fill sections was required to negotiate the rough, sloping terrain.

Views and Vistas

The Park road corridor was "designed to capture views of the island and ocean below with minimal distraction from the road itself" (NPS CLI, p. 98). Although clouds frequently envelope the slopes near the middle elevations of Haleakalā, the historical views that have attracted visitors to HALE include viewing the sunrise and sunset from Kalahaku and White Hill. These views inspired the original design and alignment of the Park road corridor. "The color of the surface material was chosen to blend in with the native lava stone landscape, guardrails were purposefully omitted to prevent blocking views, and the switchbacks were aligned tightly to try to minimize visibility of the road downhill" (NPS CLI, p. 98). In addition, the natural low-growing nature of the native vegetation on the crater ensured that the views would not be blocked by growth." These views and vistas comprise a landscape characteristic that contributes to the historic significance of the Park road historic district (NPS CLI, p. 98).

Archeological Sites Associated with the Cultural Landscape

Archeological sites that are within 50 feet of the Park road corridor are addressed in the following subsection. Those archeological sites that contribute to the significance of the Park road historic district are discussed in this paragraph. One site that has some potential to reveal information regarding the construction of the Park road is the Kalahaku Overlook, which was the location of both the 1894 and 1914 crater rest houses. It was also the location recommended during the planning phase of the road project to be the terminus of the road (NPS CLI, p. 99). The crater rest house was built by the Chamber of Commerce and was designated a Maui landmark. It has since been demolished. The rest house was linked to the development of tourism and served as a CCC camp while a crew constructed the White Hill trail and cleared the area for construction of the White Hill Observation Station (NPS CLI, p. 100). "Other archeological sites associated with the construction of the road are three caves (SIHP sites #50-20-11-3600, 3644, and 3688) located near the road that contain historic materials such as empty dynamite boxes, sawed wood, and ceramic serving plates and vessels (Carson and Mintmier, 2007)" (NPS CLI, p. 100). It is believed that these caves may have been used as temporary campsites by road construction workers (NPS CLI, p. 100).

3.2.3 Archeological Resources

Numerous archeological sites have been recorded on the slopes and in the crater of Haleakalā, including, in order of frequency, temporary shelters, cairns, platforms with presumed religious purposes, adze quarries and workshops, caves, and trails (UH IfA, 2005). These are all remnants of the very elaborate spiritual and cultural life that the Kanaka Maoli focused around Haleakalā.

Archeological Resources Within HO

There were two archeological surveys conducted in portions of HO during the 1990s. The first of these archeological studies was carried out in 1990 and consisted of a reconnaissance survey by Pacific Northwest Laboratory on behalf of the U.S. Air Force for the Advanced Electro-optical System (AEOS) Environmental Assessment (Chatters, 1991).

Cultural Surveys Hawai'i, Inc. conducted the second study, an archeological inventory survey, in 1998. During the course of this study, a walkover, four archeological sites were identified, primarily along the western side of Kolekole. These features included 23 temporary shelters and a short low wall. These wind shelters were typically constructed against the existing rock outcrop of the hill. The sites were designated SIHP No. 50-50-11-2805 through 50-50-11-2808. One sling stone was found on the floor of Feature J at Site 50-50-11-2807. In addition, one 'opihi, or limpet (Cellana spp.) shell, was noted on the surface of the Feature B floor of Site 50-50-11-2808. There was no subsurface investigation carried out, and only Site 50-50-11-2805 was mapped (additional inventory work was done at these sites in 2005).

Cultural Surveys Hawai'i, Inc., conducted another study in 2000, in conjunction with the planned construction of the **Faulkes Telescope Facility**. This survey located two previously unidentified sites (50-50-11-4835 and 50-50-11-4836) to the west of the MSO facility. Both of these sites were constructed against an exposed rock outcrop. Site 50-50-11-4835 consists of two features, **both of which are** historic rock enclosures filled with burned remnants of modern refuse; **it is clear that they are** historic trash burning pits. It was suggested that the U.S. Army might have initially used these during the war and later by UH workers (FTF EA, 2001). Site 50-50-11-4836 consists of three terraces, a rock enclosure, two leveled areas and a rock wall, all constructed against an exposed rock outcrop. Five of the features are interpreted as temporary shelters, while the two leveled areas were of indeterminate usage. Although one test unit did not reveal any pre-contact cultural materials, their construction is consistent with pre-contact structures used for temporary shelters in other areas of Haleakalā Crater (Bushnell and Hammatt, 2002, pp. 16-19). The IfA opted to preserve both sites.

A comprehensive archeological inventory survey of HO was completed during fall 2002. It was conducted by Xamanek Researches, LLC for IfA (UH IfA, 2005) and the inventory survey report was approved by the SHPD in a July 10, 2006 review letter (Vol. II, Appendix B(2)-"Science City" Preservation Plan). Whereas surveys had previously been conducted for specific construction projects within HO and a number of archeological features had been identified, the 2002 survey of the entire 18.166 acres for the LRDP (UH IfA, 2005) was exhaustive and included location and description of six previously unidentified sites within HO property. These sites were assigned State designations and further documentation was obtained for four previously identified sites that were listed with the SHPD. In total, 29 new features were identified and five excavation units were utilized to sample selected features that were located in some of the previously undocumented sites. These sites consist of wind shelters, two petroglyph images, a possible burial feature, and an historic foundation known as Reber Circle. Supplemental information was obtained from Sites 50-50-11-2805 to 50-50-11-2808 per discussions with Dr. Melissa Kirkendall of the SHPD Maui office. In addition, a trail segment was recorded at Site 50-50-11-4836 and designated as Feature F. Several isolated pieces of coral were noted in the southeastern portion of the 18.166-acre study area, but not assigned a formal site number because the coral pieces were not weathered. A possible site consisting of several pieces of coral in a boulder was plotted on the project map, but was determined to lie off the project area. The results of the inventory survey were submitted to SHPD for preservation review, although there was no triggering action requiring submittal of the survey, as described in HRS Section §6E-8. The significance assessments were accepted (DLNR, 2003). The results of these surveys are summarized in Table 3-6.

Table 3-6. Summary of HO Archeological Sites.

SIHP SITE #	Description (Number of Features)	Age	NRHP Significance Criterion
2805	Wind shelter (1)	Pre-contact - post-contact	D
2806	Wind shelter (1)	Pre-contact	D
2807	Wind shelter (13), Wind shelter, C-shape (2), Wind shelter/terrace (1)	Pre-contact - post-contact	D
2808	Wind Shelter (3)	Pre-contact - post-contact	D
4835	Trash pit (2)	Possible WWII era, modern trash observed	D
4836	Wind shelter (5), Trail (1)	Pre-contact-post-contact	D
5438	Wind shelter (1), Terrace/Wind shelter (1), Terrace-like Wind shelter (3), Rock pile (1)	Pre-contact - post-contact	D
5439	Rock Shelter (2), Wind shelter (4), Wind shelter, C-shape (6), Rock pile (1)	Pre-contact - post-contact	D
5440	Wind shelter, enclosure (1), Wind shelter, C-shape(2), Wind shelter natural terrace (1), Platform (1), Petroglyph (2)	Pre-contact - post-contact	D
5441	Terrace (2)	Pre-contact - post-contact	D
5442	Rock wall partial enclosure (1)	Pre-contact - post-contact	D

Site numbers are prefaced by 50-50-11: 50=State of Hawai'i, 50=Maui, 11=Kilohana quadrangle.

Most of the newly identified features are temporary habitation areas or wind shelters. Two features at one site are petroglyph images and, as indicated above, one new site is interpreted as a possible burial. Two small platforms thought to have ceremonial functions were also identified, as was a possible trail segment. All of the newly identified sites and previously designated ones retain their significance rating under at least Criterion "D" for their information content under NRHP and State historic preservation guidelines. All of the previously identified sites mentioned in this report qualify for significance because of their information content under Criterion "D" of State and NRHP historic preservation guidelines. In addition, the possible burial (Feature D) and the 2 petroglyph images (Features F and G) of Site 50-50-11-5440, as well as Site 50-50-11-5441 and the Site 50-50-11-4836 trail segment (Feature F) also qualify for their cultural significance under state Criterion "E". Finally, it is important to note that the various sites located in HO are a remnant of a Kanaka Maoli cultural landscape. Because Haleakalā is noted for its ceremonial and traditional importance to the Kanaka Maoli, the entire HO complex of sites may well qualify for importance under significance NRHP Criterion "A" and state criterion "E".

The general lack of material culture remains suggests that the area comprising HO was utilized for shortterm shelter purposes, rather than extended periods of temporary habitation use. While there was no charcoal located during testing in the project area, the newly identified sites are nevertheless tentatively interpreted as indigenous cultural resources, some of which may have been modified and/or used in modern times.

Archeological Resources Along the Park Road

The ROI also includes archeological sites located along the Park road corridor (Table 3-7). There are 11 archeological sites within 50 feet of the Park road corridor identified in the 2007 Archeological Survey

conducted by International Archaeological Research Institute, Inc. (Carson and Mintmier, 2007). Most of these sites are eligible for listing in the NRHP under Criterion "D", and one is eligible under both NRHP and state Criteria "C" and "D". These sites include short-term camp sites associated with pre-historic and/or historic activities, cairns that appear to be trail markers and segments of wall associated with cattle ranching (Carson and Mintmier, 2007).

Site numbers are prefaced by 50-50-11: 50=State of Hawai'i, 50=Maui, 11=Kilohana quadrangle.				
SIHP SITE #	Description (Number of Features)	Age	NRHP Significance Criterion	
3660	Cairn	Unknown	D	
3673	Wall	Unknown	D	
3688	Rock shelter, wall	Historic	D	
3600	Cave	Historic	D	
3637	Enclosures (110), mound, possible defensive post	Pre-historic, also historic	C, D	
3641	Platform	Probable historic	D	
3642	Cairn (2), rock shelter	Historic	D	
3643	Cairn	Probable historic	D	
3646	Enclosures (4)	Unknown	D	
3651	Multiple wall segments	Historic	D	
3659	Platform	Pre-historic	D	

Table 3-7. Summary of HALE Archeological Sites Along the Park Road Corridor.

(Carson and Mintmier, 2007)

3.2.4 National Historic Preservation Act, Section 106 Regulatory Compliance

The NSF's consultation process, pursuant to the National Historic Preservation Act of 1966 (NHPA), is discussed in this section because it has been a mechanism to assist in determining the affected environment. Prior to issuance of the DEIS, NSF's Section 106 compliance process (as described below) was initiated. Both formal and informal consultations were conducted as discussed in further detail in Section 5.0-Notification, Public Involvement, and Consulted Parties. Subsequent to the publication of the DEIS, additional consultations have taken place with Native Hawaiian organizations and individuals, community groups, other State and Federal agencies, and other interested parties to discuss the cultural resources involved, potential effects on those resources, and ways in which those effects could be addressed. All of these additional consultations are detailed in Section 5.0.

The NHPA requires Federal agencies to consider whether their actions will have impacts on historic properties eligible for listing in the NRHP. The heart of the NHPA is the Section 106 process, which "seeks to accommodate historic preservation concerns with the needs of Federal undertaking through consultation among the agency official and other parties with an interest in the effects of the undertaking on historic properties... the goal of consultation is to identify historic properties potentially affected by the undertaking, assess its effects and seek ways to avoid, minimize or mitigate any adverse effects on historic properties." (36 CFR § 800.1(a). In the State of Hawai'i, the NSF must also consult with the SHPD and all interested Native Hawaiian organizations and individuals where historic properties of significance are involved.

Because of Section 106, Federal agencies must assume responsibility for the consequences of their actions on historic properties and be publicly accountable for their decisions. The regulations governing this process are published in 36 CFR § 800, "Protecting Historic Properties", and can be found on the ACHP web site at www.achp.gov/regs-rev04.pdf. To successfully complete a Section 106 review, Federal agencies must determine if Section 106 of NHPA applies to a given project and, if so, implement the following:

- 1. Identify historic properties within the area of potential effects,
- 2. Evaluate historic properties for significance,
- 3. Assess whether the Federal undertaken will have adverse effects on the historic properties; and,
- 4. Through consultation with SHPD, all interested Native Hawaiian organizations and individuals, and other interested parties (and the ACHP in some cases), determine whether the adverse effects can be addressed through avoidance, minimization and/or mitigation.

In addition to the NHPA requirements, it is the policy of the State of Hawai'i under Chapter 343, HRS, to alert decision makers, through the environmental assessment process, about significant environmental effects which may result from the implementation of certain actions. An environmental assessment of cultural impacts gathers information about cultural practices and cultural features that may be affected by actions subject to Chapter 343, and promotes responsible decision-making. Articles IX and XII of the State Constitution, other State laws, and the courts of the State require government agencies to promote and preserve cultural beliefs, practices, and resources of Native Hawaiians and other ethnic groups. Chapter 343 also requires environmental assessment of cultural resources in determining the significance of a proposed project.

After issuance of the DEIS, NSF and HALE **began** working together to address HALE's environmental compliance needs associated with the SUP required by HALE to operate commercial vehicles associated with the proposed ATST Project within the Park. NSF and HALE have agreed to coordinate their environmental compliance requirements under both NEPA and Section 106. It was through this partnership that the cultural, historic, and archeological resources of HALE (as discussed in Sections 3.2.1 through 3.2.3, above) were identified.

3.3 Biological Resources

Biological resources were evaluated within the ROI, which, for these resources, falls within both the HO and the Park road corridor. A discussion of these resources follows.

Between 2002 and 2009, surveys at HO were conducted to assess its botanical and invertebrate habitats and to map the visitation flight patterns of avian fauna. The surveys were done as part of the LRDP for HO, AEOS Mirror Coating Section 7 consultations, and more recently, as part of the EIS **process** for the proposed ATST Project. The results of the surveys generally indicated that the diversity and density of biological populations at HO are dynamic from season to season and over longer temporal periods, depending on a number of factors such as rainfall, temperature variations and less well-understood factors. Human activities certainly play a role in these dynamic variations (i.e., ground disturbances associated with minor construction at the MSSS resulted in numerous new 'ahinahina sprouts in that part of HO the following year, and the renovation of parts of the stormwater drainage system at HO resulted in increased plant growth along restored water channels).

Both the Preferred Alternative (the Mees site) and the other action alternative (the Reber Circle site) for the proposed ATST Project are located on State of Hawai'i land within the Conservation District

Final Environmental Impact Statement — Advanced Technology Solar Telescope

on Pu'u Kolekole, approximately three-tenths mile from the highest point, Pu'u Ula'ula in HALE. Mountain summits are typically aeolian deserts populated by a few mosses, lichens, and grasses. The predominant vegetation type at HO is alpine desert/shrubland. Alpine ecosystems exist at elevations of from 9,842 to 11,155 feet ASL and can be extremely dry. Rainfall ranges from less than 15 inches to as much as 60 inches annually. Great daily variations in temperature occur with frost most common at night. Cinder and ash soils underlie this community on Maui (UH IfA, 2005). While there was at least one historical account of an abundance of 'ahinahina (Haleakalā silversword, *Argyroxipbium sandwicense*) (Bird, 1890), a recent study reported that dry alpine shrublands are sparsely vegetated with dwarf native shrubs. At HO, shrubs consist of interspersed 'ahinahina and na'ena'e (*Dubautia menziesii*). Vegetation cover is restricted by harsh environmental conditions to 10 percent of the surface area or less. Some areas have little as one percent coverage. The vegetation is also low, generally less than three feet high (UH IfA, 2005).

Within HO, undisturbed land is interspersed amid land that has been disturbed by construction. Undisturbed sites are inhabited by predominately native shrubs, including na'ena'e, pukiawe (*Styphelia tameiameiae*), and 'ohelo (*Vaccinium reticulatum*), herbs, such as tetramolopium (*Tetramolopium humile*), and, grasses, including bentgrass (*Agrostis sandwicensis*), hairgrass (*Deschampsia nubigena*), and mountain pili (*Trisetum glomeratum*). Three species of native ferns, 'iwa'iwa (*Asplenium adiantum-nigrum*), 'oali'i (*Asplenium trichomanes* ssp. *densum*), and kalanoho (*Pellaea ternifolia*), are found tucked into rock crevices and overhangs and on the steep slopes of the southeast part of the property. Areas of HO where construction has occurred generally support fewer native species and more weeds. During the November 2002, LRDP survey of the entire HO site (UH IfA, 2005), 32 plant species were observed, 11 of which were native and 21 of which were non-native. In the 2005 proposed ATST Project survey for the Mees and the Reber Circle sites, 25 plant species were observed, 11 of which were native.

The following species, listed as either threatened or endangered under the Endangered Species Act (ESA), have been observed within the ROI:

- 1. 'ahinahina or Haleakalā silversword;
- 2. 'ua'u or Hawaiian Petrel (*Pterodoma phaeopygia sandwichnesis*);
- 3. nēnē or Hawaiian goose (Branta sandvicensis); and,
- 4. 'ope'ape'a or Hawaiian hoary bat or (*Lasiurus cinereus semotus*).

The Park road corridor contains biological ecosystems that are both unique and fragile. Prior to the late 1980's, these ecosystems were not well protected from feral goats (*Capra hircus*) and pigs (*Sus scrofa*). However, considerable efforts have been expended in recent years to keep feral animals off the upper slopes of HALE (a feral animal control fence encloses Haleakalā Crater and much of Manawainui), and there are extensive staff and volunteer efforts to check the spread of alien invasive species (AIS). Since that time, the threat to certain ecosystems within HALE has been more compelling than others; accordingly, this FEIS is focused on those ecosystems (including plants, avian species, and arthropods) within the Park road corridor.

With regard to botanical habitats, periodic surveys within HO have been conducted as part of earlier HO development activities, the LRDP for HO, and more recently as part of the EIS process for the proposed ATST Project. Even so, the brief span (approximately 10 year) of available data cannot reliably predict all the effects from construction of the proposed ATST Project. However, identifiable effects on those resources from earlier actions are useful in assessing what is likely to occur during construction.

The Park road corridor consists of more than one biological zone for plants. The lower half of the Park road corridor, up to about 8,500 feet is within the subalpine shrubland zone. Subalpine shrublands of Haleakalā occur primarily on the western and northwestern flanks of the volcano extending from just below the Park boundary at 6,724 feet up to where it grades into the alpine zone at approximately 8,530 feet. The upper Park road corridor is in the alpine zone, which occurs above 8,530 feet on the older, outside western slope of the volcano (Medeiros, et al, 1998). Considerable diversity exists within both biological zones, and 'ahinahina (Haleakalā silversword), an endangered species of concern during construction of the proposed ATST Project, inhabits both zones.

Native and non-native vertebrate and invertebrate species occur along the Park Road corridor. These are discussed in detail below. Those that are threatened and endangered are discussed in Section 3.3.3.1. Other native and introduced fauna are discussed in Section 3.3.3.2. Invertebrate species are discussed in Section 3.3.3.3.

3.3.1 Botanical Resources

The landscape at HO is considered to be an *Argyroxiphium/Dubautia* alpine dry shrubland vegetation type. Dry alpine shrublands are typically open communities, occurring between about the 9,800 to 11,100-foot elevations in Hawai'i, predominantly on barren cinders, with very sparse vegetation cover (UH IfA, 2005). The substrate is a mixture of ash, cinders, pumice, and lava (UH IfA, 2005). Vegetation is sparse, varying from a near barren landscape (<1 percent cover) to about 10 percent cover. Vegetation is low to the ground, no more than 3 feet (1 meter) tall anywhere on the site. During the November 2002, LRDP survey conducted by Starr Environmental (UH IfA, 2005), a total of 32 plant species were observed, consisting of 11 (34 percent) native species and 21 (66 percent) non-native species. The December 2005 survey (Vol. II, Appendix E-Botanical Survey) identified 25 plant species, consisting of 11 native species.

A more recent survey was conducted in June 2009 (Vol. II, Appendix E-Botanical Survey). It indicated that, in general, the number of species has increased over time and it appears the distribution and abundance of both native and non-native plants has increased. Global Positioning System (GPS) work conducted during this latest study will allow for greater resolution detail of future vegetation changes.

At HO, the total number of plant species has increased from a total of 32 plant species (11 were native and 21 were non-native) in 2002, to a total of 44 plant species (3 new natives and 9 new non-natives, for a total of 14 native species and 30 non-native species) in 2009. Species previously reported from HO that were not observed in 2009 include *Anthoxanthum odoratum* and *Senecio sylvaticus*. These species may have disappeared, may have been overlooked, or may persist as seed in the soil. The 9 new non-native species recorded in 2009 included *Ageratina adenophora, Bromus diandrus, Conyza bonariensis, Dactylis glomerata, Festuca rubra, Pennisetum clandestinum, Trifolium repens,* Unknown sp., and *Vulpia myuros.* These species may be new arrivals, they may have been overlooked in previous studies, or perhaps they were persisting as seeds in the soil and have recently germinated. The 3 new native species recorded in 2009 included *Dryopteris wallichiana, Pteridium aquilinum* var. *decompositum, Silene struthioloides.* These could be new arrivals, but these inconspicuous natives could have just as easily been overlooked in previous surveys.

The land in HO can be divided into two general areas: undisturbed and disturbed (i.e. those where construction or other human influence has occurred). Undisturbed areas are comprised of predominantly native plants including shrubs, herbs, and grasses. Three species of native ferns are found in rock crevices

and overhangs around the Pan-STARRS (PS-1) observatory and on the steep slopes on the southeast portion of the property near the MSO facility.

Areas of HO property where construction has occurred generally support fewer native species and contain more weeds. One notable exception is the endemic 'ahinahina, or Haleakalā silversword, which is found exclusively on areas where construction has occurred. The only tree species found at HO were two unidentified pines (*Pinus* sp.) located between a weather station tower and the MSO facility, which were approximately 20 cm (7.87 inches) tall and looked more like a small multi-branched shrub than a tree. This was the first record of pines on the summit of Haleakalā. It was not known if the trees were planted, arrived as contaminants in soil, or **arrived** through natural wind dispersal. These trees were thought to be many years old despite their minimal height (compared to other pine species). At the recommendation of the Friends of Haleakalā National Park, these trees were removed.

There are ten native species and nine non-native plants species found on the Mees site. Portions of the site which were moderately disturbed, especially areas near buildings and roads, **contain the most** weeds (non-native species) and fewest native species. Non-native plants found on the Mees site include thyme-leaved sandwort (*Arenaria serpyllifolia*), storksbill, hairy cat's ear, black medick (*Medicago lupulina*), evening primrose (*Oenothera stricta* subsp. *stricta*), pine (*Pinus* sp.), English plantain (*Plantago lanceolata*), Kentucky bluegrass (*Poa pratensis*), and common or spring vetch (*Vicia sativa* subsp. *nigra*). (Vol. II, Appendix E-Botanical Survey).

Portions of the site that were the least disturbed contain the most native plant species and the least weeds. Native plants found on the Mees site include Hawaiian bentgrass, 'iwa 'iwa, 'oali'i, hairgrass (*Deschampsia nubigena*), kupaoa, kalamoho (*Pellaea ternifolia*), pukiawe (*Styphelia tameiameiae*), tetramolopium (*Tetramolopium humile*), mountain pili (*Trisetum glomeratum*), and ohelo. (Vol. II, Appendix E-Botanical Survey).

The most undisturbed areas of HO hold remnant pockets of native plants indicative of relatively pristine conditions. Two native shrubs, ohelo and pukiawe, appear to be sensitive to disturbance/urbanization on Pu'u Kolekole, and were found on the proposed construction site adjacent to the MSO facility.

The Reber Circle site is mostly disturbed, with the original profile of the rise evident only on the margins of the site, often where the land is steep. There were nine native and seven non-native plants found on the Reber Circle site. The most heavily disturbed portions of the site, such as the roads, parking lots, and existing buildings, contain virtually no plants, native or non-native.

Portions of the site which are moderately disturbed, especially those areas near buildings and roads, contain the most weeds and fewest native species. Non-native plants found on the Reber Circle site include Japanese sugi pine (*Cryptomeria japonica*), storksbill (*Erodium cicutarium*), Yorkshire fog (*Holcus lanatus*), hairy cat's ear (*Hypochoeris radicata*), lythrum (*Lythrum maritimum*), evening primrose, and Kentucky bluegrass. (Vol. II, Appendix E-Botanical Survey).

Portions of the site that were the least disturbed contain the most native plants and the least weeds. Native plants found on the Reber Circle site include Hawaiian bentgrass, 'ahinahina or Haleakalā silversword,'iwa , 'oali'i , hairgrass , kupaoa , kalamoho , tetramolopium , and mountain pili . (Vol. II, Appendix E-Botanical Survey).

The same patterns of nativity in relation to disturbance that occur on the Mees site also seem to occur on the Reber Circle site. Native plants dominate undisturbed areas, while non-natives dominate disturbed sites. Additionally, it appears some native species are never found in the most disturbed sites. The Reber Circle site does not contain the native shrubs pukiawe and ohelo, suggesting a higher level of disturbance than some of the other areas at HO, such as the Mees site, which contains both pukiawe and ohelo.

The introduction of alien invasive species (AIS) was evaluated based upon what is known about existing and past loss of habitat within the ROI. According to the botanical survey of HO conducted in 2005, there were more non-native plants on the HO site relative to similar adjacent "pristine" areas of HALE, the Kahikinui Forest Reserve, and the Kula Forest Reserve. The report cited a number of reasons for this. To some extent, development seems to promote plant growth, both native and non-native. This is likely due to disturbance to the soil from construction, additional water sources from discharge pipes and gutters, and protection from the elements by objects such as building foundations and sidewalks. As a result, both native and non-native plants are able to find refuge in otherwise inhospitable locations.

Botanical resources along the Park road corridor can be grouped into the alpine and subalpine shrubland habitat zones, depending upon elevation. The upper, alpine zone largely contains the botanical diversity described above for HO. The lower elevations, below about 8,500 feet, are within the subalpine shrubland habitats, which contain common species such as the coriaceous, small-leaved shrub pukiawe (*Styphelia tameiameiae*). The tallest tree-shrub of subalpine shrublands is mamane (*Sophora chrysophylla*) whose golden yellow flowers in the spring provide food for native honeycreepers that seasonally travel from nearby rain forests. 'Ohelo and kiipaoa are common components of the subalpine zone; historically, both have been suppressed by feral goats and are recovering well in their absence. Other common and characteristic native subalpine species include the shrubs pilo (*Coprosma montana*), kukaenene (*Coprosma ernodeoides*), and hinahina (*Geranium cuneatum tridens*), and ('a'ali'i *Dodonaea viscosa*), and the herbs *Carex wahuensis*, *Deschampsia* nubigena and 'uki (*Gahnia gahniiformis*). Non-native grasses, especially velvet grass are common and persistent between native shrubs (Medeiros, et al, 1998).

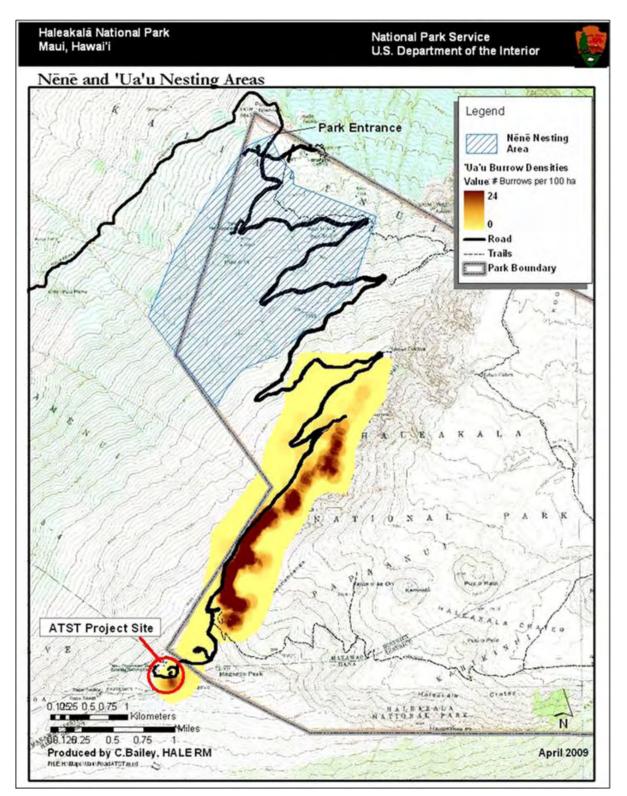
3.3.2 Endangered, Threatened, Listed, or Proposed Plant Species

The 'ahinahina, or Haleakalā silversword, is Federally-listed as a "threatened" species, meaning it may become endangered throughout all or a significant portion of its range if no protective measures are taken. In 2002, nine live 'ahinahina and three dead 'ahinahina flower stalks were located within the HO property. None of the live plants were located on or around the proposed ATST Project areas. One of the dead plants, also found during the 2005 **survey for the** proposed ATST Project, was located east of Reber Circle. The area around the plant was searched for seeds, but none were found. There are a number of 'ahinahina in HALE, 382 hectares (944 acres), of designated 'ahinahina critical habitat. Approximately seven miles of the Park road corridor traverse through Designated Critical Habitat for the 'ahinahina. There is also 1 hectare (2 acres) designated critical habitat for the nohoanu plant (many-flower geranium), *Geranium multiflorum*) in HALE.

3.3.3 Faunal Resources

Fauna at HO and along the Park road corridor consist of avifaunal species, mammals, and invertebrates. Three Federal- and State-listed animal species, described below, occur in the summit area and slopes of Haleakalā. Table 3-8 lists the habitat preference and the likelihood of occurrence of avifaunal species and mammals in the ROI.

Scientific Name	Common Name	Federal Status	State Status	Habitat	Date Last Observed	Likelihood of Occurrence
Flora						
Argyroxiphium sandwicense	Haleakalā silversword, 'ahinahina	Protected under ESA	Protected by State	May occur in alpine dry shrubland.	Known currently	С
ssp. macrocephalum	NOTE: No liv although they			proposed ATST project sites,		
Fauna	-					
Pterodoma	Hawaiian Petrel, 'ua'u	Protected under ESA	Protected by State	May occur in alpine dry shrubland.	Known currently	С
phaeopygia	NOTE: Most l	ikely observed	during the ne	esting season, February to Nove	ember.	
Branta sandvicensis	Hawaiian goose, nēnē	Protected under ESA	Protected by State	May occur in beach strands, shrublands, grasslands, woodlands.	Known currently	С
Sunavicensis	NOTE: May b	e incidentally	sighted at HO	, but unlikely a resident.		
Lasiurus cinereus semotus	Hawaiian hoary bat, 'ope'ape'a	Protected under ESA	Protected by State	May be seen foraging in open areas, including alpine shrublands, near the edges of native and non-native		Р
NOTE: May be incidentally sighted at HO, but unlikely a resident.						


Table 3-8. Threatened and Endangered Species Occurring at HOand Along the Park Road Corridor.

*Likelihood of occurrence at HO: C = Confirmed P = Potentially may occur U = Unlikely to occur

3.3.3.1 Endangered, Threatened, Listed or Proposed Avifaunal and Vesper Bat Species

<u>'Ua'u (Hawaiian Petrel)</u>

The 'ua'u, or Hawaiian Petrel, a Federal- and State-listed endangered bird species, is present in the summit area (Natividad Bailey, unpublished report for IfA). The largest known nesting colony of 'ua'u is located in and around HALE (Simons and Natividad Hodges 1998). About 30 known burrows are along the southeastern perimeter of HO and several burrows are northwest of HO, as shown in Figure 3-6, with a large number of burrows within two miles of HO (HALE, 2003). There are about 220 burrows along the Park road corridor and outside the crater rim (HALE unpublished data). As shown in Figure 3-6, many of these burrows are within the 50-foot Park road corridor that constitutes part of the ROI for the proposed ATST Project. The 'ua'u at HALE is the only population of seabirds in Hawaii's national parks that is intensively monitored and managed. Monitoring for 'ua'u distribution and breeding success at HALE occurs annually as part of regular resource management activities, and has since 1980. 'Ua'u in HALE nest in burrows, most of which are located along the steep cliffs of the western rim of Haleakalā Crater. A recent report states that "There are currently more than 1,000 known 'ua'u burrows at HALE, of which about 60 percent are occupied by 'ua'u each year." 'Ua'u are present at Haleakalā from February through October and are absent from November through January. HALE staff search for new burrows and check existing burrows periodically while the 'ua'u are present (Natividad Bailey, 2009). These

The Park road corridor for the Proposed ATST Project is defined specifically as a 50-foot corridor along the Park road, measured from the mid-point of the road extending out 25 feet on each side.

monitoring efforts include burrows located along the Park road corridor. Figure 3-7 illustrates the location of 'ua'u in and around HO. The closest burrow is approximately 50 feet to the east of the Mees site (Fig. 3-7, burrow #SC40).

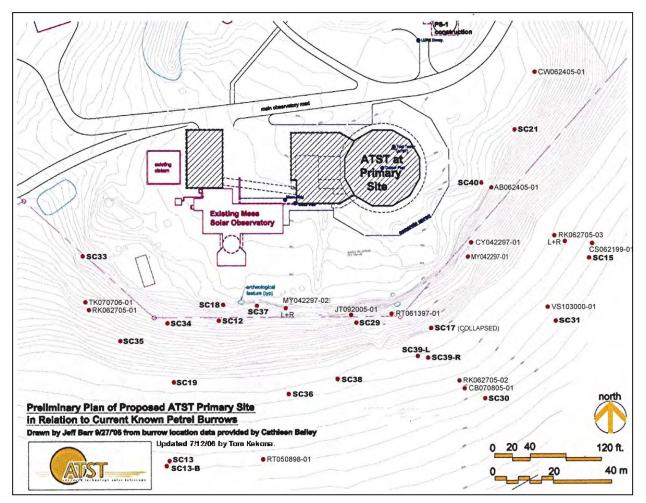
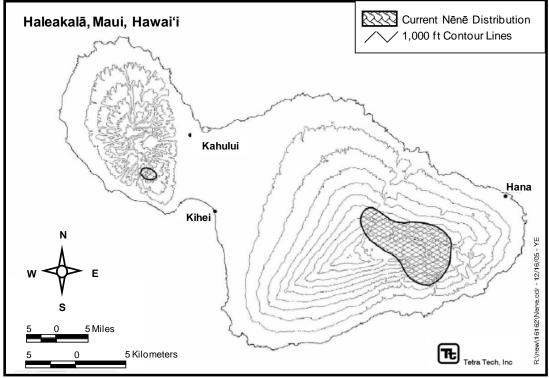
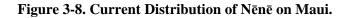


Figure 3-7. Petrel Burrows In and Around HO Property.

The 'ua'u can be found nesting at Haleakalā from February to November. The birds make their nests in burrows and return to the same burrow every year. The species distribution during their non-breeding season is poorly known, but they are suspected to disperse north and west of Hawai'i, with very little movement to the south or east. The 'ua'u typically leave their nests just before sunrise to feed on ocean fish near the surface of the water and just before sunset transit from the ocean back to Haleakalā. These birds have limited vision and their high speed and erratic nocturnal flight patterns may increase the possibility of collisions with fences, utility lines, and utility poles (Simons and Natividad Hodges 1998).


'Ua'u are believed to navigate by stars, so man-made lights may confuse in-flight 'ua'u. Evidence suggests these birds will fall to the ground in exhaustion after flying around lights, where they are susceptible to being hit by cars or attacked by predators (Simons and Natividad Hodges 1998); however, this has not been observed at HO. However, 'ua'u have been seen on the Park road at night and data indicates that 'ua'u carcasses found show indications of being hit by vehicles on the Park road (HALE unpublished data). In addition to these hazards, confirmed causes of 'ua'u mortality include nest collapse by wild goats, predation by native owls and introduced predators, road-kills, collision with such objects as

buildings, utility poles, fences, lights, and vehicles, and disturbance from road resurfacing activity (Natividad Hodges and Nagata, 2001).


During fall 2004, ABR, Inc. conducted a study for the Maui Space Surveillance Complex (MSSC) (ABR, 2005). Using ornithological radar and visual sampling techniques, this study's objective was to determine movement patterns of 'ua'u near the summit of Haleakalā, including spatial movement patterns, temporal movement patterns, and flight altitudes. Many of the patterns observed in this study matched what is known about the biology of 'ua'u. Breeding adults, non-breeding sub-adults, and adults are active in the summer when the displaying non-breeders are active and fly erratically and circle the colonies at low altitudes. In contrast, only adults visit the colonies during the fall, when they simply fly in and land at burrows to feed young. It is suspected that fewer birds were seen on the radar in the vicinity of the MSSC than near the crater because the crater is much more active for breeding and displaying birds than is that part of the colony along the southwestern ridge (i.e., the ridge on which the observatories and the FAA site are located).

<u>Nēnē (Hawaiian Goose)</u>

The nēnē, or Hawaiian goose, is a Federal- and State-listed endangered species on Haleakalā and is the only extant species of goose not occurring naturally in continental areas. The nēnē formerly bred on most of the Hawaiian Islands, but breeding is currently restricted to the islands of Hawai'i, Kaua'i and Maui. Nēnē seem to be adaptable and are found at elevations ranging from sea level to almost 8,200 feet (Fig. 3-8) in a variety of habitats, including non-native grasslands, sparsely vegetated, high elevation lava flows, cinder deserts, native alpine grasslands and shrublands, open native and non-native alpine shrubland-woodland community interfaces, mid-elevation (approximately 2,300 to 3,900 feet) native and

Draft Revised Recovery Plan for the Nene or Hawaiian Goose, USFWS, 2004

non-native shrubland, and early successional cinder fall. Critical habitat has not been designated for the nēnē. The nēnē population on Maui is thought to consist of approximately 330 individuals. While the nēnē has been known to fly over HO, the summit area is outside the known feeding range of the bird. The nēnē is known to frequently occur along the Park road corridor, from the Park entrance to the Leleiwi Overlook and occasionally above, as well as areas outside, the Park on the lower slopes of Haleakalā.

The nesting periods for this non-migrating, terrestrial goose occur from October to March. Preferred nest sites include sparsely to densely vegetated beach strands, shrublands, grasslands and woodlands on well-drained soil, volcanic ash, cinder, and lava rock substrates. Nēnē are ground nesters and their nests are usually well hidden in the dense shade of a shrub or other native vegetation, but on Kaua'i nēnē have built nests under alien species. Nēnē are browsing grazers, eating over 50 species of native and introduced plants.

Once abundant, the nēnē population has declined. The primary causes of this decline were habitat loss, hunting during the nēnē breeding season (fall and winter), and the **impacts** of alien mammals introduced during both Polynesian and western colonization.

Current threats to the nēnē population include predation, nutritional deficiency due to habitat degradation, lack of lowland habitat, human-caused disturbance, road-kills, behavioral problems, and inbreeding depression. Dogs (*Canis familiaris*), cats (*Felis cattus*), mongoose (*Herpestes auropunctatus*), **Roof** rats (*Rattus rattus*), and pigs prey on nēnē, while feral cattle (*Bos taurus*), goats, pigs, and sheep (*Ovis aries*) have been known to alter and degrade nēnē habitat through their foraging activities.

Potential threats to the nēnē are identified below and follow the U.S. Fish and Wildlife Service (USFWS) classification of factors that may negatively affect a species, leading to its decline, as identified in Section 4(a) of the ESA. These include:

- 1. The present or threatened destruction, modification, or curtailment of its habitat or range;
- 2. Over-utilization for commercial, recreational, scientific, or educational purposes;
- 3. Disease or predation;
- 4. The inadequacy of existing regulatory mechanisms; and,
- 5. Other natural or manmade factors affecting its continued existence.

The last threat includes being hit by vehicles travelling along the Park road. An average of one nēnē per year has been killed in that manner (HALE, unpublished data).

The Draft Revised Recovery Plan for Nēnē of Hawaiian Goose (USFWS, 2004) indicates there is a high degree of threat to this species. USFWS also believe that this species has a high recovery potential because it is a taxonomically, or genetically "pure" species and as such does not interbreed with domestic geese and is generally not in conflict with regular human activities.

<u>'Ope'ape'a (Hawaiian Hoary Bat)</u>

The 'ope'ape'a, or Hawaiian hoary bat, is a Federal-listed endangered species that resides on the lower slopes of Haleakalā. The 'ope'ape'a is found on Hawai'i Island, Maui, O'ahu, Kaua'i and Moloka'i. On the island of Hawai'i, most observations have been from between sea level and 7,500 feet ASL, although individuals have been recorded at elevations as high as 13,000 feet. On Maui, the bat resides in the lowlands of the Haleakalā slopes. Bats have been detected near the Park Headquarters Visitor Center and Hosmer Grove (Frasher, *et al.*), but there has been no **research conducted** by HALE personnel to

determine whether bats occur along the Park road corridor. Even though several sightings have been reported near HO, it is unlikely that the bat is a resident of the area, due to the relatively cold summit temperatures and the lack of flying insects in the area, which is the preferred food source (AFRL, 2005). The 'ope'ape'a has been observed both visually and acoustically along the Park road corridor at all elevations.

The nocturnal 'ope'ape'a is the only native terrestrial mammal known to occur in the Hawaiian archipelago, although other bat species have been found in sub-fossil remains. According to the USFWS, relatively little research has been conducted on this endemic Hawaiian bat and data regarding its habitat and population status are very limited. It is believed that bats typically depart the roost shortly before sunset and return before midnight, although this is based on a small number of observations (USFWS, 1998). Bats are most often observed foraging in open areas, near the edges of native and non-native forests, or over both marine and fresh open water, and over lava flows. Roosting bats have been recorded from a variety of species including hala (*Pandanus tectorius*), kukui (*Aleurites moluccana*), pukiawe (*Styphelia tameiameaiae*), java plum (*Syzygium cumini*), ohia lehua (*Metrosideros polymorpha*), and *Eucalyptus* sp. Bats have been observed feeding from 3 to 492 feet above ground and water. Most of the available data suggests that this elusive bat roosts solitarily in the foliage among trees in forested areas.

Habitat requirements may vary seasonally and with reproductive condition, but this is not clear. Breeding probably occurs mostly between September and December, with young being born in May or June. Hawaiian hoary bats do not migrate off island, although seasonal elevation movements and island-wide migrations may occur. The availability of roosting sites is believed to be a major limitation in many bat species, but other threats to this subspecies include direct and indirect **impacts** of pesticides, predation, alteration of prey availability (introduced insects), and roost disturbance (USFWS, 1998). The recovery plan for the Hawaiian hoary bat (USFWS, 1998) suggests the subspecies is experiencing a moderate degree of threat and has a high potential for recovery. Critical habitat has not been designated for this species.

3.3.3.2 Other Native and Introduced Fauna

Avian species are abundant along the Park road corridor. Other avian inhabitants reported in HALE which are likely to be found along the Park road corridor include, but are not limited to, quails, francolins, pheasants, chukars (*Alectoris chukar*), plovers, sandpipers, doves, pigeons, short-eared owls, northern mockingbird, common myna, house finch, common Amakihi (*Hernignathus virens*), Iiwi, (*Vestiaria coccinea*), (Conant and Stemmermann Kjargaard, 1984). Introduced fauna that could be observed within the summit area and along the Park road corridor include the chukar, the feral goat, the Polynesian rat (*Rattus exulans*), and the roof rat (AFRL, 2005). The Indian mongoose is occasionally observed on the summit. These are not listed as Federal- or State- threatened or endangered species. Cats (*Felis catus*) and mice (*Mus musculus*) are also found along the Park road corridor, with cats occasionally seen crossing the Park road (HALE unpublished data).

3.3.3.3 Invertebrate Resources

The highest elevations of Haleakalā were once considered lifeless, but biologists have discovered a diverse fauna of resident insects and spiders. These arthropods inhabit unique natural habitats on the bare lava flows and cinder cones. Because they feed primarily on windblown organic materials, they form an aeolian ecosystem.

In Hawai'i, Aeolian ecosystems are used to describe those that mostly, but not exclusively, exist on nonweathered lava substrates, found at high elevations (Medeiros, et al, 1994). On Haleakalā, there is an aeolian ecosystem extending up the summit from about the 7,550 feet elevation. It is characterized by relatively low precipitation, porous lava substrates that retain relatively little moisture, little plant cover, and high solar radiation. The dark, heat-absorbing cinder provides only slight protection from the extreme temperatures, and thermal regulation and moisture conservation are critical adaptations of arthropods occurring in this unusual habitat.

Due to the harsh environment, fewer insects are present at upper elevations on Haleakalā than are found in the warm, moist lowlands. However, an exceptional assemblage of insects and spiders make their home on the mountain's upper slopes. A survey and inventory of arthropod fauna was conducted for the 18.166 acres of HO in 2003 for the LRDP. In this study, several species were added to the previous inventory site records. An additional survey including arthropod collection and analysis was conducted in 2005 at the Mees and Reber Circle sites for the proposed ATST Project (Vol. II, Appendix C(1)-Updated Arthropod Inventory and Assessment). The arthropod species that were collected in this study were typical of what had been found during previous studies. Although the study was conducted during the fall months, no species were found that are locally unique to the site, nor were there any species found whose habitat is threatened by normal observatory operations.

A supplemental arthropod inventory in response to comments submitted on the ATST DEIS was conducted in March 2007 for sampling of arthropods at the sites considered in the proposed ATST Project. This report can be found in Vol. II, Appendix C(2)-Supplemental Arthropod Sampling. The goal was to detect additional species that may have been missed during previous samplings. This additional survey, including night sampling, covers a seasonal component not included in the two previous studies. This survey was conducted during the winter months. The results of the **2007** arthropod survey indicate there are no special concerns or legal constraints related to invertebrate resources in the project area. No invertebrate species listed as endangered, threatened, or that are currently proposed for listing under either Federal or State of Hawai'i endangered species statutes were found at **either site for the proposed ATST Project.**

The diversity of the arthropod fauna at HO is somewhat less than what has been reported in adjacent, undisturbed habitat. This is expected, in that buildings, roads, parking areas, and walkways occupy 40 percent of the site. However, the undisturbed habitat on the site that was sampled has an arthropod fauna generally similar to what could be expected from other sites on the volcano with similar undisturbed habitat (Vol. II, Appendix C(1)-Updated Arthropod Inventory and Assessment). Most of the arthropods collected during the 2003 study were largely associated with vegetation at the site. Observatory construction and operations may have increased the suitability of some habitats for plants and increased vegetation and could have caused an increase in the populations of some native arthropod species.

The Preferred Alternative (Mees site) and the other action alternative (the Reber Circle site) represent an even smaller portion of the habitat overall on Haleakalā. The Mees site is partly undisturbed. Native vegetation is more abundant, and the undisturbed nature of the substrate provides excellent microhabitats for arthropods. The diversity and abundance of arthropods at the Mees Site is greater than that of the Reber Circle site, but is low compared to the HO site in general and to the surrounding undisturbed habitats found elsewhere on Haleakalā.

The Reber Circle site was previously developed and has very sparse vegetation to support arthropods. The ground there is largely compacted and lacks the structure necessary for most ground-dwelling arthropods. Only the surrounding, undisturbed areas contain habitats in which arthropods can survive. Fewer species of arthropods were identified in the 2005 **survey for the** proposed ATST Project than were reported in the 2003 LRDP survey. This was probably due to restricting the sampling to a smaller area — the two sites for the proposed ATST Project. Overall, these two sites contain fewer microhabitats than can be found elsewhere within HO.

Comments on the DEIS indicated that the collective invertebrate inventories obtained at HO did not address certain "Species of Concern" (SOC), although these were not specified (HALE, 2008). Therefore, USFWS was contacted to obtain a list of SOC for the ROI so that future surveys could include those. It should be noted that SOC is an informal term. It is not defined in the Federal Endangered Species Act. The term commonly refers to species that are declining or appear to be in need of conservation. Many agencies and organizations maintain lists of at-risk species. These lists provide essential information for land management planning and conservation efforts. According to the USFWS, these species are not directly addressed by the USFWS Section 7 consultations (D. Greenlee, USFWS, personal communication, April 2009). Using an updated (2008) version of the Hawai'i Biodiversity and Mapping Program and no invertebrate SOC were identified in the ROI for the proposed ATST Project (D. Greenlee, USFWS, personal communication, April 2009).

In response to further comments about SOC that might have been missed during earlier surveys, however, a third arthropod survey was conducted in June 2009 (Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO). There were a number of additional species collected, including one endemic carabid beetle (*Mecyclothorax*), and two species of long horn beetles of the genus *Plagithmysus*. Carabid beetle populations appear to be impacted when alien predators are introduced to their habitats and their conservation is considered important. The two species of long-horn beetles are considered rare and are infrequently collected. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

The inclusion of the Park road corridor in the ROI requires evaluation of the arthropod resources that could be impacted by the construction of the proposed ATST Project. Since this road is more than ten miles long, the ATST project team and NPS resource staff agreed that evaluation of the arthropod resources around the entrance station would be accomplished first, prior to construction. This area would be disturbed by temporary road widening to allow wide-load construction traffic to access HALE. During the 2009 survey discussed above, arthropod collections were also completed along the Park road in the entrance station area. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

Sixty species of arthropods were observed near the entrance station. Fourteen species of moths were collected, ten endemic to Hawai'i. None of these species have a restricted distribution and are all considered common. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

The same two species of centipede and millipede were found that were collected at the HO sites. Eight species of beetles were seen, including an endemic species of carabid beetles. This was the only endemic species, the rest being introduced non-indigenous species. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

A non-indigenous earwig was common in the area, and this species is also common throughout Hawai'i. Seven species of flies were collected, the only native one being a fruit fly of the genus *Trupanea*. Thirteen species of true bugs (Heteroptera and Homoptera) were found. Most of these are endemic species that are common and widely distributed in Hawai'i. The most interesting was the native stinkbug, *Oechalia pacifica*. This genus of stinkbug is being threatened by the introduction of biological control species, especially those released for the introduced green stink bug. The species that occurs near the entrance station also occurs on Kaua'i, O'ahu, Moloka'i, and Lana'i. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

Fourteen species of Hymenoptera were collected at the entrance station, including two species of endemic bees of the genus *Hylaeus*. Both species appear to be limited to habitats on Haleakalā. These species may also be important pollinators of native plant species. (*See* Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

The diversity and abundance of invertebrate species in the Park road corridor and at HO includes introduced arthropods that pose a potential risk to both endemic and native species within the ROI. Two notable examples are the Argentine ant (*Iridomyrmex humilis*) and the Yellow-jacket (*Vespula pensylvanica*) both of which are predators within the high-elevation shrubland that constitutes the northwest slope portion of the Park road, all the way to the summit area, including HO. However, no studies have been done at HALE to determine the diversity and abundance of invertebrates along the Park road corridor and other threats are largely unknown.

Since ants are not a common endemic species in Hawai'i (Wilson & Taylor, 1967), introduced species are often successful in the favorable environment. The Argentine ant is one of about 60 species that has flourished since invasions of biological organisms were aided by humans to enter in the Hawaiian Islands. With HALE's large visitor population and vehicular traffic from lower elevations, it is not surprising that several of these predatory ant species have found their way into the Park. The threat to endemic species within HALE has been studied by various researchers and data is available for parts of HALE that are within the ROI for the proposed ATST Project. For example, the presence of the Argentine ant has been studied along the 0.75 mile of road from entry of the Park to Headquarters, and between mile markers 17 and 18 (Cole, et al., 1992). That study revealed that the relative abundance of the population subsequent to its introduction around 1972 was found to have expanded considerably. At the time of the survey in 1992, the species still only occupied about 1.5 percent of the Park, but the potential to invade much larger portions of the Park than it now occupies was clearly evident. The invasive potential of the Argentine ant requires active management by HALE to prevent further spread of the species, including such methods as inspection, when warranted, of vehicles, freight, and soils that may contain individuals capable of colonizing areas within the ROI. The latest arthropod study in 2009 found two ant species near the entrance station, neither of which was the Argentine ant (Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

The Yellow-jacket is also a predator within the upper shrubland of the Park and at HO that has an **impact** on the varied arthropods on which it preys. It poses a substantial threat to biodiversity within the Park, and since its introduction to Maui in 1978, it has experienced a population explosion in subsequent years (Gambino, et. al., 1990). The identity of its diet and location in HALE (Gambino, 1992) suggests that it is a threat to biodiversity in wide areas of the Park and HO, at lower and upper elevations. In particular, this predator is found within the ROI for the proposed ATST Project, where active management for prevention of widened invasion is required. With a capability to colonize in massive numbers (*ibid*, 1990), any reproducing individuals of this species introduced to the upper slopes of HALE could prove damaging to the biodiversity of the Park taxonomy. Therefore, active management of this species is needed at HO in addition to HALE. It should be noted, however, that none were identified in the 2009 survey at the Park road entrance station (Vol. II, Appendix C(3)-Arthropod Inventory and Assessment, HALE and HO).

3.4 Topography, Geology, and Soils

The ROI for the following discussion on topography, geology, and soils includes both the HO and Park road corridor. Unless otherwise noted, the discussion in this section applies equally to all areas within the ROI.

3.4.1 Topography

The Island of Maui, nicknamed "The Valley Isle" and the second largest of the Hawaiian Islands, is a volcanic doublet: an island formed from two volcanic mountains that abut one another to form the isthmus between them (Fig. 3-9). Mauna Kahalawai, also known as the West Maui Mountain, is the much older volcano and has been eroded considerably. Haleakalā, the larger volcano on the eastern side of Maui, rises above at 10,023 feet ASL. The last eruption occurred at some time between 1650 and 1790, and the lava flow can been seen between Āhihi Bay and La Perouse Bay on the southwest shore of East Maui. Both volcanoes are shield volcanoes and the low viscosity of the Hawaiian lava makes the likelihood of the large explosive eruptions negligible.

Figure 3-9. Topography for Island of Maui, Hawai'i.

The area within the ROI is rugged and barren, consisting of lava and pyroclastic materials. Within a 4mile radius of HO, the elevation drops to approximately 3,600 feet ASL, with an average slope greater than 30 percent.

The proposed ATST Project is located in the crater area of the Kolekole cinder cone, which developed in the central region of the triple junction rift zone where the Southwest Rift Zone, the East Rift Zone and the North Rift Zone meet (Bhattacharji). Lava deposits in the area are from both the Kula and Hana series.

3.4.2 Geology

Over the course of Haleakalā's formation, three distinct phases of eruption have taken place. The first, called the Honomanu Volcanic Series, is responsible for the formation of Haleakalā's primitive shield and most likely its three prominent rift zones. Honomanu lavas are exposed over less than 1 percent of Haleakalā, but are believed to form the foundation of the entire mountain to an unknown depth below sea level. The second series, or Kula Volcanic Series, overlaid the previous Honomanu Series with its lava flows. Eruptions of this series were considerably more explosive than its predecessor, leading to the formation of most of the cinder cones along the three rift zones.

A period of inactivity followed the Kula Series, during which time erosion began to predominate the formation of Haleakalā Crater by forming great valleys leading to the coast. After this long period of erosion, the final volcanic eruptions, called the Hana Volcanic Series, partially filled the deep valleys. Several cinder cones and ash deposits lined the East and Southwest Rift Zones ranging from a few feet high to large cones more than a mile across at the base and 600 feet high. Lava flows within the Haleakalā Southwest Rift Zone range from 200 to 20,000 years old. Six flows have erupted in this area within the last 1,000 years. During the latest eruption, sometime between 1650 and 1790, lava emerged from two vents and flowed into La Perouse Bay, where a small peninsula was constructed. Recent studies have indicated that Haleakalā volcano may still be active, in light of the numerous eruptions during the last 8,000 years (Bergmanis, *et al.*, 2000).

The Mees construction site of the proposed ATST Project consists of polygonal to sub-columnar lava horizons which are broken into large blocks along horizontal and vertical joints. The near horizontal ankaramite lava is ponded and agglutinated with spatter and some cinder (UH IfA, 2005). These lava horizons are several feet thick and intermixed with cinder beds.

During the 2005 survey (Vol. II, Appendix G-Geological Setting at Primary and ATST Sites report), neither the Mees site nor the Reber Circle site showed gross evidence of faulting, instability or mass wasting, and in a human-referenced time scale, they do not appear to be geologically unsuitable sites.

3.4.3 Soils

The summit area and the areas adjacent to the Park road corridor are covered with volcanic ejecta consisting of lava, cinder, and ash of the Kula and Hana Volcanic Series. There is no soil development in the immediate vicinity of HO. Soil development occurs with increased distance (greater than 1.5 miles) from the summit. Most of the area is situated on Cinder Land (rCl), which is thought to be of the Kula period of volcanism (U. S. Soil Conservation Service, 1972). A foundation investigation conducted in 1991, in the northern area of HO revealed that cinder in this area is underlain by five feet of volcanic clinker and 16 feet of volcanic cinder.

In March 2005, soil borings at the Mees site identified a soil profile generally consisting of cinder sands and gravels on top of a basalt layer. Soil profiles were obtained from cores at six locations, five within the proposed ATST Project footprint (Vol. II, Appendix K-Soils Investigation Report). Boring six was performed on the west side of the proposed ATST S&O Building site. Moderately hard to hard basalt substrate substantial enough for bearing weight was identified at depths of 5 to 21 feet below grade. Two cores taken at the Reber Circle site identified hard basalt substrate beneath a thin (5- to 15-foot) layer of less consolidated basalt (Dames and Moore, 1991).

3.5 Visual Resources and View Planes

The ROI for this section includes HO, the Park road corridor, other areas within HALE, and a few areas on Maui as discussed below. Approximately 1.7 million (HALE, 2006) visitors annually are attracted to Haleakalā's various lookouts and vantage points for its spectacular vistas. Looking down the slopes to the northwest, a majestic view of Maui's isthmus and West Maui Mountains is afforded, while to the east are the richly colored scenes of the crater and, on minimal cloud-cover days, the slopes of Mauna Kea and Mauna Loa.

On a cloudless night, Haleakalā also serves as an outstanding platform from which to view the heavens, facilitated by its position above the cloud inversion layer, the clean atmosphere, and the lack of degrading light sources. As indicated on the HALE signage on Pu'u Ula'ula, "Observatories were built near the highest point on Maui because the air offers the fourth best viewing conditions on the planet. Here above

the clouds, the atmosphere is clear and dry, with minimal air and light pollution." Because Haleakalā is blanketed with dark-hued cinders and ash and lacks vegetation, its appearance contrasts sharply with the lush tropical forests found at lower elevations.

Visibility of the HO facilities within HALE varies depending upon one's vantage point within HALE. Several HO facilities are highly visible from Pu'u Ula'ula (Fig. 3-10). Some HO facilities are partially visible from the Park entrance station to about the first mile of the Park road, the Park Headquarters Visitor Center, portions of the Park road corridor (particularly the last 1/3 of the Park road closest to the summit), and near the summit from the Haleakalā Visitor Center (Pa Ka'oao, or White Hill).

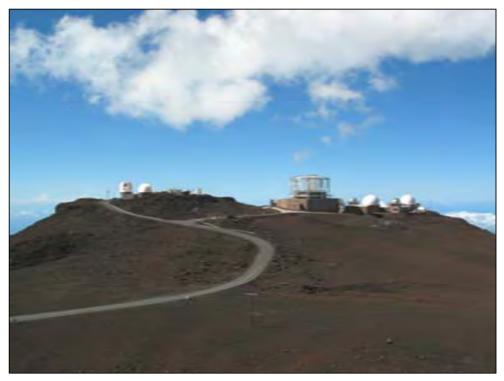


Figure 3-10. Current View of HO from Pu'u Ula'ula.

Overall, visibility of the HO facilities is highly variable depending on a combination of factors. These include locations from where one views them on the island, atmospheric conditions (e.g., dust content, humidity), time of day, cloud cover, and human activity (e.g., cane burning). For example, on a clear, low-humidity day, some of the facilities would be distinguishable as very small man-made objects from as far away as Ma'alaea Bay, which is a distance of approximately 17 linear miles. However, in humid and/or dusty conditions, they may not be visible at all from Ma'alaea Bay or even from locations in Upcountry Maui at half that distance. Section 4.5-Visual Resources and View Planes describes and presents photographs of various locations on Maui where HO facilities may **currently** be visible, again, depending on a combination of factors described above.

Visibility of the summit area from the ROI would be more likely in the early morning before the daytime cloud inversion layer builds up, and in the late afternoon after the inversion layer dissipates. When midand upper-level cloud cover is absent, a few of the existing structures at HO are, depending on one's vantage point, visible from miles away. Some of the facilities can also be seen from public viewpoints and highways (**described in Section 4.5**) that climb the slopes of the mountain (UH IfA, 2005). The current facilities at HO that are closest to the northern boundary of the property are visible in various locations on Maui. The tallest of these, the metallic 117-foot tall U. S. Air Force AEOS completed in 1994, is easily seen with the unaided eye from most areas within the Central Valley as well as from some windward and leeward communities, especially in morning and late afternoon hours. However, the two white 60-foot tall domes of the MSSS, completed in 1965, are also visible in many of those same areas when the summit area is free of clouds. The colors of the domes of the HO facilities, which are either white or aluminized, make them more or less visible depending on Sun angle, cloud cover, and position of the viewer.

3.6 Visitor Use and Experience

Haleakalā National Park encompasses approximately 33,230 acres and attracts more than one million visitors annually to experience the natural and cultural wonders the park was designated to protect. The Park Headquarters Visitor Center, the Haleakalā Visitor Center and the Kipahulu Visitor Center have cultural and natural history exhibits. Books, maps, and postcards are also for sale. Rangers are on duty during business hours to answer questions and assist visitors. Guided interpretive hikes and activities are available at both the Haleakala Visitor Center and the Kipahulu Visitor Center, the Haleakalā Visitor Center, the Park Headquarters Visitor Center, the Haleakalā Visitor Center, the Park Headquarters Visitor Center, the Haleakalā Visitor Center, the Kalahaku Overlook, and at Hosmer Grove, and are handicapped accessible. Limited emergency services are available at both the Park Headquarters Visitor Center, the Haleakalā Visitor Center.

There are three primary visitor areas within the Park. The first, the Summit Area, is considered to be the Haleakalā summit. There are two visitor facilities in this area. The Haleakalā Visitor Center, which is near the cinder cone known as Pa Ka'oao (White Hill), is located on the rim of the crater. Another overlook building accessible by vehicle or foot is located at the highest point of Halealakā on Pu'u Ula'ula and is also one of the main attractions for visitors to the summit.

The second, the Wilderness Area, is located over the majority of the eastern side of the Park. A portion of the Wilderness Area inside the crater is accessed through the Summit Area and offers hiking from two major trailheads: Halemau'u begins at the 7,000-foot elevation along the crater road and Keonehe'ehe 'e Trails, also called Sliding Sands, begins in the Summit Area near the Haleakalā Visitor Center. Both trails lead down into the crater floor. The crater area is open to camping. There are two primitive wilderness campsites (Holua and Palikū) and historic cabins situated along the trails. These campsites and cabins are available through Park reservations for overnight stays.

Leleiwi and Kalahaku Overlooks are located along the Park road between the Park Headquarters Visitor Center and the Pu'u Ula'ula and Haleakalā Visitor Center summit viewing areas. The rare 'ahinahina (Haleakalā silversword) that can be seen at Kalahaku draws many nature enthusiasts (NPS, 2009). Each Overlook is equipped with orientation panels and descriptive displays. Besides boasting a magnificent view of the crater, the Haleakalā Visitor Center also details the geology, archeology, and ecology of the area as well as the wilderness protection programs in exhibits posted throughout the area. Many visitors are attracted to the summit and crater area because of the walking, hiking, camping, and picnic opportunities. Hikes can range from short self-guiding walks to rigorous backpacking for several days. In addition, commercial service providers offer their own trips through the crater on a one day or overnight basis.

Within the crater, at Paliku cabin and campsite, from the top of Kaupo Gap, is another hiking trail. This trail traverses through native shrubland and mesic koa forest to the Park boundary. The trail descends 6,100 feet in 8.7 miles and crosses onto private land before reaching Kaupo Ranch in the village of Kaupo. On the main road, the Kaupo Store is about eight miles away from the Kipahulu area of HALE.

The frequently visited third area is located on the eastern side of HALE near the coast, and is known as Kipahulu. Hiking, swimming, and camping are available in this area of the Park. Hikes are self-guided through the Pipiwai Trail to the Oheo Gulch lower pools where many visitors go to swim. There is no safe ocean entry from anywhere within HALE.

The proposed ATST Project is located **near HALE** within the HO property and is not open to the general public. The closest visitor facility is the Pu'u Ula'ula Overlook **located within HALE**. The Haleakalā Visitor Center and the Keonehe'ehe'e Trail Head are approximately a quarter mile to the east of the entrance to both the Pu'u Ula'ula Overlook and the road leading to HO. Haleakalā Observatories are clearly visible from the Pu'u 'Ula'ula Overlook located directly to the northeast of the proposed ATST Project location.

A visitor's survey was conducted between March 26 and April 1, 2000 by the NPS Visitor Services Project as part of the Cooperative Park Studies Unit at the University of Idaho. This **survey** was conducted to assess the visitor's use of the Park and to support visitor's use of the backcountry area of HALE. This **survey** found that backcountry campers and cabin users contribute their sense of being in wilderness to the following factors: 1) experiencing solitude; 2) hearing natural sounds/quiet; 3) a perceived lack of human presence and/or development; and, 4) observing the Park's flora and fauna **The primary reason backcountry visitors go to the Summit Area of HALE included the following: 1**) sightseeing and scenic driving, and 2) watching the sunrise. The most visited areas of the Summit **Area of HALE were identified as Pu'u Ula'ula Overlook and the Haleakalā Visitor Center.**

Outside of HALE, an unimproved, access road known as Skyline Drive originates 0.5 mile **southwest of** HO at the Saddle Area. It traverses the Southwest Rift Zone, ultimately leading to Spring State Recreation Area (also known as Polipoli State Park), which is located at 6,200 feet ASL within the fog belt of the Kula Forest Reserve (DLNR, Hawai'i State Parks). Its entire length is located on State land within the Forest Reserve. A locked gate near the Saddle Area restricts vehicle access to the road from the Haleakalā summit to only those holding DLNR permits. Hikers, hunters, and bicyclists use the unpaved road. There are sections of this trail that have a steep grade and soft cinder roadbed that will not support standard construction truck traffic, only smaller vehicles with four-wheel drive.

3.7 Water Resources

The ROI for water resources includes HO, the affected areas within HALE and the Park road corridor. The entire ROI is within the Waiakoa and the Manawainui Gulch watersheds. As shown on Figure 3-11, the groundwater boundaries are the Kamaole and Makawao Aquifer Systems of the Central Aquifer Sector and the Lualailua and Nakula Aquifer Systems of the Kahikinui Aquifer Sector (AFRL, 2005). A sector is a large region with hydro-geological similarities that primarily reflects broad hydrogeological features, and secondarily, geography. A system is an area within a sector showing hydro-geological continuity.

There is no **continuous** source or supply of water at the summit area of HO. At various times during the year—particularly the winter months—**water catchment systems store** rainwater collected from building roofs, etc. To supplement this source, water is trucked to each user in certified tanks where it is stored on-site. Users maintain their own collection systems and storage tanks for potable and/or non-potable water, as well as their individual pumping and distribution systems.

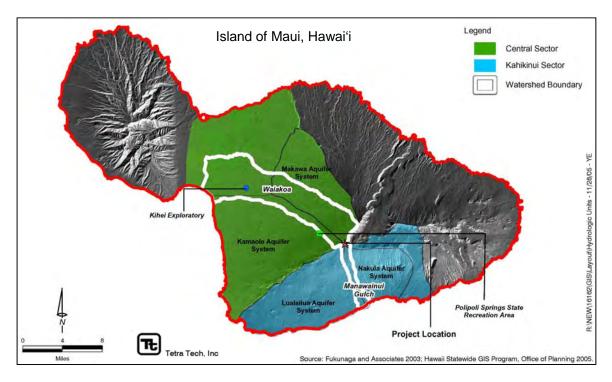


Figure 3-11. Hydrologic Features.

Within HALE, there are only surface water resources. Maui has both perennial and intermittent streams, with the former concentrated on the wetter north slopes of the island (DLNR, Maui Watershed). Streams in the affected portion of HALE are largely intermittent runs that are typically dry in good weather. These runs cross under the Park road corridor under the bridge and through the 11 box culverts and other drainage that permit water to flow downhill without crossing over the road surface. During heavy winter rains, stormwater flows in the intermittent channels and visitors sometimes experience the sight of very rapid flow in stream beds that were dry only a short time before. Aerial maps show that numerous channels within HALE coalesce into wider and deeper channels down slope, some of which reach the ocean.

At HALE, water is not drawn from the subsurface aquifer to provide for visitor drinking water. Water from surface sources is utilized via catchment and storage systems. Within or near the Park road corridor, catchment rainwater is stored in tanks that provide for toilets at Hosmer Grove, the Park Headquarters Visitor Center, the Haleakalā Visitor's Center and the Kalahaku Overlook. Drinking water is also available from catchment sources at the Park Headquarters Visitor Center and the Haleakalā Visitor's Center. Within the crater, water tanks supply the campsites. All of these sources are wholly dependent upon rainfall and may not be available during long periods of drought.

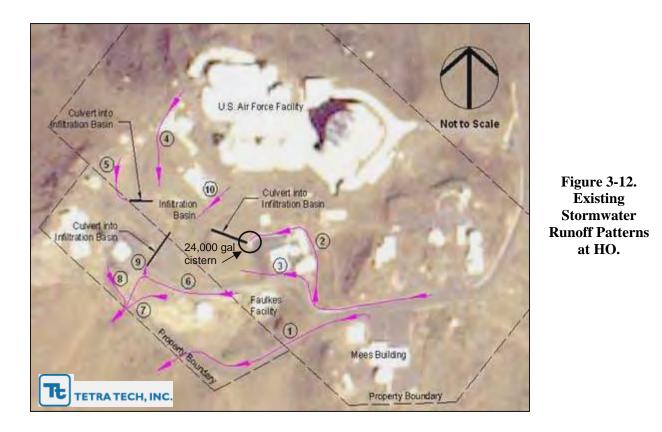
Because the entire ROI is within the Waiakoa and the Manawainui Gulch watersheds and because all public water resources in HALE are of surface water origin, the following discussion of surface water applies to the affected environment for HO, relevant areas of HALE, and the Park road corridor.

3.7.1 Surface Water

The primary hydrologic unit for describing stream flow is the drainage basin, whereas the principal division for groundwater is the aquifer system. Because groundwater flow is governed by subsurface geological continuity rather than by topographic controls (Yuen and Associates, 1990), the boundaries of

drainage basins and aquifer systems do not necessarily coincide. Drainage basin boundaries for the proposed ATST Project are the Waiakoa and Manawainui Gulch watersheds, two of the 112 Maui Watershed Units totaling 466,437 acres.

Most streams on Haleakalā are intermittent because of the steep, permeable lava terrain. The nearest intermittent streams are approximately 1.9 miles down slope of the proposed ATST Project site within HALE. Perennial streams at low elevations originate from groundwater springs.


There are no water bodies within the affected areas of HALE, along the Park road corridor, or at the HO site. An area of lower elevation within HO acts as a ponding and infiltration area for stormwater at Pu'u Kolekole cinder cone (AFRL, 2005). The Polipoli Springs water system is within the proposed ATST Project aquifer system. The Polipoli Spring State Recreation Area water system is in the Kahikinui Forest Reserve which is 9.7 miles upland from Kula on Waipoli Road. The water system is owned and operated by the State of Hawai'i and managed by the DLNR State Parks. The water system serves a park cabin and campsite area. The non-potable source for the water system is an unnamed spring whose water flows to the campsite area through a 1.5-inch pipe. The estimated water demand is 2,000 gallons daily (Fukunaga and Associates, 2003).

Drainage Features

On the native slopes of Haleakalā, virtually all precipitation infiltrates the soil profile. Once in the soil, gravity continues to force the water down into the soil. When the water hits a less permeable layer, such as basalt, it flows in the path of least resistance. **Driven by gravity, this** subsurface water flows down gradient along the surface of the basalt layer. The flow continues along the interface between the highly pervious cinder material and the basalt layer until it either resurfaces as a spring or stream or flows into a fissure in basalt, contributing to groundwater storage (UH IfA, 2005a).

In March 2005, soil borings were advanced at HO to support design planning for construction of the proposed ATST Project (Vol. II, Appendix K-Soils Investigation Report). The results of the exploratory borings revealed that the soil profile generally consists of sands and gravels on top of a basalt layer. This means water can easily infiltrate the upper soils and then becoming significantly slowed when it reaches the basalt layer, which ranges from 5 to 21 feet (UH IfA, 2005a).

All precipitation falling near the summit **infiltrates** and flows subsurface toward the natural drainage courses, such as Manawainui Gulch. Loss of rainfall would be caused by evaporation in the soil column (UH IfA, 2005a). Due to site topography, as well as a small collection of stormwater conveyance systems consisting of concrete channels and culverts, runoff generated within the HO site is controlled and conveyed via natural drainage paths to an infiltration basin at the western extremity of HO property. This infiltration basin is a depression that represents an old vent on the cinder cone, and its substrate is considerably more porous than the lava or spatter portions of Kolekole. The runoff collection system was originally designed to maintain stormwater runoff on paved surfaces and consists of gutters and channels intended to prevent stormwater from discharging onto native soils adjacent to paved surfaces. Ten main stormwater flow paths have been identified at the HO site. Figure 3-12 illustrates the existing runoff patterns associated with HO.

The following is a brief description of each flow path in the HO drainage system:

Flow Path 1: Runoff from the parking lot associated with the MSO facility leaves the paved surface and flows down an abandoned road. The runoff then flows across a flat area before discharging along the southern slopes of the volcanic cone.

Flow Path 2: Runoff from the upper portion of the site drains onto the road and flows into a pipe conduit. As originally designed, the runoff was to enter a concrete channel constructed behind the gathering of buildings and then be conveyed through a culvert into the infiltration basin. However, the concrete channel was subject to debris entry.

Flow Path 3: Due to temporary blockage of Flow Path 2, concentrated runoff flow was redirected along the paved areas associated with the cluster of buildings. An asphalt berm was constructed to direct the runoff away from the buildings and toward the infiltration basin. Once the runoff discharges onto the native material, the flow dissipates into multiple undefined channels leading toward the infiltration basin.

Flow Path 4: Stormwater runoff from a small portion of the Air Force complex, along with runoff from the access road and concrete storage areas, flows along the edge of the road leading toward the infiltration basin.

Flow Path 5: The native soil in this Department of Energy- (DOE) controlled area appears to have been affected from past activities such as parking and storage. Runoff from this area is conveyed to the infiltration basin through a culvert under the access road.

Flow Path 6: This concrete channel is designed to convey runoff from the road and from the Faulkes facility. The channel leads to two culverts under the access roads. The lower portion of the channel is a deposition location for sediment prior to where it enters the first culvert.

Flow Path 7: Runoff flows toward the south.

Flow Path 8: A portion of the runoff from the FAA facility flows toward the south and discharges over the slopes of the volcanic cone.

Flow Path 9: Runoff within the concrete channel was designed to flow into the infiltration basin through a series of two culverts that were placed under access roads.

<u>Flow Path 10:</u> A portion of the Air Force facility generates stormwater runoff that flows into the infiltration basin. The paved surfaces associated with the facility have curbs, which keep the runoff on paved surfaces until it enters the pipe network which discharges into the infiltration basin.

Runoff harvesting is also part of the drainage features at HO. Runoff from the MSO facility building is captured and stored in the adjacent 64,100 gallon cistern and is used for domestic water; and a 24,000 gallon cistern is associated with the former Neutron Monitoring Station below the MSO facility. Some of the runoff from the IfA facilities is captured by these cisterns before it reaches the infiltration basin.

3.7.2 Groundwater

As previously mentioned, the groundwater resources below HO are characterized as part of the Kamaole and Makawao systems of the Central sector and the Lualailua and Nakula systems of the Kahikinui sector. The characteristics of the groundwater of the Kamaole, Makawao, Lualailua, and Nakula systems are the same as those of the nearby systems and sectors. A high level, unconfined, perched aquifer exists above a high level unconfined aquifer in dike compartments. Groundwater in both the upper and lower aquifers was identified as freshwater (containing less than 250 milligrams per liter of chloride) that has the potential for future use as drinking water, but it was not being used when the aquifer was classified. The upper aquifer is classified as being replaceable and highly vulnerable to contamination, while the lower dike aquifers are classified as being irreplaceable and moderately vulnerable to contamination. There are no drinking water wells within 11 miles of the summit (AFRL, 2005).

The current MSO facility utilizes a cesspool for handling wastewater and septic waste. Although this issue is discussed in Section 2.4.4-Telescope Operation Activities, the handling of wastewater has the potential to affect subsurface water quality and is therefore mentioned briefly here. Generally speaking, cesspools do not treat wastewater, but rather remove solids and provide for anaerobic digestion of solids. The cesspool effluent is then filtered through the surrounding soil and groundwater providing for the general "treatment" of the (non-solids) wastewater. Pathogens and nutrients in potentially high concentrations (particularly nitrogen and phosphorous) are typically released from such systems, possibly degrading subsurface water quality and resulting in minor, adverse, and long-term impacts on groundwater within a discrete distance of the cesspool. Given the distance of approximately 11 miles to the nearest drinking water well, it is unlikely that continued operation of the cesspool would have an adverse affect on drinking water. If cesspool contaminants reach perched groundwater several thousand feet below HO, which then flows to surface water, then some adverse affects from cesspool operation could occur to human or ecological exposures to the surface water. Any dissolved recalcitrant contaminants (e.g. metals) discharged to the cesspool would be expected to migrate further from the cesspool, and/or remain present longer than less recalcitrant contaminants. Organic and inorganic solids would continue to accumulate in the cesspool, requiring ongoing periodic removal and off-site disposal.

3.8 Hazardous Materials and Solid Waste

The ROI for hazardous materials (HAZMAT) and solid waste includes HO, the Park road corridor, and the portion of the State highway leading up to the HALE Park road corridor. This section focuses primarily on the **solid and hazardous waste management and disposal practices at HO** because this location is the main user of such materials and solid waste on the summit. Regulation of transportation of hazardous waste and material on the Park road corridor is governed by NHP Regulations as well as State transportation regulations. The State highway leading up to the Park road is under the jurisdiction of the State Highway Department of Transportation. Permits for transportation of heavy and wide truck transportation of project equipment **are required, pursuant to regulation,** from the State Highways Maui District Office of the Hawai'i State Department of Transportation. Load capacities are also governed by the State agency. This section also covers the regulations applicable to each of these topics.

Solid waste, as defined under Section 1004(27) the Resource Conservation and Recovery Act (RCRA), refers to any solid, semisolid, liquid, or contained gaseous materials discarded from industrial, commercial, mining, or agricultural operations, and from community activities.

Hazardous waste, as defined by the EPA, Title 40 of the CFR, Chapter 1, Subchapter I-Solid Wastes, Part 261-299, refers to substances that have "imminent and substantial danger to public health and welfare or the environment."

Contaminated sites are areas of soil or water where hazardous substances occur at concentrations above background levels and where assessment shows it poses, or is likely to pose, an immediate or long-term hazard to human health or the environment.

3.8.1 Solid Waste

Because of the remote location of HO, each facility must be diligent when handling or managing waste. Each facility within the HO complex has its own trash receptacle and each facility's building maintenance personnel are responsible for trash collection. Non-hazardous trash is disposed of off-site in a licensed landfill, with computer paper and aluminum being recycled (UH IfA, 2001). IfA picks up approximately four to five bags of solid waste once a week from the MSO facility and other facilities at HO under their jurisdiction (i.e., the Atmospheric Airglow facility, the Zodiacal Observatory, and the FTF). Municipal solid waste from MSSC, such as food trash, is collected twice a week for off-site disposal at the Central Maui Landfill. Other wastes associated with MSSC operations and maintenance, such as used oil, are collected in containers within the AEOS facility and transported off-site for disposal as non-hazardous waste. MSSC generated 3,335 pounds of non-RCRA waste in fiscal year 2004 (Shimko, 2004).

Maui County owns and operates two municipal solid waste landfills on Maui: the Central Maui Sanitary Landfill and the Hana Sanitary Landfill. The Central Maui Landfill recently opened a new section, referred to as Phase 4, which accepts approximately 450 tons per day and is expected to reach capacity in 2012. The Hana Sanitary Landfill accepts approximately three tons per day and is expected to reach capacity in 2055 (Baker, 2005). Commercial construction and demolition debris is banned from the County landfills on Maui. The private Maui Demolition and Construction Landfill in Ma'alaea receive this type of debris from commercial haulers for disposal. (County of Maui, 2008a and 2005).

3.8.2 Hazardous Materials

Guidance on HAZMAT at HO that covers the entire HO property is provided via management plans from IfA (UH Manoa, 2002, and UH IfA, 2005b) and the AFRL (Boeing, 2005b), which are required by several Federal/DoD regulations. Table 3-9 lists these plans, an overview of their guidance, and the

regulations under which they are required. Implementing these plans ensures that EPA requirements for hazardous waste management and spill contingency are fulfilled at HO.

Category	Plan Title	Description	Required by
	Hazardous Waste Management Plan	Plan should contain information on emergency contacts, hazardous waste inventory and location, and waste management procedures and must include a waste analysis plan.	UH Hazardous Materials Management Program, Oct. 2002 and AFI 32- 7042.
Hazardous Waste	Contingency Plan	The plan should set forth the procedures for conducting response actions in case of hazardous waste releases into the air, soil, or water that pose a threat to the environment.	Title 40 CFR Part 265, Subpart and UH IfA Hazardous Material and Hazardous Waste Management Program, Rev. Dec. 1, 2005.
	Hazardous Material Emergency Planning and Response Plan	Provides guidance on handling known and unknown HAZMAT. The plan must integrate the various emergency action, response, and contingency plans for releases into the environment.	AFI 32-4002.
Hazardous Materials	Halon Management Plan	Also referred to as the Halon 1301 Management Plan. The plan must provide an inventory of Halon 1301 systems and an implementation schedule for removal or replacement.	AFI 32-7086.
	Refrigerant Management Plan	Also known as Class I ODS (ozone-depleting substance) Refrigerant Management Plan. This plan should include information on leaking equipment, a retrofit schedule, and set forth procedures for recovery of ODSs.	AFI 32-7086.

Table 3-9. Hazardous Materials Management Plans at HO.

(Boeing LTS 2004, 2005a, 2005b, IfA 2005b, and UH Manoa, 2002)

Hazardous waste and petroleum product wastes from operations at the MSSC are segregated at their generation points (e.g., utility building or laboratory) and are handled separately. Other facilities at HO have varying amounts and types of HAZMAT on-site and would be considered SQGs or contain no HAZMAT at their facility. The MSO facility, the FTF, the Pan-STARRS, the Zodiacal Light Observatory, and the Airglow Facility do not have HAZMAT on-site and are not considered SQGs.

Hazardous waste at MSSC is managed in the 270-day hazardous waste storage unit, and the average storage time in fiscal year 2004 ranged from 42 to 153 days. A waste disposal contractor transports and disposes of hazardous waste two to three times per year. Hazardous wastes are sampled and analyzed by the waste disposal contractor prior to off-site disposal. MSSC is a small quantity generator (SQG), which means that it generates between 220 and 2,205 pounds of hazardous waste per month (AFRL, 2005). The amount of RCRA-regulated wastes generated at MSSC for FY 2004 was 684 pounds and included such materials as waste aerosols, gel-cell batteries, combustible liquid materials, chemicals, paint, and mercury, among others. Hawai'i does not have a hazardous waste disposal facility; therefore, hazardous waste is shipped to the continental United States for proper disposal.

Other facilities at HO have varying amounts and types of HAZMAT on-site and would be considered SQGs or contain no HAZMAT at their facility. The MSO facility, the FTF, the Pan-STARRS, the Zodiacal Light Observatory, and the Airglow Facility do not have HAZMAT on-site and are not considered SQGs.

Hawai'i does not have a hazardous waste disposal facility; therefore, hazardous waste is shipped to the continental United States for proper disposal.

Spill prevention at MSSC is guided by the February 2003, Spill Prevention Control and Countermeasure Plan for MSSC, prepared by Rocketdyne Technical Services, a Boeing Company (Rocketdyne, 2003). This plan outlines procedures for carrying out response actions for releases of HAZMAT into the air, soil, or water that pose a threat to human health or the environment.

The UH Hazardous Material Management Program, dated October 2002, governs the handling of HAZMAT for the HO site. The management plan complies with applicable Federal, State, and local regulations that govern the use of HAZMAT and the disposal of hazardous wastes. The handling of hazardous waste emergencies at MSSC is directed by the Hazardous Material Emergency Response Plan for the MSSC, which was most recently revised in June 2004 by The Boeing Company, which has the prime responsibility for spill response (Boeing, 2005b). The HAZMAT plan identifies emergency contacts, an emergency action plan, organizational roles and responsibilities, site-specific contingency plans, information on hazards analysis, response functions, public information and community relations, as well as information on containment and cleanup.

Spills or Releases

There has been only one recorded material spill incident within HO. On September 11, 1999, a subcontractor working at MSSC released 330 gallons of a 20 percent mixture of propylene glycol and water into the cinders and rock. (NOTE: The Food and Drug Administration (FDA) has determined propylene glycol to be "generally recognized as safe" for use in food, cosmetics, and medicines.) All required notifications were made to the appropriate agencies and personnel. A containment trench and a plastic covering were installed immediately. The EPA was not contacted because the material did not violate RCRA and was not Federally-regulated.

The site was cleaned up on Saturday, September 18, 1999. A trench was dug around the contaminated area, **and covered with plastic sheeting**. **Photographs were taken and soil** samples were collected and prepared for shipment to a certified lab in Honolulu. Soils were excavated to a depth of three feet along an area where a concrete slab acted as a dam, **and to six inches in the remaining contaminated areas**. The excavated soil was placed in containers and covered with plastic sheeting. A "no further action" letter was received from the State of Hawai'i, Hazard Evaluation and Emergency Response on September 27, 1999 (Ueshiro, 1999), and the site does not pose any risk to human health. There have been no spills or releases at any of the other facilities on HO (Shimko, 2005).

Transportation

Hazardous materials related to the operation of current HO facilities, and as required for the proposed ATST Project (described in Section 2.4.4-Telescope Operation Activities), require transportation on the public roads leading to the site. This includes the Park road corridor, which is subject to traffic congestion during peak tourist seasons and times of day. Since the risk posed by potential spills of HAZMAT **can** be heightened in the presence of traffic congestion, **efforts are made to schedule** the transportation of these materials to avoid peak traffic hours. The other safeguards and regulations that would apply to the transportation of HAZMAT are outlined in Section 2.4.4-Telescope Operation Activities.

3.9 Infrastructure and Utilities

The ROI for infrastructure and utilities includes HO, the adjacent FAA facilities, and the HALE Park road corridor.

3.9.1 Wastewater and Solid Waste Disposal

Septic tanks are the primary means of sewage disposal within the summit area. There is no central waste/sewage collection or storage system at the Haleakalā summit. Each user provides for the collection and proper storage of wastewater and sewage generated by that site.

Trash collection is the responsibility of building maintenance personnel for each facility located within the HO complex. Non-hazardous trash is disposed of off-site in a licensed landfill, with computer paper and aluminum being recycled. Hazardous wastes and petroleum product wastes are segregated at the generation point and handled separately.

3.9.2 Stormwater and Drainage System

On the slopes of Haleakalā, as mentioned in Section 3.7-Water Resources, virtually all precipitation infiltrates the soil profile. Once in the soil, gravity continues to force the water down into the soil. When the water hits a less permeable layer, such as basalt, it will flow in the path of least resistance. At the HO site, this confining layer of basalt ranges from depths of 5 to 20+ feet. The significance of a confining layer of basalt near the summit area is that all precipitation falling near the summit is infiltrated and flows subsurface toward the natural drainage courses such as Manawainui Gulch. As a result, runoff from the impervious surfaces associated with HO facilities and adjacent roads may not increase the total volume of stormwater flow entering natural drainages, but may only affect the way it is transported there (UH IfA, 2005a). Hydrologic conditions of stormwater drainage within HO is further discussed in Section 3.7-Water Resources.

3.9.3 Electrical Systems

MECO generates electricity for the HO site. There is a 3750/4688 kilovolt-ampere (kVA) transformer at the Kula substation that presently serves HO. The site is connected via 23 kV conductors on power lines to a 450 kVA transformer bank and voltage regulators at a substation within HO and distributed from there.

The reserve capacity in the existing MECO substation at HO is estimated by MECO engineers to be approximately 1900 kVA; which is adequate for the existing connected loads and all currently identified future loads, including the proposed ATST Project (Kauhi). Although the existing HO substation has adequate capacity, the equipment is considered obsolete. MECO is planning to upgrade it to a new 2500 kVA substation with improved efficiency and safer reserve capacity (Kauhi, 2005).

3.9.4 Communications Systems

Hawaiian Telcom provides telephone and other communications services for the HO complex. HO is currently served by a range of copper, fiber-optic, and microwave lines. The U. S. Air Force facilities are served by a dedicated fiber cable with OC3C capacity. The IfA facilities are served by a microwave link with DS3 capacity. Hawaiian Telecom provides commercially available copper and fiber-optic lines to HO with more than 100 percent reserve capacity.

The FAA operates and maintains 50-watt transmitter and receiving equipment for remote air/ground interisland and trans-Pacific communications to and from aircraft. The antennas for these transmitters/receivers are located on two towers within the FAA property adjacent to HO. The frequencies for transmission and receiving are in the Very High Frequency (VHF) and Ultra-High Frequency (UHF) radio bands, to and from transiting aircraft at altitudes from 8,000 to 50,000 feet.

3.9.5 Roadways and Traffic

The **ROI applicable to this subsection includes the** Haleakalā Crater Road (State Route 378, **DOT 2007a**) and then the Park road corridor, as these are the only roads accessible to reach the summit of Haleakalā that would be viable for construction and operation of the proposed ATST Project. Various route options in the upper Kula community intersect to a two-lane County- and State-maintained road. This road continues to the entrance to HALE and to the boundary adjacent to HO. This road is the only access to HO and is maintained by HALE.

At the point where State Route 378 becomes the HALE Park road, the existing Park entrance station currently presents restricted access to wide loads. The proposed means to allow passage of wide loads required for construction of the proposed ATST Project is described in Section 2.4.3-Construction Activities, HALE Entrance Station Clearance.

The condition of the road through HALE has been investigated by the Federal Highway Administration (FHWA). The report from that investigation is included in Vol. II, Appendix P-FHWA HALE Road Report. The pavement condition, at the time of the field testing campaign conducted by the FHWA in early 2009, is characterized in three different sections, identified by milepost (MP) location. "From mile post (MP) 10.3 to 11.2 and from MP 14.8 to 21.2, the roadway appears to be performing adequately without any noted severe structural problems or distresses and should continue to perform well with a continued maintenance program. The remaining service life for MP 10.3 to 11.2 is estimated at 15 years or more, and for MP 14.8 to 21.2 the service life is estimated at 8-10 years. This remaining service life however could be reduced with increased traffic volumes and larger than expected traffic loadings. The pavement section from MP 11.2 to MP 14.8 has also received numerous overlays but has not performed as well due to the unstable underlying conditions and water issues. This section exhibits severe fatigue cracking and associated water bleeding/pumping and loss of underlying materials. Based on the investigation performed and the data gathered, the pavement from 10.3 to 11.2 and MP 14.8 to 21.2 should continue to perform well with a regular maintenance program. However, the pavement from MP 11.2 to 14.8 is at or near the end of its service life and will continue to deteriorate at a faster rate over time." The summary of the FHWA report states that: "It is recommended that the Park begin planning for a rehabilitation project in this section [MP 11.2 to 14.8]. While the rehabilitation my not have to occur in the next 3 to 5 years, it is expected that reactive and routine maintenance (small patches and pothole repairs) will increase until rehabilitation is completed."

With regard to the condition of the culverts along the Park road, the FHWA HALE Road Report concludes: "All metal and concrete box culverts inspected have the minimum specified cover to withstand an H-20 loading. The culvert with the least amount of cover, which should be monitored during construction, is the culvert at site #26 (Vol. II, Appendix P-FHWA HALE Road Report, p. 30). Table 8 of the FHWA report describes both this culvert (#26) and another (#64) as having "very little cover at inlet", and several other damaged or suboptimal conditions of the culverts are noted as well.

The FHWA HALE Road Report notes the generally sound condition of the bridge located on the Park road, based on inspection reports; however, they recommend specific measures and precautions to protect its structural integrity. Although constructed in 1934 the bridge has a favorable load rating as was noted in the 2005 inspection report.

There are two other access roads that serve the Haleakalā summit area. The FAA maintains an exclusive access road to facilities in the Saddle Area and the FAA Low Site. There is also an unimproved access road known as Skyline Drive originates at the Saddle Area and traverses the Southwest Rift zone, ultimately leading to Spring State Recreation Area (also known as Polipoli State Park) (DLNR, Hawai'i State Parks). Its entire length is on State land within the fog belt of the Kula Forest Reserve.

Approximately half of it is in the Limited Subzone of the State Conservation District and the remaining half in the Resource Subzone. A locked gate near the Saddle Area restricts vehicle access to the road from the Haleakalā summit to those holding DLNR permits. Hikers, hunters, and bicyclists use the unpaved road. The slopes along the existing road range from flat to 28 percent. The surface area consists of small lava cinder rock from which the small particulate resulting from weathering over time has been washed to a level approximately three feet below the surface (UH IfA, 2001). Due to the steep grades, tight turns, and soft roadbed conditions of this access road, it is not appropriate for the range of vehicles necessary for construction, maintenance, and operation of HO facilities.

The current daily operational workforce level at HO averages from 60 to 80 individuals, including technicians and science team members and facilities staff (UH IfA, 2005). As shown on Table 3-10, a 2003 traffic study included in the LRDP showed an average daily total traffic volume of 48 vehicles entering and leaving HO.

				AM	PM	AM	PM	
Date	Day	Vehicles In	Vehicles Out	Peak In	Peak In	Peak Out	Peak Out	Total Vehicles
24-Oct	Fri	55	55	12	7	5	10	110
25-Oct	Sat	32	24	4	7	3	5	56
26-Oct	Sun	23	25	3	3	4	5	48
27-Oct	Mon	52	50	12	5	4	19	102
28-Oct	Tues	60	66	13	4	4	25	126
29-Oct	Weds	82	63	13	11	4	24	145
30-Oct	Thurs	67	74	14	5	3	25	141
31-Oct	Fri	47	44	6	4	4	9	91
1-Nov	Sat	24	25	6	5	5	4	49
2-Nov	Sun	23	22	3	4	2	4	45
3-Nov	Mon	57	61	14	4	4	22	118
4-Nov	Tues	68	61	14	7	3	23	129
5-Nov	Weds	62	67	13	8	2	21	129
6-Nov	Thurs	84	78	12	5	4	26	162
7-Nov	Fri	47	49	7	4	3	11	96
8-Nov	Sat	17	19	3	4	3	4	36
9-Nov	Sun	17	16	3	4	2	3	33
10-Nov	Mon	55	56	10	4	4	19	111
Total T	raffic	872	855					1727
Daily Av	verage	48.4	47.5	9.0	5.3	3.5	14.4	95.9

Table 3-10. Haleakalā High Altitude Observatory Site Traffic Study Summary.

(UH IfA, 2005)

The State of Hawai'i Department of Transportation (DOT) conducted the most recent 24-hour traffic survey on September 19 and 20, 2007 (DOT, 2007**b**). This survey was conducted at the intersection of Haleakalā Crater Road, Haleakalā Highway, and Kekaulike Avenue and counted individual vehicles traveling on Haleakalā Crater Road. On September 19, 2007, the traffic volume in a 24-hour period totaled 1,562 vehicles (796 entering the region and 766 exiting). On February 20, 2009, the 24-hour traffic volume totaled 1,439 (734 entering and 705 exiting) (DOT, 2007**b**). These counts are relatively consistent with a previous traffic study in 2003, which recorded a total two-way 24-hour traffic volume of 1,616 at the same location.

Volume/Capacity (V/C) design standards and the level of service (LOS) ratings for Haleakalā Crater Road were not available at the time this traffic impact analysis was completed. V/C measures traffic demand on a facility (expressed as volume) compared to the traffic carrying capacity. In other words, this is the ratio of the level of vehicular travel for a roadway to the amount of designed capacity on the roadway. A V/C ratio of 1 means the roadway is functioning at capacity and congested conditions are expected to occur (APA, 2002). LOS refers to a standard measurement used by transportation officials that reflects the relative ease of traffic flow on a scale of A to F, with free-flowing traffic being rated LOS A and congested conditions rated as LOS F (FHWA).

Visitors to HALE generate most of the vehicle traffic on Haleakalā Crater Road, with the highest traffic volumes occurring in the early morning hours when visitors experience the sunrise. The high elevations combined with relatively steep grades and numerous switchback curves on the road, limit vehicle speeds, particularly trucks and tour buses.

The FHWA study of the condition of the road through HALE also characterized the current traffic volume on that road, based on statistics provided by the NPS. Tables 9 and 10 in the FHWA report (Vol. II, Appendix P-FHWA HALE Road Report) depict an average traffic volume from 2004 to 2008 of approximately 190,000 total vehicle trips annually, comprising approximately 443 daily passenger car trips and 30 daily bus trips. To quantify the level of wear that the road is exposed to, the FHWA HALE Road Report converts these traffic volume statistics to 11,021 equivalent single-axle loads annually.

3.10 Noise

The proposed ATST Project involves various construction-related activities, as well as the introduction of stationary sources associated with facility operations. A discussion of existing noise in the ROI, which includes both HO and areas within HALE from which noise would be audible from the proposed ATST Project, is provided in the following section.

3.10.1 Fundamentals of Noise

This section provides an overview of the fundamentals of noise. Noise is defined as unwanted sound. Airborne sound is a rapid fluctuation of air pressure above and below atmospheric pressure. There are several ways to measure noise, depending on the source of the noise, the receiver, and the reason for the noise measurement. Table 3-11 summarizes the technical noise terms used in this report.

The most common metric for measuring sound impacts is the overall A-weighted sound level measurement that has been adopted by regulatory bodies worldwide. The A-weighting scale measures sound in a similar fashion to how a person perceives or hears sound, thus achieving very good correlation in terms of how to evaluate acceptable and unacceptable sound levels.

A-weighted sound levels are typically presented as the equivalent sound pressure level (L_{eq}) , which is defined as the average noise level, on an equal energy basis for a stated period of time, and is commonly used to measure steady state sound or noise that is usually dominant. The impacts of noise on people can be listed in three general categories:

- 1. Subjective impacts of annoyance, nuisance, dissatisfaction,
- 2. Interference with activities such as speech, sleep, learning².
- 3. Physiological impacts such as startling and hearing loss.

Table 3-11. Definitions of Acoustical Terms.

Term	Definitions
Ambient Noise	The composite of noise from all sources near and far. The normal or existing level of
Level	environmental noise at a given location.
Decibel (dB)	A unit describing the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the measured pressure to the reference pressure, which is 20 micropascals.
A-weighted Sound	The sound pressure level in decibels as measured on a sound level meter using the
Pressure Level	A-weighted filter network. The A-weighted filter de-emphasizes the very low and very
(dBA)	high frequency components of the sound in a manner similar to the frequency response of
	the human ear and correlates well with subjective reactions to noise. All sound levels in
	this report are A-weighted.
Equivalent Sound	The L _{eq} integrates fluctuating sound levels over a period of time to express them as a
Level (L _{eq})	steady-state sound level. As an example, if two sounds are measured and one sound has
	twice the energy but lasts half as long, the two sounds would be characterized as having
	the same equivalent sound level. Equivalent Sound Level is considered to be related
	directly to the impacts of sound on people since it expresses the equivalent magnitude of
	the sound as a function of frequency of occurrence and time.

In most cases, environmental noise may produce impacts in the first two categories only. No completely satisfactory approach exists to measure the subjective impacts of noise, or to measure the corresponding reactions of annoyance and dissatisfaction. This lack of a common standard is primarily due to the wide variation in individual thresholds of annoyance and habituation to noise.

The general human response to changes in noise levels that are similar in frequency content (for example, comparing increases in continuous $[L_{eq}]$ traffic noise levels) are summarized below:

- 1. A 3-dB change in sound level is considered a barely noticeable difference.
- 2. A 5-dB change in sound level will typically be noticeable.
- 3, A 10-dB change is considered to be a doubling in loudness.
 - 3.10.2 Existing Environment

As stated in Section 3.9.5, Roadways and Traffic, high levels of vehicular and bus traffic traverse the Park road each year. In 2007, according to the Table 9 of the FHWA HALE Road Report (Vol. II, Appendix P), the total one-way traffic entering the Park was 200,320 vehicles of which approximately 9,125 (25 daily) were buses; in 2008, the total number of entering vehicles was 182,906 of which approximately 6,570 (18 daily) were buses. With this approximate number of vehicles on the Park road each year and estimating the number of vehicles per day and per hour (one-way traffic of approximately 22 cars and 0.89 buses per hour) the approximate daytime baseline noise level from visitor traffic is 47 dBA, similar to a typical rural setting (see Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document).

 $^{^{2}}$ It has been noted that an important purpose of quiet at the summit area is to ensure that visitors and practitioners are able to experience the natural surroundings, in which the dominate sound is wind.

Existing noise conditions at the summit of Haleakalā vary, depending on location, wind conditions, and the nature of nearby noise sources. Previous sound level measurements conducted at HO indicated truck traffic as the primary mobile noise sources, while **HVAC** units **including chillers and** exhaust fans are the loudest stationary noise sources. Moderate wind speeds at the summit had instantaneous noise levels measured in the range of 45 to 50 dBA, backup generators had noise levels averaging 73 to 84 dBA at a distance of 50 feet, while construction-related vehicles (general) were recorded at 82 to 93 dBA, also at a distance of 50 feet (AFRL, 2005). Natural sound levels, in the Crater area, **absent wind or other ambient sources,** are typically 10 dBA (NPS, 2009).

There are no **permanent** noise-sensitive human receptors at HO, such as residences, schools, hospitals, or other similar land uses where people generally expect and need a quiet environment. **Native Hawaiians, however, practice traditional and cultural practices at various locations on Haleakalā including anywhere within the ROI**. HO is not open to the public, with the exception of Native Hawaiians participating in cultural and traditional practices. Although multiple observatories and research facilities are stationed at HO, the majority of personnel at these operations work indoors in structurally insulated facilities with negligible outdoor occupational tasks. The public areas closest to the proposed ATST Project area are the Pu'u 'Ula'ula Overlook in HALE, which is approximately a quarter-mile away, and the Haleakalā Summit Visitor Center, which is approximately a half away. **Currently existing impacts on** noise-sensitive biological receptors, such as 'ua'u, are discussed in Section 3.3.3-Faunal Resources.

3.11 Climatology and Air Quality

The ROI for determining the affected environment for climatology and air quality includes both HO and the HALE Park road corridor.

3.11.1 Climatology

Maui County is comprised of four islands: Maui, Molokai, Lana'i and Kaho'olawe. Maui stands out among the other islands in the County as having the tallest summits and thus the most extreme climate variations. The elevation at the summit of Haleakalā is 10,023 feet ASL and at times experiences snow and hail. In contrast to the beach areas, the summit of Haleakalā can become quite cold at times, with low temperatures that can be below freezing levels. Rainfall on Maui usually is heaviest in the mountain areas, while the beaches and coasts are the driest. Rainfall on Haleakalā peaks in a band at elevations between 3,000 to 5,000 feet ASL where the moisture-laden trade winds are cooled as they rise against the mountain front and are held below 5,000 feet ASL by a temperature inversion that acts as a climatological boundary in the Hawaiian Islands. At higher elevations, the air can be much drier, resulting in average rainfall of from less than 15 inches to as much as 60 inches a year.

The precipitation levels of Maui County are somewhat low, occasionally resulting in mild droughts in some areas during the summer (Yuen and Associates, 1990). The annual average total precipitation on Haleakalā summit between 1949 and 2005 was 52.92 inches (WRCC, 2005). Rainfall in the microclimate area on the western slope of Haleakalā is usually from frontal systems or storms and is about 29.5 inches a year or less. This microclimate is characterized by the temperature inversion. Rainfall above the inversion is predominantly from storms or frontal systems (Scholl, et al, 2002).

The lowest seven-year monthly average temperature at the MSSC between 1985 and 1991 was 42 degrees Fahrenheit and the highest seven-year monthly average temperature was 50 degrees Fahrenheit. Temperature lows usually occurs in December, January, and February; highs usually occur in August. During the winter months, sub-freezing temperatures and frost are common at higher elevations with occasional sub-zero temperatures recorded. Between December and February the summit area occasionally experiences snow, hail and sleet.

Maui experiences predominantly northeasterly trade winds spurred by high-pressure anticyclones and ridges that occur several hundred miles to the north and northeast of the island. These trade winds are most persistent during the months of March to November. Conversely, southwesterly (Kona) winds occasionally occur in the winter months, usually accompanied by clear weather ahead of frontal storms. However, wind speeds at the summit can be extreme; the greatest wind speed recorded at the summit is over 125 miles per hour (mph). Gusts exceeding 60 mph are common throughout the year as are sustained winds of 50 mph. Winter storm systems originating from the north Pacific have been known to bring the strongest winds through the island chain.

3.11.2 Air Quality

All areas in Hawai'i are considered to comply with Federal and State ambient air quality standards; no areas of Hawai'i are classified as non-attainment or maintenance areas. Therefore, all of Maui, including Haleakalā, is currently an attainment area for EPA "criteria" pollutants, which include sulfur dioxide, nitrogen oxides, carbon monoxide, ozone, lead, and certain particulate matter. Furthermore, HALE is categorized as a "Class 1" area under the Clean Air Act's Prevention of Significant Deterioration Program, a category the EPA reserves for the most pristine areas of the country in order to maintain the excellent level of air quality already attained. HALE, itself, has a long-term visibility-monitoring agenda currently in **effect** under this program to ensure the region's continued Class 1 attainment (HALE, 2005a).

The relatively limited commercial or industrial development on Haleakalā results in few local anthropogenic (manmade) emission sources with the potential to affect air quality at HO. However, since the natural substrate at the project site is a mixture of fine volcanic sand and cinders, a small amount of naturally occurring fugitive dust from the finer material is released when the substrate is disturbed. The primary sources of anthropogenic pollutant emissions at HO are the intermittent activities associated with existing research facility operations. These include low-impact mobile emission sources, such as light vehicle traffic to and from the summit, as well as stationary source emissions resulting from periodic testing of diesel-fueled emergency generators. General maintenance activities at HO likewise result in temporary and low-impact emissions. For example, mirrors at observatories are periodically recoated and this produces short-duration air emissions well below those requiring a State permit.

Another contributing factor to the excellent air quality at the summit of Haleakalā is the favorable meteorological conditions, including a temperature inversion layer that rings the mountain at an elevation of approximately 5,000 and 7,000 feet ASL (HALE, 2005b). This inversion layer stabilizes the atmosphere above the basin and limits airborne pollutants from rising to the summit, including that of the largest source of air pollution in the area, Kilauea Volcano on the island of Hawai'i (HALE, 2005a). Additionally, prevailing trade winds from the northeast are persistently gusty at HO, which accelerate the dilution of any locally generated air emissions. Ambient winds of 20 to 50 miles per hour are commonly reported at the summit, creating turbulence and accelerating the atmospheric dispersion.

3.12 Socioeconomics and Environmental Justice

The ROI for the affected environment pertaining to socioeconomics is the island of Maui. The ROI for the affected environment pertaining to environmental justice is the summit area of Haleakalā. This section provides a description of the contribution of the existing economy and the sociological environment within the ROI, as well as any currently-existing impacts on minority or low-income communities or the health and safety of children within this region. The ROI is located on Maui, one of the four islands that make up Maui County. Three of the four islands, Maui, Lana'i, and Moloka'i, are inhabited, while the fourth, Kaho'olawe, is uninhabited. The socioeconomic indicators used for this study include the following:

- 1. Population and housing,
- 2. Employment, economy, and income; and,
- 3. Education

In addition, a discussion of environmental justice issues is presented in accordance with EO 12898, and a discussion relating to the protection of children from environmental health risks is also presented in accordance with EO 13045.

The baseline year for socioeconomic data is 2006, the most recent year for which U.S. Census Bureau data are available for most of the socioeconomic indicators.

3.12.1 Socioeconomics

3.12.1.1 Resident Population and Housing

The population of the County of Maui roughly doubled between 1980 (71,600 persons) and 2006 (139,995 persons) (County of Maui, Office of Economic Development, 2005 and HBDEDT, 2007). While the increase in population in the State of Hawai'i was approximately 29.2 percent, between 1980 and 2006, the population increase for the County of Maui was approximately 97.5 percent. Table 3-12 provides a comparison of population trends.

Table 3-12. Hawai'i State, County of Maui, and Island of Maui Resident Population.

	1980	2006	% Change
State of Hawai'i	994,691	1,285,498	29.2%
County of Maui	71,600	141,440	97.5%

(County of Maui, Office of Economic Development, Maui County Data Book, 2006)

The County of Maui has experienced significant growth over the 26 years between 1980 and 2006, and the trend is projected to continue. The resident population for the island of Maui is expected to grow from 129,471 persons in 2005 to 186,254 persons in 2030. This is a 1.68 percent annual growth rate, for a total of approximately 42 percent increase in population over the 25 year period (Table 3-13) (County of Maui, 2008b).

Year	2000	2005	2010	2015	2020	2025	2030
Total							
Population	117,644	129,471	140,290	151,011	162,370	174,184	186,252
(Maui County, 200)8)						

(Maui County, 2008)

Housing value in the County of Maui had increased 111.96 percent from 2000 to 2006 when the median housing value was \$529,700. Table 3-14 shows housing occupancy type and vacancy for Maui, Maui County, and the State of Hawai'i for the year 2000 and updated 2006 data for Maui County and the State of Hawai'i. Housing on Maui made up 94 percent of the total housing units of Maui County in 2000. Total housing units in Maui County increased by 12.8 percent from 2000 to 2006. For 2000, the rate of owner-occupied units on Maui and Maui County was 44 percent. For 2006, the rate of owner-occupied units for Maui County was approximately 59 percent, similar to that of the State of Hawai'i. The vacancy rate in 2006 was at 23.6 percent for Maui County and 13.5 percent for the State of Hawai'i.

	State of Hawai'i		Island of Maui	County of Maui	
	2000	2006	2000	2000	2006
Total housing units	460,542	500,021	53,210	56,377	63,601
Occupied	403,240	432,632	40,729	43,507	48,586
Vacant	57,302	67,389	12,469	12,870	15,015
Owner-Occupied	173,861	257,599	23,488	25,039	28,477
Rented	174,458	175,033	17,200	18,468	20,109

Table 3-14. Housing.

(County of Maui, Office of Economic Development, Maui County Data Book, 2005, U. S. Census Bureau 2006a, 2006b)

3.12.1.2 Employment, Economy, and Income

As the most recent Bureau of Economic Analysis (BEA) data available, Table 3-15 presents the distribution of personal income among the various industry sectors and the changes experienced in these sectors between 2001 and 2007 for Maui County and the State of Hawai'i. The major increase in personal income in Maui County, between 2005 and 2007, came from the construction (33.39 percent), wholesale trade at (22.68 percent), and farming (20.10 percent) sectors. In the State of Hawai'i, between 2005 and 2007, the major increase in personal income came from construction (19.27 percent), Government, Government Enterprise (15.59 percent), and Accommodation and Food Service (13.73 percent).

As of June 2009, Maui County experienced sharp increases in the number of unemployed people, pushing the 2009 unemployment rate to 8.1 percent. One year earlier, Maui County recorded a 3.2 percent unemployment rate. The upward changes from a year ago in Maui County saw the local government sector had the largest gain of 150 jobs (6.1 percent), followed by Educational Services with a gain of 50 jobs (4.8 percent). Economic downturns from a year ago show the Natural Resources, Mining and Construction sector lost 800 jobs, the Transportation, Warehousing, and Utility sector lost 500 jobs (-13.7 percent), and the Agriculture (farming) sector lost 200 jobs (-11.4 percent) (DBEDT, 2009).

However, despite decreasing unemployment, **the State of** Hawai'i had continued to maintain a higher per capita personal income than Maui County between 2001 and 2005 as shown on Figure 3-13. For 2005, the per capita personal income of Hawai'i (\$34,890) exceeded that of Maui County (\$31,156) by \$3,333 (10.7 percent). For 2001, the per capita personal income for Hawai'i (\$28,759) exceeded that of Maui County (\$25,398) by \$3,361 (13.2 percent). Maui County experienced a higher growth in per capita personal income between 2001 and 2005, with a 15.7 percent increase, compared to 13.6 percent increase for the State (BEA, 2007c).

			Maui County		
			2001 to 2005		2005 to 2007
	2001	2005	% Change	2007	% Change
Farm	\$61,470	\$70,229	14.25	\$84,346	20.10
Construction	\$206,238	\$298,255	44.62	\$397,843	33.39
Manufacturing	\$106,937	\$173,870	62.59	\$190,329	9.47
Wholesale Trade	\$49,892	\$70,242	40.79	\$86,170	22.68
Information	\$49,983	\$57,244	14.67	\$54,916	-4.07
Finance and					
Insurance	\$46,652	\$55,611	19.20	\$64,409	15.82
Real Estate and					
Rental and Leasing	\$91,102	\$122,956	34.96	\$117,982	-4.05
Arts Entertainment					
and Recreation	\$86,367	\$101,146	17.11	\$111,073	9.81
Accommodation					
and Food Service	\$555,140	\$758,156	36.57	\$838,058	10.54
Government,					
Government					
Enterprise	\$370,448	\$537,215	45.02	\$628,756	17.04
			State of Hawai	'i	
			2001 to 2005		2005 to 2007
r	2001	2005	% Change	2007	% Change
Farm	\$214,803	\$217,252	1.14	\$212,645	-2.12
Construction	\$1,690,175	\$2,672,914	58.14	\$3,187,936	19.27
Manufacturing	\$786,597	\$904,754	15.02	\$1,002,998	10.86
Wholesale Trade	\$802,960	\$1,033,547	28.71	\$1,149,390	11.21
Information	\$708,607	\$717,376	1.24	\$759,062	5.81
Finance and					
Insurance	\$1,053,424	\$1,224,711	16.26	\$1,290,612	5.38
Real Estate and					
Rental and Leasing	\$650,677	\$1,090,975	67.67	\$1,018,187	-6.67
Arts Entertainment					
nd Recreation	\$367,229	\$450,187	22.59	\$470,823	4.58
Accommodation					
and Food Service	\$2,287,658	\$2,966,018	29.65	\$3,373,343	13.73
Government,					
Government Enterprise	\$8,086,480	\$11,045,960	36.59	\$12,767,949	15.59

Table 3-15. Personal Income by Major Source and Earnings by Industry.

(BEA, 2007a)

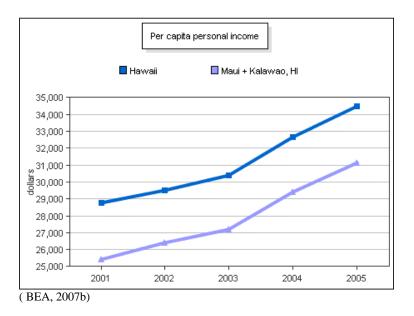


Figure 3-13. Per Capita Personal Income.

Table 3-16 shows the rates of employment from 1996 to June 2009 (2^{nd} quarter). The unemployment rate consistently decreased between 1996 and 2006 with an increased labor force in Maui County. That trend, however, has taken a sharp turn in the opposite direction. Like many places in the United States, Maui County is currently suffering the effects from the recent economic downturn. Although the official statistics from the U.S. Census Bureau for the current year are not yet available, updated economic statistics are available from DBEDT (DBEDT, 2009). According to the 2^{nd} quarter data provided from the DBEDT website as of June 2009, there was a total labor force on Maui of 79,100, of which 6,450 people, or 8.1 percent, were unemployed.

			Percent
	Labor Force	Unemployed	Unemployed
1996	68,050	4,950	7.3
1999	71,400	4,050	5.7
2006	76,670	2,142	4.2
2 nd Quarter 2009	78,200	7,200	9.2

Table 3-16. Rate of Employment in Maui County.

(Maui County Office of Economic Development, 2006, 2009; U. S. Census Bureau, 2006c)

3.12.1.3 Education

Based on the most current official data available, Maui District has a total of **53** schools, with 32 public and 21 private schools. The number of teachers in public schools for the school year 2004 to 2005 was 1,296, with an enrollment of 20,888 students. The number of high school enrollment in public schools for 2004 to 2005 was 6,164 **students**. The total number of degrees earned from Maui Community College (MCC) in 2005 was 899, including 561 associate degrees and 338 certificates of achievement. During fall 2005, there were 1,163 full-time students and 1,740 part-time students enrolled in MCC. The UH had a total of 56 distance-learning courses in 2005 (County of Maui, Office of Economic Development, 2006).

The anticipated scientific plan for HO facilities for the next decade is to ensure unobtrusive scientific access and to increase high-level skilled jobs and local educational benefits for both Maui and the international scientific communities. These are the sectors that are assumed to contribute to the local educational and economic environment in a truly meaningful way. The world's largest telescope devoted to global astrophysical education is accessed electronically from around the world and is partly controlled from Maui using the FTF. Also, the potential astronomical plans would enable visiting scientists to conduct experiments at the AEOS facility at HO. (UH IfA, 2005).

Faulkes Telescope Facility

The FTF within HO provides observations for students in Hawai'i and the United Kingdom (UK). The data is used by students in secondary schools and undergraduate institutions for research projects mentored by professional astronomers. When the primary clients of the telescope are unavailable (e.g., during school vacations and summers), observing time is made available to other serious amateur astronomers and educational users, such as the Bishop Museum. (UH IfA, 2001)

Teaching the basics of research is the primary goal of the FTF. The research undertaken by the students **is to** be published in scientific literature. Data from the FTF is archived and available to the public for research and education. A collection of the spectacular images that help make astronomy a subject that has wide appeal would be made available to schools and publishers.

Current plans for the FTF include participation in the project by students from MCC, which range from controlling the telescope to assisting with telescope maintenance to analyzing observations.

University of Hawai'i Space Grant Program

The UH Space Grant program has previously sponsored students at MCC in astronomy-related projects. Additionally, future projects for Space Grant students associated with HO are being considered. If A and MCC are also pursuing opportunities to develop training internships at HO. If A also supports amateur astronomers, as well as accommodates visitation requests to HO from public and private schools; however, no public tours are offered.

Towards Other Planetary Systems

HO was a key participant in the Towards Other Planetary Systems (TOPS) program, a five-year NSFsponsored Teacher Enhancement program. Teachers learned basic astronomy content and began integrating State and National science/astronomy standards into their classrooms. In addition, a privately funded student component of the program was available to local high school students with interests in astronomy. The program gives students an opportunity to learn astronomy, to engage in hands-on activities, and to get an idea of what careers in astronomy and related sciences have to offer. (UH IfA, 2005b)

Center for Adaptive Optics

The Center for Adaptive Optics (CfAO), a National Science Foundation Science and Technology Center headquartered at the University of California-Santa Cruz, MCC, and the Maui Economic Development Board, Inc. (MEDB) began a partnership in 2002, which has now matured into a successful set of programs, with three major components:

- 1. The Akamai Internship Program,
- 2. The Professional Development Workshop and Teaching Fellowships; and,
- 3. An education/industry collaborative.

The partnership includes a range of academic, industry, and government partners, extending to Hawai'i Island, Kaua'i, and O'ahu. Current and past participating Maui partners are: the U. S. Air Force Maui

Optical and Supercomputing Site, IfA, Oceanit, Trex Enterprises, Inc., Textron Systems, Akimeka, LLC, the Maui High Performance Computing Center, Maui Scientific Research Center, Boeing LTS, Northrop Grumman Corp., the Pacific Disaster Center, and the County of Maui. The goals of this partnership are to:

- 1. Advance local students, particularly Native Hawaiians and women, into the Maui technical and scientific workforce to immediately impact the workforce.
- 2. Develop courses and programs to prepare students for the local workforce by involving the scientific and technical community in teaching and mentoring.
- 3. Develop courses and programs that promote equity in science and technology, integrate awareness and respect of host culture, and open opportunities for students from underrepresented groups, particularly Native Hawaiians.

Akamai Internship Program: Advancing students from underrepresented groups

The CfAO Akamai Internship Program is designed for all community college and university undergraduates in Hawai'i — and kama'āina studying on the mainland – who are interested in pursuing a career in science, technology, engineering or math (STEM) fields and have had to overcome barriers to achieve their educational and/or career goals. All students must be U.S. Citizens or permanent residents, and be at least 18 years old. The CfAO is committed to increasing diversity in the sciences. Underrepresented groups (African Americans, Native Americans, Hispanics, Pacific Islanders, women and persons with disabilities) are strongly encouraged to apply. Each student is matched with a research advisor and is integrated as a member of the advisor's research group with daily guidance by a research supervisor. Integrated into the program is a communication curriculum, which was expanded in 2006 to include the integration of Hawaiian cultural components, with consultation from Kahu Charles K. Maxwell, Sr.

The Maui program is a collaboration between the Center for Adaptive Optics, Institute for Astronomy, Maui Economic Development Board, MCC, the University of Hawai'i and local Maui industries. It is an intensive 8-week introduction to research method and tools with an emphasis on adaptive optics science. The program provides opportunities at various sites over the summer, with additional activities that will provide support and opportunities during the academic year. The interns will start with a 5-day short course in general optical principles and adaptive optics taught at MCC. Upon completions of the internship program, participants will be better prepared to pursue their educational and research career goals.

Working with the MEDB Women in Technology Project, the Akamai Internship Program has a strong focus on increasing the participation of women and underrepresented minorities (URM), such as Native Hawaiians. In 2006, 28 students (29 percent Native Hawaiian, 18 percent other URM, and 25 percent women) from Hawai'i had completed the Maui Akamai Program, with 12 working in part-time or full-time technical positions in Hawai'i, and an additional 14 enrolled in a science or technology degree program. The 2006 Akamai Maui interns selected included the highest participation from underrepresented groups (36 percent Native Hawaiian, 21 percent other URM, and 36 percent women).

Professional Development Workshop & Teaching Fellowships:

Designing Curriculum to Promote Equity and Diversity in Science and Technology

The Professional Development Workshop (PDW) brings graduate students and post-doctorates from CfAO's mainland sites together with community college faculty members and observatory personnel from Hawai'i for an intensive 5-day training on inquiry-based teaching methods. A major part of the workshop includes an opportunity for workshop participants to work in teams on their own teaching activities for CfAO educational programs, all of which are aimed at increasing participation of underrepresented groups.

All workshop participants sign on as "Teaching Fellows" in exchange for a fully funded workshop experience. The Teaching Fellows receive ongoing consultation after the PDW as they work on course design and a practical teaching experience. The PDW in combination with Teaching Fellowships is the engine behind the extremely productive teaching teams that staff CfAO short courses, internships, high school programs, as well as becoming "teaching assistants" for community college courses.

Each year approximately 40 instructors teach in these courses and programs; and, to date, more than 30 new inquiry-based laboratory units and 7 new courses have been developed. All courses and programs emphasize teaching strategies that engage all students and focus on achieving cultural and gender equity. Approximately one-third of all PDW participants teach in Hawai'i-based programs and courses; however, in the coming years the focus will change to create a PDW that specifically focuses on Hawai'i-based educational activities. The need for new courses, laboratory units, and other activities has grown considerably as MCC moves forward in developing new degree programs that will broadly serve the Maui community and increase the participation of Native Hawaiians in the technical fields. The PDW and Teaching Fellowships are ideally suited to meet this need, including the development of high school programs.

Industry/Education Collaborative

A key component to the success of the partnership comes from a strong collaboration with the technical and scientific community on Maui. Specific activities have been developed to engage this community, as well as mechanisms to obtain input on the courses and programs.

Activities include the Akamai Selection and Advisory Committee, the ARPA Maui Optical Station (AMOS) Technical Conference Student Session, the annual Maui Science and Technology Education Exchange (MSTEE), and a range of meetings throughout the year. For example, the 2006 MSTEE event included a working session where internship employers and direct supervisors worked with community partners and CfAO members to define internship projects, identify knowledge and skills necessary for a successful internship experience, and make recommendations for short-course topics.

The Akamai Internship Program has become a point of intersection between the technical and educational community. In 2005, more than 50 individuals from Maui's technical community contributed time to the Akamai Program. The collaborative has matured from years of experience, has clearly articulated shared goals and community-based leadership, and is now positioned with the necessary ingredients to sustain and expand the Maui-based initiatives.

3.12.2 Environmental Justice and Protection of Children from Environmental Health or Safety Risks

A discussion of environmental justice issues is presented in accordance with EO 12898, and a discussion relating to the protection of children from environmental health risks is presented in accordance with EO 13045, Protection of Children from Environmental Health Risks and Safety Risks, April 1997.

On February 11, 1994, President Clinton issued EO 12898, entitled, "Federal Actions to Address Environmental Justice in Minority and Low-Income Populations, February 11, 1994." This Executive Order requires that "each Federal agency make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities, on minority populations and low-income populations" (EO 12898, 59 CFR 7629 [Section 1-101]).

Ethnic data for Maui County and the State of Hawai'i for 2006 is shown in Table 3-17. The dominant ethnic group in 2006 in Maui County was Caucasian, at 37.4 percent of the total population. The second

group is of Asian ethnicity (28.4 percent). The third ethnic group is comprised of Native Hawaiians and Other Pacific Islanders (10.5 percent). The dominant ethnic group for the State of Hawai'i is the Asian group, with 39.9 percent of the total population. The Native Hawaiian and Other Pacific Islander group makes up 8.7 percent of the total State population.

	Maui County	State of Hawai'i
Total	141,300	1,285,498
Caucasian	52,894	337,507
African American	664	28,062
American Indian and Alaska Native	323	4,153
Asian	40,061	512,995
Native Hawaiian and Other Pacific Islander	14,796	111,488
Some Other Race	1,806	14,513
Two or More Races	30,756	276,780

Table 3-17. Population Percentage by Race/Ethnicity.

(U. S. Census, 2006d, 2006e)

EO 13045 seeks to protect children from disproportionately incurring environmental health risks or safety risks that might arise from Federal policies, programs, activities, and standards. Environmental health risks and safety risks to children are those that are attributable to substances that a child is likely to come into contact with or to ingest.

The HO site is clearly defined and a posted sign at the entrance indicates that access to the area is restricted and off limits to unauthorized personnel. The only people who would typically occupy the HO site and proposed ATST project area would be employees of the various facilities or visiting members of the scientific community. Native Hawaiians are welcome to enter for cultural and traditional practices as indicated by the language on the sign. **There is no minority or low-income populations that reside in close proximity to the summit area of Haleakalā**.

3.13 **Public Services and Facilities**

The ROI for determining the affected environment for public services and facilities include both HO and the Park road corridor.

3.13.1 Police Protection

The Maui County Police Department (MPD) is located at 55 Mahalani Street in Wailuku. The station is named Hale Maka'i. Police substations are located in various communities around the County. The closest police substation is located in Makawao approximately 29 miles from the summit of Haleakalā. A new police substation currently being constructed is located in Kula, which is the community closest to the summit approximately 22 miles away. However, the MPD has no jurisdiction over HALE activities. HALE Federal law enforcement officers are the exclusive policing authority within HALE.

3.13.2 Fire Protection

Volunteers from the plantation communities fought all fires prior to the establishment of the Maui Fire Department. The Wailuku Fire Station was established in 1924. The responsibilities of the Maui County Department of Fire Control are **similar to the way** they were in 1924, to protect life, property and the environment from fires, hazardous material releases and other life-threatening emergencies. However,

today the department protects all of Maui County. The Department of Fire Control has a fire fighting force of 275 fire fighters and a support staff of nine personnel.

The Department has fourteen fire stations throughout the County of Maui. There are ten fire stations on the island of Maui, three on the island of Moloka'i and one on the island of Lana'i. There are fourteen engine companies, two ladder companies, one rescue/HAZMAT company, four tankers, and three rescue boats. The island of Maui has ten engine companies, two ladder companies, one rescue/hazmat company, two rescue boats and two tankers. In addition, the department leases a helicopter for rescue and wild land firefighting. The closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā. Another fire station serving the Upcountry community is located in Makawao approximately 29 miles from the summit. These two fire stations, although the closest to HO, are beyond fire fighting capabilities for HO.

National Park Wildlife Firefighters work for the common goal of fire management, wildland fire use, fire prevention, and fire suppression. A militia comprised of approximately 10 to 12 wildland firefighters reside on Maui and are certified for this responsibility.

3.13.3 Schools

As discussed earlier, Maui District has a total of 53 schools, with 32 public and 21 private schools. The number of teachers in public schools for the school year 2004-2005 was 1,296, with an enrollment of 20,888 students. The number of high school enrollment in public schools for 2004-2005 was 6,164 students. The total number of degrees earned from Maui Community College (MCC) in 2005 was 899, including 561 associate degrees and 338 certificates of achievement. Education is further discussed in detail in Section 3.12.1.3-Education.

The closest schools to the proposed ATST Project are located in the Kula community (Haleakalā Waldorf School, King Kekaulike High School, Kula Elementary School, the Carden Academy, and the Kamehameha Schools), which are approximately 25 to 27 miles from the summit of Haleakalā.

3.13.4 Recreational Facilities

The Haleakalā Visitor Center of HALE is located approximately two-thirds of a mile northeast of HO and is one of the main points of attraction for visitors of the mountain. Besides boasting a magnificent view of the crater, the Visitor Center also details the geology, archeology, and ecology of the area as well as the wilderness protection programs in exhibits posted throughout the area. Overlooks with orientation panels and descriptive displays are located at Leleiwi, Kalahaku, and Pu'u Ula'ula along the Park road between the Park headquarters and the summit. In addition, the rare Haleakalā silversword plant that can be seen at Kalahaku draws many nature enthusiasts.

Annually, 1.7 million visitors are attracted to the summit, crater, and the 24,000 acres of pristine wilderness of HALE because of the excellent walking, hiking, and horseback riding opportunities available. Hikes can range from short self-guiding walks to rigorous backpacking for several days. The primary reasons for visiting HALE include engaging in sightseeing, scenic driving and watching the sunrise at the top of the summit. Camping is permitted at designated areas inside the crater floor adjacent to each of the three crater cabins (HALE, 1994 and 2004). Camp and picnic sites are available in the Park, such as in the Hosmer Grove Campgrounds. In addition, individual companies with Commercial Use Applications from HALE sponsor their own trips through the crater on a one-day or overnight basis. Hikers have also been known to traverse the trails found near Kalepeamoa. As of March 18, 2008, the NPS has issued a News Advisory that the moratorium of commercial downhill bicycle rides in Haleakalā

National Park will continue pending a full evaluation of all impacts from the activity in the Park's Commercial Services Plan (NPS, 2008a).

The Skyline Trail begins at the 9,750-foot elevation, at the lowest point of the paved access road near the Saddle Area and continues for about 6.5 miles, ending at the Polipoli Spring State Recreation Area. Trails through the area are open to the public for hiking and related recreational activities except during times of extreme fire danger or inclement weather.

The Park Headquarters Visitor Center, Haleakalā Visitor Center, and the Kipahulu Visitor Center (located on the east side of Maui) have cultural and natural history exhibits. Rangers are on duty during business hours to answer questions and assist visitors. Periodic, guided interpretive hikes and activities are available at both the Haleakalā Visitor Center and the Kipahulu Visitor Center.

There is no food or gas available within the Park. Restrooms are located at the Haleakalā Visitor Center, Kalahaku Overlook, Park Headquarters Visitor Center, and Hosmer Grove and are handicapped accessible. Limited emergency services are available at both the Park Headquarters Visitor Center and Headquarters. When snow and/or icy conditions warrant, the Park closes the road.

3.13.5 Healthcare Services

In 1998, Maui Memorial Hospital was officially renamed the Maui Memorial Medical Center. Maui Memorial Medical Center is located in Wailuku and is approximately 50 miles from the summit. It is the only full-service hospital on Maui and offers a broad range of emergency services including complex diagnostic and treatment services. The formerly named Kula Hospital, located in Keokea, is approximately 40 miles from the summit. Beginning October 31, 2005, the newly named Kula Hospital and Clinic began providing urgent care and limited rural emergency care on a 24-hour, 7-day a week basis. The Kula Hospital offers a basic laboratory and X-ray services and an Emergency Department. The Kula Clinic portion of the facility is a comprehensive outpatient clinic with normal business hours Monday through Friday. Emergency medical service stations are located in Kula and Makawao, which dispatch emergency medical care.

3.14 Natural Hazards

Natural hazards in the State of Hawai'i consist of drought, earthquakes, high surf, high winds, storms and hurricanes, tsunamis, volcanoes, and wildfires (Pacific Disaster Center, 1967). Depending on the lower elevation areas affected by occurrences of these natural hazards, any part of the population could be affected.

Natural hazards at the higher elevations of Haleakalā consist of the potential for earthquake movement, hurricanes, high winds. Snow, ice, and extreme cold can produce hypothermia after brief exposure to the cold conditions common on the summit. Hypoxia can also occur because of the thinner air at the high elevation.

The 18.166 acres of HO is restricted to only a small number of employees of the various facilities working any time within a 24-hour period. The area outside of HO belongs to the HALE and is predominantly utilized by tourists and park personnel during the day. HALE closes the Park road whenever any of the weather conditions listed below becomes critical and serious enough to warrant protecting human life.

<u>Drought</u>

Although drought and the possibility of subsequent wildfires are a normal **and a** recurrent feature of climate, it can occur in virtually all-climatic zones, with its characteristics varying significantly from one region to another. Drought is a temporary aberration and differs from aridity. **However, drought** is restricted to low rainfall regions and is a permanent feature of climate. Although **drought has many** definitions, it originates from a deficiency of precipitation over an extended period of time, usually a season or more. It is also related to the timing and the effectiveness of precipitation. Other climatic factors such as high temperatures, high wind, and low relative humidity are often associated with drought and wildfires in many regions, including the Pacific basin (Pacific Disaster Center, 1967). Most days, clouds ring the mountain between 5,000 and 7,000 feet ASL. They form at the temperature inversion layer where warm air coming up the mountain from the ocean is trapped by cooler air above. The prevailing trade winds from the northeast also bring clouds and moisture to Haleakalā. Clouds can envelop the summit at any time, with or without rain.

<u>Earthquake</u>

Table 3-18 provides an overview of the effects of earthquakes based on their relative magnitude. Hawaii's largest earthquakes, up to magnitude 7.5 to 8.1 (USGS), are associated with dike intrusions into the active volcanoes and expansion of the volcanoes across the old seafloor. Other earthquakes that are potentially damaging are caused by the load of the Hawaiian Islands on the Pacific lithosphere. Earthquake movement can sometimes be felt at the summit of Haleakalā. Since Hawaiian volcanoes are so large they are an immense burden on the lithosphere, and it sags beneath their weight (the phenomenon of isostasy). In addition to sagging, the lithosphere will "creak", resulting in earthquakes. Earthquake movement can sometimes be felt at the summit of Haleakalā.

Richter Scale (magnitude)	Earthquake Effects
2.5 or less	Usually not felt, but can be recorded by seismograph.
2.5 to 5.4	Often felt, but only causes minor damage.
5.5 to 6.0	Slight damage to buildings and other structures.
6.1 to 6.9	May cause a lot of damage in very populated areas.
7.0 to 7.9	Major earthquake. Serious damage.
8.0 or greater	Great earthquake. Can totally destroy communities near the epicenter.
(MichiganTech, 2004)	•

Table 3-18. Earthquake Magnitudes and Their Effects.

The last such earthquake of any size was a magnitude 6.7. This earthquake took place on October 15, 2006, approximately 6 miles (10 km) southwest from Puakō, Hawai'i. Prior to this, there was a 6.2 Honomu event on April 26, 1973, beneath the Hamakua Coast of Hawai'i Island (USGS). Although this earthquake was 100 miles from Maui, it was felt on Haleakalā because of its depth. The Maui earthquake of 1938 had its epicenter north of Maui and was about a magnitude 6.5. The Lana'i earthquake of 1871 had a magnitude of approximately 6.8 and may have had its epicenter near Palaoa Point.

Storms and Hurricanes

Hurricanes are classified according to their wind speed intensity. There is a direct relationship between the central pressure of a hurricane and its maximum wind speed — the lower the pressure, the stronger the winds. Hurricanes do not strike Hawai'i often, with most weakening before reaching Hawai'i, or passing harmlessly westward and south of the Islands. Strong winds occurring from June to November, are always a potential threat from these rare storms, with wind speeds increasing at the higher elevations such as the summit of Haleakalā (Pacific Disaster Center, web site). Storms at other times of the year can result in wind speeds in excess of 100 mph at the summit, along with rainfall measured in feet, rather than inches.

<u>Temperature</u>

The weather at the summit of Haleakalā is unpredictable, as weather changes rapidly at higher elevations. Intense sunlight, thick clouds, heavy rain, and high winds are possible daily. Temperatures commonly range between 40 and 65 degrees Fahrenheit, but can be below freezing at any time of year with the wind chill factor. Hypothermia is a medical condition in which the victims' core body temperature has dropped significantly below normal (occurring below 95 degrees Fahrenheit) and normal metabolism begins to be impaired.

Ice, Snow

A thin coating of ice glaze, also known as black ice, forms when super cooled liquid precipitation, such as freezing rain or drizzle, fall onto exposed objects whose temperature is below or slightly above freezing. Generally, black ice is a thin sheet of clear ice or glaze, which is rather dark in appearance. This climatic condition can occur on the Haleakalā roadways making it dangerous for motorists, because, visually, the road appears wet, rather than icy. Under black ice conditions drivers should be prepared to expect little to no traction, little to no braking capability, extremely poor directional control, and the high possibility of skids.

The winter months of November to April are generally wetter and stormier than the rest of the year. Much of the island's rain falls during these months, and strong winds are common. In December 1990, a wind indicator near the summit broke at 128 miles per hour. Snow is a rare occurrence even during this time of the year, but it has been recorded in drifts as deep as 6 feet (HALE, 197?, stet). Ice and frost are much more common and can occur any time of the year. Snow conditions on Haleakalā roadways make driving hazardous for motorists.

<u>Hypoxia</u>

Hypoxia is a pathological condition in which the body as a whole (generalized hypoxia) or a region of the body (tissue hypoxia) is deprived of adequate oxygen supply. Hypoxia is often associated with high altitudes, where it is called altitude sickness. Also known as acute mountain sickness, it is a pathological condition that is caused by lack of adaptation to high altitudes, commonly occurring above 8,000 feet. The composition and temperature of the atmosphere at high altitudes is substantially different than at sea level due to two competing physical effects: 1) gravity, which causes the air to be as close as possible to the ground; and, 2) temperature of the air, which causes the molecules to bounce off each other and expand. These differences can affect living organisms, including humans. Symptoms of generalized hypoxia depend on its severity and speed of onset. They include headaches, fatigue, shortness of breath, nausea, unsteadiness, and sometimes even seizures and coma. Severe hypoxia induces a blue discoloration of the skin where deoxygenated blood cells lose their bright red color in favor of a dark blue/red color.

4.0 ENVIRONMENTAL CONSEQUENCES, CUMULATIVE IMPACTS, AND MITIGATION

This section is an evaluation of the potential environmental **impacts** of the proposed Advanced Technology Solar Telescope (ATST) Project **whether the Preferred Alternative (the Mees site), the other action alternative (the Reber Circle site), or the No-Action Alternative is implemented.** This analysis identifies likely **impacts** on the environment, including short- and long-term **impacts**, and direct, indirect, and cumulative **impacts**. The analysis of **impacts** on resources focuses on environmental issues in proportion to their potential **impacts**. Detailed consideration is given to those resources that have a potential for environmental **impacts**. Interpretation of **impacts** in terms of their duration, intensity, and scale are provided where possible. Where **mitigation measures (MIT) would reduce the duration, intensity or scale of impacts and where they are feasible, they are identified within the resource evaluations as MIT-1 through MIT-18**, and they are summarized in Section 4.18-Mitigation. Impacts identified under the No-Action Alternative are compared against baseline conditions of each resource discussed in Section 3.0-Description of Affected Environment.

Section Organization

Each section describes the methodology used for **the impacts** analyses and factors used to determine the significance of **impacts consistent with:**

- 1. Council on Environmental Quality (CEQ) Code of Federal Regulations (CFR), Title 40, Parts 1500 to 1508, Section 1508.8, where "Effects" (synonymous with "Impacts" in this analysis) include:
 - (a) Direct effects, which are caused by the action and occur at the same time and place.
 - (b) Indirect effects, which are caused by the action and are later in time or farther removed in distance, but are still reasonably known. Indirect effects may include growth inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate, and related effects on air and water and other natural systems, including ecosystems.
 - (c) Cumulative effects, which can result from individually minor, but collectively significant, actions taking place over time.

Impacts include ecological (such as the **impacts** on natural resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic, cultural, economic, social, or health, whether direct, indirect, or cumulative. **Impacts** may also include those resulting from actions that may have both beneficial and detrimental **impacts**, even if on balance, the agency believes that the **impact** would be beneficial.

- 2. Hawai'i Administrative Rules (HAR) 343 §11-200-12, Significance Criteria.
 - (a) In considering the significance of potential environmental effects, agencies shall consider the sum of effects on the quality of the environment, and shall evaluate the overall and cumulative effects of an action.
 - (b) In determining whether an action may have a significant effect on the environment, the agency shall consider every phase of a proposed ATST Project, the expected consequences, both primary and secondary, and the cumulative as well as the short-term and long-term

effects of the action. In most instances, an action shall be determined to have a significant effect on the environment if it:

- 1. Involves an irrevocable commitment to loss or destruction of any natural or cultural resource,
- 2. Curtails the range of beneficial uses of the environment,
- 3. Conflicts with the State's long-term environmental policies or goals and guidelines as expressed in Chapter 344, Hawai'i Revised Statutes (HRS), and any revisions thereof and amendments thereto, court decisions, or Executive Orders,
- 4. Substantially affects the economic welfare, social welfare, and cultural practices of the community or State,
- 5. Substantially affects public health,
- 6. Involves substantial secondary effects, such as population changes or effects on public facilities,
- 7. Involves a substantial degradation of environmental quality,
- 8. Is individually limited but cumulatively has considerable effect upon the environment or involves a commitment for larger actions,
- 9. Substantially affects a rare, threatened, or endangered species, or its habitat,
- 10. Detrimentally affects air or water quality or ambient noise levels,
- 11. Affects or is likely to suffer damage by being located in an environmentally sensitive area such as a flood plain, tsunami zone, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters,
- 12. Substantially affects scenic vistas and view planes identified in county or State plans or studies; or,
- 13. Requires substantial energy consumption.

Impacts are described where they would occur for each resource, including direct, indirect, and cumulative **impacts**. Direct **impacts** would be caused by the proposed ATST Project, would result from implementation at either the Mees site or the Reber Circle site, and would occur at the same time and place. Indirect **impacts** would be caused by the proposed ATST Project at either the primary or alternative sites, but would occur later in time or at a distance from the proposed ATST Project. Cumulative **impacts** result from adding the total **impacts** of past, present, and reasonably foreseeable future actions to **impacts** likely caused by the proposed ATST Project. The No-Action Alternative is evaluated under the same parameters following the alternative analysis.

Section 4.15-Summary of Potential **Impacts Resulting from** the Proposed ATST Project summarizes potential beneficial and adverse **impacts** on resources in the Region of Influence (ROI) from the proposed ATST Project.

Section 4.16-Other Required Analyses summarizes the National Environmental Policy Act (NEPA) requirement of additional evaluation of the project's **impacts** regarding the relationship between local short-term uses of the environment and long-term productivity, any irreversible or irretrievable commitment of resources, and unavoidable adverse impacts.

Section 4.17-Cumulative **Impacts** to the Affected Environment discusses what the total **impacts** on each resource are when the **impacts** of the proposed ATST Project, at either alternative site, are added to the **impacts** resulting from past, present, and reasonably foreseeable future actions.

Section 4.18-Mitigation discusses mitigations for **impacts** of the proposed ATST Project and the cumulative **impacts** resulting from the proposed ATST Project.

Terminology

To determine whether an **impact** is major, CEQ and HRS 343 regulations also require the consideration of context and intensity of potential **impacts** (40 CFR 1508.27; HRS 343§11-200-9, 12). Context normally refers to the setting, whether local or regional, and intensity refers to the severity and duration of the **impact**. Each resource has its own **impact** intensity standards and are listed and explained in tables under each resource section. **Impacts** are described by the following levels of significance:

- 1. Negligible,
- 2. Minor,
- 3. Moderate; or,
- 4. Major.

There may be both adverse and beneficial **impacts** within a single resource category; for example, a project could interfere with a pre-existing land use such as recreation (an adverse **impact**), while expanding public access to different recreational resources (a beneficial **impact**). Where there are adverse and beneficial **impacts**, both are described. Mitigation is identified in Section 4.18-Mitigation, where it may reduce the significance of an **impact**.

4.1 Land Use and Existing Activities

The ROI for Land Use and Existing Activities includes the HO site, the adjacent FAA facilities, and the Park road corridor.

4.1.1 Methodology for Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on land use and existing activities is as follows:

- 1. Review and evaluate existing and past actions within the part of the ROI that constitutes Conservation District lands to identify the proposed ATST Project's potential **impact** on land use within the Conservation District.
- 2. Review and evaluate each alternative with respect to prior Conservation District Use Permits (CDUPs) granted for past and current actions, including records of past and present concerns of Office of Conservation and Coastal (OCCL), which enforces such permits to identify ways in which the proposed ATST Project may affect land use and existing activities within State land.
- 3. Assess the compliance of each proposed alternative with applicable Federal, State, or County regulations concerning land use.

The thresholds of change for the intensity of an **impact** are defined as follows:

Impact Intensity	Intensity Description
Negligible	The alternative would result in no changes to land use or the level and types of existing activities; or minimal changes so small that it would not be of any measurable or perceptible consequence.
Minor	The alternative would result in a change to a land use or the level and types of existing activities, but the change would be small and localized and of little consequence.
Moderate	The alternative could result in a change to a land use or the level and types of existing activities; the change would be measurable and of consequence.
Major	The alternative would result in a noticeable change to a land use or the level and types of existing activities; the change would be measurable and result in a severely adverse or beneficial impact.
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the ATST Project construction period.	

4.1.2 Evaluation of Potential Impacts for the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

If implemented at the Mees site (the Preferred Alternative), the construction and operation of the proposed ATST Project would have minor, adverse, long-term, direct impacts on current land use designated as Conservation District, General Subzone. No indirect impacts are expected. The proposed Mees site is undeveloped land in close proximity to other previously developed facilities for astronomy and advanced space surveillance. No changes to the identified land use within HO or along the Park road corridor would occur to complete the proposed ATST Project. Land would not be further subdivided, avoiding additional intensity or exhaustion of land uses within the Conservation District.

HO has previously been and continues to be used as a site for other observatory facilities under CDUPs issued by the Dept. of Land and Natural Resources (DLNR.) With the construction of an additional telescope facility, the level of existing astronomical activities would increase, but the change would be small and localized and of little consequence. Other site activities, such as space surveillance and atmospheric measurements would continue at their current levels. Therefore, the proposed ATST Project would have a minor, adverse, long-term impact on land use and existing activities.

MIT-1. Although the impacts on land use would be minor and mitigation is not necessary, to further reduce any impacts on land use and to address cultural impacts under Section 106 of the NHPA, NSF would decommission and deconstruct the proposed ATST Project at the end of its productive lifetime (approximately 50 years from the date operations commence), unless decided otherwise in consultation with the Native Hawaiian community. In that case, NSF would take steps to divest itself of all responsibility of the ATST Project. If determined appropriate as a result of consultation, the decommissioning and removal of the facility would restore the land use to existing conditions. An environmental review of this mitigation action would be completed prior to the action to account for environmental conditions at that time and specific methodology. The impact to land use and existing conditions would remain minor, adverse, and long-term.

The building footprint of the proposed ATST Project would comprise 0.74-acres, or 4 percent of the 18.166-acre HO property. The temporary construction activities and the operational activities of a fully

commissioned facility would result in a change to the level of existing activities, but the change would be small and localized and of little consequence relative to the existing land use. It would have a minor, adverse, and long-term **impact** on land use within the ROI.

Since no changes to the Park road corridor are proposed, there would be no impacts to land use along the Park road. The HALE Park road corridor would continue to be used for access to HO. Activities proposed for the Mees site would not prevent public access to Skyline Drive or HALE, including Hosmer Grove, the Park Headquarters Visitor Center, Halemau'u Trailhead, Leleiwi Overlook, Kalahaku Overlook, Haleakalā Visitor Center (Pa Ka'oao), and Pu'u' Ula'ula Overlook.

The proposed ATST Project, if constructed at the Mees site, would support and be consistent with the goals and objectives of the following State and HO **land use** plans:

- 1. The proposed ATST Project would comply with current HO management of cultural and biological resources consistent with the Institute for Astronomy (IfA) Long Range Development Plan (LRDP), under Section 9.3.2-Protection of Historical and Cultural Resources, and Hawai'i State Legislature, Status and Documents, HRS Chapter 344, State Environmental Policy.
- 2. The proposed ATST Project would be consistent with acceptable land uses designated by the DLNR, OCCL for the Conservation District, General Subzone. Specifically, in accordance with Title 13 Chapter 5, HAR, the proposed ATST Project would be consistent with Conservation District land use requirements requiring a CDUA. All land uses pursuant to HAR 13-5-30 must be an identified land use and require that a CDUA be filed with the DLNR and approved by the BLNR prior to its initiation.

Furthermore, the proposed ATST Project would not be inconsistent with the Makawao-Pukalani-Kula Community Plan (County of Maui, 1996) as adopted through Ordinance No. 2510, Objective No. 8, which recommends a two-story or 35-foot height limitation throughout the region. As noted in the plan, HO is in a Conservation District and, thus, is not subject to the two-story or 35-foot height limitation.

Moreover, the proposed ATST project would not be inconsistent with the Maui County building codes. Because it would be built on State Conservation land, it is, pursuant to county regulations, exempt from Maui County building codes. Likewise, the proposed ATST Project would not be subject to Chapter 2.80A, of the Maui County Code, pertaining to the General Plan and the community plans.

The proposed ATST Project would have a major, adverse, long-term, direct **impact** on the FAA Remote Communications Air/Ground (RCAG) facilities, which are located approximately 800-feet west of the MEES Solar Observatory. Because the FAA facilities are located at a lower elevation than the Proposed ATST Project, the construction of the proposed ATST Project may result in signal attenuation from the RCAG facilities due to physical obstruction by the ATST structures.

MIT-2. Since the proposed ATST Project would likely result in a detectable change to the FAA's existing activities, FAA Obstruction Evaluation and Spectrum Management (11 CFR Part 77.35), FAA specialists working with NSF have addressed any potential issue involving a degradation of signal as a result of the proposed ATST Project. The FAA has determined that the degradation of signal can be mitigated by replacing the existing antennas with high gain antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas. The FAA has stated that further modification of the site and relocations of the antennas may be needed, but

environmental impacts from such a potential modification and relocation would not rise to a level of significance. In addition, NSF will work with the FAA to obtain adequate funding for implementation of the resolution. In consideration of the above measures, the impacts would likely be reduced to negligible, adverse, and long-term.

4.1.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

If implemented at the Reber Circle site, environmental consequences on land use and existing activities from development would be largely similar to those discussed for the Mees site—minor, adverse, long-term, direct impacts on its current land use and existing activities at the HO. No indirect impacts are expected. Development at the Reber Circle Site would be on an already disturbed site currently not being used as opposed to an undeveloped site. Although no mitigation would be necessary to reduce this impact, MIT-1 (Decommissioning and Deconstruction Mitigation) would be implemented at the end of the ATST lifetime (approximately 50 years after commissioning). This would not reduce the impact on land use and existing conditions to less than minor, adverse and long-term. The level of existing telescope activities would increase, but the change would be small and localized and of little consequence. This alternative would also be consistent with the aforementioned State and HO land use plans.

The **impacts** on the FAA RCAG facilities would be similar to those at Mees. The proposed ATST Project would have a major, adverse, and long-term **impact** on the FAA RCAG facilities, which are located approximately 900 feet west of the Reber Circle site. **The same mitigation measure (MIT-2) would apply with project implementation at the Reber Circle Site reducing the impact to** negligible, adverse, and long-term.

4.1.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

There would be negligible, adverse **impacts** on land use and existing activities under the No-Action Alternative, as the proposed ATST Project would not be constructed on HO property. The No-Action Alternative would not result in a change to a land use or the level and types of existing activities, any changes would be so small that it would not be of any measurable or perceptible consequence.

4.1.5 Summary of Impacts to Land Use and Existing Activities

If implemented at either, the Mees site or at the Reber Circle site, the proposed ATST Project would have a minor, adverse, and long-term direct impact on current land use and existing activities at HO. No mitigation would be necessary; however, NSF would implement MIT-1 (Decommissioning and Deconstruction) to divest itself of the facility at the end of the ATST lifetime (approximately 50 years after operations commence), providing an opportunity to restore the land to its existing conditions, unless otherwise decided in consultation with the Native Hawaiian community.

There would be a major, long-term impact on the existing FAA RCAG facilities that could result in signal attenuation from those facilities due to physical obstruction by the ATST structures, if the proposed ATST project is built at either location. To address any potential issue involving degradation of communications as a result of the proposed ATST Project, mitigation would include

the erection of high-gain antennas at the current location of the RCAG towers (MIT 2). This would reduce the impacts to negligible, adverse, and long-term.

There would be no impact on HALE land use, including along the Park road corridor. Also, the proposed ATST Project, if implemented at either location, would comply with all Federal State, and HO land use planning. The proposed ATST Project would be built on State Conservation land, and, pursuant to county regulations, is, therefore, exempt from Maui County building codes. In addition, the proposed ATST Project would not be subject to Chapter 2.80A, of the Maui County Code, pertaining to the General Plan and the community plans. The Makawao-Pukalani-Kula Community Plan as adopted through Ordinance No. 2510, Objective No. 8, recommends a two-story or 35-foot height limitation throughout the region. However, as noted in the plan, HO is in a Conservation District and, thus, is not subject to such restrictions.

Under the No-Action Alternative, the proposed ATST Project would not be built and the land use and existing activities at HO would continue to function in its current configuration.

4.2 Cultural, Historic, and Archeological Resources

Section 4.2 – Cultural, Historic, and Archeological Resources has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

This section discusses the potential environmental impacts on cultural, historic, and archeological resources anticipated from the proposed ATST Project, whether the Preferred Alternative (the Mees site), the Reber Circle site, or the No-Action alternative is implemented. The ROI for cultural, historic, and archeological resources includes HO, the summit area within HALE (primarily for cultural resources), and the Park road corridor. The environmental impacts are examined for (1) on-site construction and installation, and, (2) operation of the proposed ATST Project facility.

4.2.1 Methodology for Impact Assessment

Information to evaluate impacts relevant to this section has been obtained through cultural resource research supplemented with ethnographic interviews and oral histories. Information has also been obtained through the EIS scoping process and scoping meetings held in July 2005, consultations with the State Historic Preservation Division (SHPD) of the DLNR, consultation with the Office of Hawaiian Affairs (OHA), Section 106 consultation meetings held in January, March and May 2006, and formal and informal consultations with Native Hawaiian individuals, agency and group meetings during 2005 and 2006 (further discussed in Section 5.0-Notification, Public Involvement, and Consulted Parties), the September 2006 draft Environmental Impact Statement (DEIS) comment meetings, which included Section 106 issues, a Supplemental Cultural Impact Assessment (SCIA), four Section 106 consultation meetings held in June 2009. In addition, existing studies on ethnographic, historic, and archeological resources within the ROI were reviewed. The information obtained has been considered in determining the level of impacts on cultural, historic, and archeological resources.

The thresholds of change for the intensity of **impacts** on cultural, historic, and archeological resources are defined as follows:

Impact Intensity	Intensity Description	
Negligible	Effect is at the lowest levels of detection with neither adverse nor beneficial consequences and would neither alter resource conditions, such as traditional access or site preservation, nor the relationship between the resource and the affiliated group's body of practices and beliefs. This is analogous to a determination of <i>no effect</i> under Section 106 of the NHPA.	
Minor	Adverse impact — impact(s) result(s) in little, if any, loss of integrity and would be slight but noticeable, but would neither appreciably alter resource conditions, such as traditional access or site preservation, nor the relationship between the resource and the affiliated group's body of practices and beliefs. This is analogous to a determination of <i>no adverse</i> <i>effect</i> under Section 106 of the NHPA.	
Moderate	Adverse impact — disturbance of a site(s) results in loss of integrity and impact(s) would be apparent and would alter resource conditions. There would be an interference with traditional access, site preservation, or the relationship between the resource and the affiliated group's practices and beliefs, even though the group's practices and beliefs would survive. Also included are major impacts that have been mitigated to reduce their intensity under NEPA CEQ 1508. 20 from major to moderate. The determination of effects for Section 106 would be <i>adverse effects</i> .	
Major	Adverse impact — disturbance of a site(s) results in loss of integrity and impact(s) would alter resource conditions. There would be a block to, or great affect on, traditional access, site preservation, or the relationship between the resource and the affiliated group's body of practices and beliefs, to the extent that the survival of a group's practices and/or beliefs would be jeopardized. This is analogous to a determination of <i>adverse effect</i> under Section 106 of the NHPA, and measures to minimize or mitigate adverse effects cannot be agreed upon that would reduce the intensity of impacts under NEPA CEQ 1508.20 from major to moderate.	
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the ATST Project construction period.		

4.2.2 Evaluation of Potential Impacts at the Preferred Mees Site

Construction- and Operation-Related Impacts of the Preferred Mees Site

The ROI for cultural, historic, and archeological resources is considered to include the HO and relevant areas within HALE, including the Park road corridor. Following is a discussion of the construction and operation impacts to cultural, historic and archeological resources associated with the Mees and Reber Circle site alternatives. Within the discussion of impacts associated with each alternative, mitigation measures have been included. NSF is committed to executing the mitigation measures, either directly through funding, or by encouraging other groups and agencies to fulfill the mitigation measures.

CULTURAL RESOURCES

Section 3.2.1-Cultural Resources outlines a variety of traditional cultural practices that have and continue to take place within the ROI. The sign at the entrance to HO states that Native Hawaiians are not restricted from practicing their traditional cultural practices within HO. Likewise, the NPS supports the perpetuation of traditional cultural practices within areas of HALE, as appropriate under NPS policy. As explained above, a number of the traditional cultural practices that continue to take place within the ROI require silence/solace and uninterrupted view plane/sacred space.

Construction Activities – HO.

As revealed by the information obtained through the methods identified above, it is apparent that the construction of the proposed ATST Project at the Preferred Mees site will have major, adverse, short-term and long-term direct impacts on the summit area of Haleakalā as a Traditional Cultural Property (TCP). No indirect impacts are expected. Direct, major, and short-term adverse impacts would be associated with construction activities, which would occur at either of the two proposed sites. For example, potential impacts would result from activities such as excavation, noise associated with operation of construction equipment, building of the facility, and increased use of the roadways. For some Kanaka Maoli (Native Hawaiians), the physical excavation of the cinder, in and of itself, is seen as a desecration of the kinolau or body of Pele. There are disagreements within the community as to the degree to which this impact can be mitigated, if at all. Steps toward preservation and education with regard to Kanaka Maoli cultural beliefs and sense of place have been put forth in "Ku I Ka Mauna, Upright at the Mountain, Cultural Resources Evaluation for the Summit of Haleakalā" (CKM, 2003), a document prepared as a part of the IfA LRDP.

Based on the comments and testimony presented by members of the Native Hawaiian community, there is a necessity for many people to have an unimpeded view plane from mountain to ocean, particularly when participating in ceremonial activities. For example, unimpeded views are found at the east and west ahu within the HO. It is clear that the height and color of the proposed facility would impede the view plane which is seen by some as a personal affront to their cultural beliefs. For some Kanaka Maoli, the unaesthetic nature of the proposed ATST Project has led to further objections about the existence of another observatory as an additional "eye sore" to the summit area. It would compound the adverse impacts of the already existing facilities.

The construction and day-to-day use of the proposed ATST Project facility brought forth strong opposition from the majority of the Native Hawaiian community who participated in the public comment periods for both the NEPA and Section 106 processes. Responses to the proposed ATST Project were deeply emotional and, for some, the idea of an additional building atop the summit was physically painful. Overall, there is a belief that to go forward with the proposed ATST Project would result in the desecration of a sacred site, with some equating the effects to building an observatory next to the Wailing Wall in Jerusalem or within the city of Mecca. For these people, the impact of the proposed ATST Project on cultural resources would be major, adverse, and long-term.

Although not as prevalent, there were comments and testimony in support of the proposed ATST Project. In most instances, supporters strongly rallied for education of Hawaii's youth and the possible opportunities that such a facility might bring to Native Hawaiians.

During the course of Section 106 consultations, the issue of "cultural desecration" due to excavation of Haleakalā's material was raised on several occasions (e.g., March 28, 2006, Section 106 Meeting Iwado Court Reporters Transcript, p. 69, Vol. II, Appendices F(1)-Cultural and Historical Evaluation, p. 62, and F(2)-Supplemental Cultural Impact Assessment, p. 56). From those discussions, some Native Hawaiians would find the foundation excavation to be a "wound" to Haleakalā. The misinterpretation of site plans early in the scoping process inferred that the excavation would be some five stories in depth, which added to the perception that a deep wound would be inflicted on the mountain summit. More explicit information was provided by the ATST Project personnel at later Section 106 meetings, indicating that the actual excavation would, at the deepest points, result in several holes of no more than about 21 feet. This explanation did not, however, appreciably alter the perception of wounding the summit and, again, for those who view any amount of excavation as the desecration of a sacred site, the impacts on cultural resources would be major, adverse, and long-term; no mitigation measures would lessen the impacts.

The amount of noise and construction-related activities associated with the proposed ATST Project would have a major, adverse, and short-term effect on the conduct of traditional cultural practices within the ROI. Specifically, the noise generated from the existing facilities at HO and the noise resulting from the construction of the proposed ATST Project will have, during certain times of the day and during certain months, major, adverse impacts on the ability to conduct such practices. For example, such impacts would be major at Red Hill and areas adjacent to HO out to a distance of 2,500 feet (where noise would be attenuated to ambient levels). Mitigation measures imposed by the USFWS (pursuant to the Section 7 informal consultation) and HALE (pursuant to the mitigation measures to be included in the SUP), would reduce those noise levels to a negligible level during certain hours of the day and during certain months of the year due to restrictions on noise-generating activities. The relevant mitigation measures imposed by HALE include a limitation to conduct onsite and outdoor ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, and a limitation on the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and are prohibited from coming through the Park at night between April 20th and July 15th. The seasonal restriction on wide load traffic is also imposed by USFWS. Accordingly, during the timeframes in which these restrictions are imposed, impacts to traditional cultural practices at HO, Red Hill, and areas adjacent to HO out to 2,500 feet will be reduced, however, the continued existence of an interrupted view plane would keep the impacts at the major, adverse, and longterm level.

Application of the mitigation measures listed below would help to address adverse impacts during the construction phase, however, the measures would not reduce the impact intensity; direct impacts would remain major, adverse, and short-term.

MIT-4. In accordance with IfA's Long Range Development Plan, construction crewmembers are required to attend UH-approved "Sense of Place" training prior to working on the proposed ATST Project.

MIT-5. AURA/NSO would hire a Cultural Specialist to ensure protection of existing traditional cultural resources during construction. The Cultural Specialist will be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has knowledge of the spiritual and cultural significance and protocol of Haleakalā. The Cultural Specialist's knowledge should be concentrated in traditional and cultural practices and protocols. The Cultural Specialist would be chosen in consultation with OHA and other appropriate organizations and individuals with knowledge of such traditions and protocols.

MIT-13. To mitigate construction noise, contractors would implement reasonable noise-reduction practices and abatement procedures. These would include the following source control mitigation measures, all regarded as somewhat standard in the industry. These mitigation measures to minimize expected noise impacts during construction at HO would be as follows:

- 1. Conduct all noise-emitting activities within strict day and time constraints, with work prohibited during sensitive nighttime periods,
- 2. Reduce or substitute power operations/processes through use of proportionally sized and powered equipment necessary only for tasks at hand,
- 3. Maintain all powered mechanical equipment and machinery in good operating condition with proper intake and exhaust mufflers,
- 4. Turn off or shut down equipment and machinery between active operations; and,

5. Shield noise sources where possible.

Contractors would be required to comply with applicable State noise regulations, under HAR 11-46.

Operation Activities – HO.

Operation of the proposed ATST Project will result in major, adverse, and long-term impacts on traditional cultural practices. The impacts anticipated from the operation of the proposed ATST Project, which would be a 143-foot tall structure at Kolekole, are, as explained earlier, viewed by some Native Hawaiians to constitute a cultural desceration of a sacred site. Part of the cultural value of the summit area is the ability to see only mountain when viewing the summit area of Haleakalā and the construction of the proposed ATST Project would result in a structure that would impede that view. Native Hawaiians interviewed stated that the construction of the ATST project would compound the adverse impacts of the already existing facilities. Public responses to the proposed ATST Project were deeply emotional and, for some, the idea of an additional building atop the summit was physically painful. Thus, the impacts would be major, adverse, and long-term. Although the survival of Hawaiian cultural practices and beliefs are not in question, the structure would interfere with the relationship between the Native Hawaiians and Haleakalā. The existence of the structure, therefore, at either alternative site would, from this perspective, have a major, adverse, and long-term effect on cultural resources. Mitigation measures to minimize the effects on cultural resources are discussed below, although for these major impacts, no mitigation would reduce the impacts to a lower threshold of intensity.

In addition to the existence of having a 143-foot tall structure on the summit, other on-going operations of the proposed ATST Project pose potential impacts on cultural resources. These include future events such as potential turnover in operations personnel, with concomitant loss of individuals' knowledgeable of cultural preservation (although all personnel would require such training, in accordance with the LRDP), eventual need for exterior facility repairs that could require temporary changes to the appearance of the facility, e.g., scaffolding or paint stripping, or experiments requiring temporary structures within the building footprint that could be perceived as additional cultural desecration. On-going operations of the proposed ATST Project would have major, adverse, and long-term impacts on cultural resources; however, efforts would be made to address those impacts even if those efforts would not result in a reduction of intensity. Specifically, in accordance with IfA's preservation plan, all construction crewmembers would attend UH-approved "Sense of Place" training prior to working on the proposed ATST Project. In addition, a Cultural Specialist would provide oversight of all construction projects and set-aside areas for exclusive use by Kanaka Maoli to practice cultural and spiritual ceremonies (CKM, 2003, p. 16). The cultural specialist would be engaged at the earliest stages of the planning process, monitor the construction phase, and consult with and advise the on-site Project Manager with regard to any cultural or spiritual correction, including the disposition of rock and soil, rehabilitation of disturbed areas, and the appropriate prayers at the beginning and end of work. Even with implementation of these mitigation measures, though, the impacts on cultural resources would remain at major to moderate, adverse, and long-term.

The presence of built facilities, people, and associated noise with operations-related activities at both the Mees and Reber Circle Sites will continue to have a noticeable impact on the conduct of traditional practices within the ROI, and that impact cannot be mitigated. The impacts from these activities, therefore, are expected to be major, adverse, and long-term. No indirect impacts are expected.

Mitigation measures that address traditional cultural practices during the operations phase of the proposed ATST Project are listed below. While it is acknowledged that these measures would not reduce the impact intensity from major, adverse, long-term and direct, they would provide mitigation under NEPA, in that

they would be designed to reduce or eliminate the impact over time and to compensate for the impact by replacing or providing substitute resources or environments.

MIT-1. NSF would decommission and deconstruct the proposed ATST Project at the end of its productive lifetime (approximately 50 years from the date operations commence), unless decided otherwise in consultation with the Native Hawaiian community. In that case, NSF would take steps to divest and relinquish itself of all responsibility of the ATST Project. If determined appropriate in consultation, the decommissioning and removal of the facility would restore the land use to existing conditions. A separate environmental review of this mitigation would take place prior to the action to account for environmental conditions.

MIT-3. NSF, AURA/NSO, and UH IfA, in consultation with the Native Hawaiian community, will use best efforts to locate an area for a Hawai'i star compass at the summit.

MIT-14. During the 50-year lifetime of ATST, the Project will periodically reassess technological options for new types of paint coatings, more efficient cooling methods, or improved compensation for thermal turbulence which may allow the ATST enclosure and buildings to be painted a color other than white. If such future technology is determined to be an effective, reliable and affordable solution that meets the scientific requirements of the Project, NSF will consider funding the cost of repainting the exterior structures of the ATST to a more neutral color.

MIT-16. The exterior design for the lower portion of the ATST building will include a well thought-out representation of traditional Hawaiian culture suitable to the Haleakalā setting, such as artwork depicting Maui and the Sun or other appropriate motifs. This artwork would be developed in consultation with Native Hawaiian artists.

MIT-18. NSF would encourage UH IfA to work with appropriate authorities to consider renaming the roads on the summit.

In addition to the mitigation measures provided above, NSF has committed to two additional mitigation measures if construction is approved. As explained above, the direct impacts to the summit as a TCP are acknowledged to be major, adverse, and long-term. As further explained above, many members from the Native Hawaiian community provided comments on the DEIS and SDEIS and in the Section 106 consultation meetings indicating that, with respect to the cultural significance that Haleakalā has to them, the adverse impacts cannot be mitigated. Other members of the Native Hawaiian community who also expressed a concern about the adverse impacts that the proposed ATST Project would have on the summit as a TCP, however, expressed a belief that mitigation could be achieved through education and workforce development. Specifically, comments from the Maui Native Hawaiian Chamber of Commerce (MNHCC), OHA, the Ali'i Nui and Grand Master of the Royal Order, a Native Hawaiian individual representing the Hawai'i Carpenters Union, and private individuals advocated for an educational program to serve as mitigation for adverse impacts to the summit. The two mitigation measures developed in response to these comments are;

MIT-15. If there are Native Hawaiian scientists among the pool of scientists qualified to conduct research at the proposed ATST Project, NSO will reserve up to 2 percent of total ATST usage time for those Native Hawaiian scientists. Usage time will be provided through the Telescope Allocation Committee process similar to other scientists' requests based on technical feasibility and scientific merit. Unused time will not be carried forward to the next allocation period. Qualifications for usage will be based on established NSO guidelines.

MIT-17. NSF and AURA/NSO will support Maui Community College (MCC) in developing an educational initiative (Akeakamai I Ka Lā Hiki Ola, or Scientific Exploration Beneath the Life-Bringing Sun) on Maui to address the intersection between traditional Native Hawaiian culture and science. To support this educational initiative at MCC, NSF will, if the proposed ATST Project is approved, make available \$20 million (\$2 million per fiscal year, commencing in FY 2011), subject to applicable Federal law.

As detailed in Section 5.0, NSF has been in consultation with HALE, the Advisory Council on Historic Preservation (ACHP), SHPD, Native Hawaiian organizations and individuals, and other members of the public to find ways to mitigate the impacts from the proposed ATST Project. In response to the information learned during these consultation meetings, NSF developed a draft Programmatic Agreement (PA) pursuant to 36 CFR § 800.14(b), which is currently under review by the Section 106 consulting parties. The PA, if finalized, would include enforceable provisions designed to address adverse impacts related to the proposed ATST Project. It should be noted that, regardless of whether a final PA is reached among the consulting parties through the Section 106 process, NSF has made a commitment -- if the proposed ATST Project is approved for construction funding -- to implement the mitigation measures set forth in this section. (Please note that if a final PA cannot be agreed upon, the mechanism for developing the educational program at MCC may differ from that set forth in the July 9, 2009 version of the draft PA, since it obligates a role for other entities such as the ACHP and the SHPO.) Independent from Section 106 mitigation, NEPA, provides for such mitigation measures to be implemented as a way of compensating for the impact. *See* 40 CFR § 1508.20.

Construction and Operation Activities – Park Road Corridor.

With regard to conducting traditional cultural practices within the Park road corridor, the only ATSTrelated activities that will have the potential to impact one's ability to practice traditional cultural practices is noise generated by ATST-related construction and operations traffic. Current noise levels along the Park road corridor, as discussed in Section 4.10-Noise, are approximately 47 dBA. In order for a person to clearly perceive a change in noise, there must be an increase of 5 to 6 dBA from the baseline condition. Noise calculations estimate that the change associated with increased traffic would raise the baseline condition by 3 dBA. Therefore, the ATST-related construction and operations traffic would result in only negligible, adverse, and long-term impacts. The wide load traffic restrictions imposed by HALE in the SUP and USFWS (as part of the Section 7 informal consultation) would not reduce these noise impacts below this level. Therefore, the proposed ATST Project would result in negligible, adverse, and long-term impacts to one's ability to practice traditional cultural practices within the Park road corridor.

Mitigation measures associated with noise and traffic include the following:

MIT-6. HALE would restrict noise levels during certain hours of the day and during certain months of the year, limit on-site ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, limit the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and prohibit wide or heavy loads from coming through the Park at night between April 20th and July 15th). The seasonal restriction on wide load traffic is also imposed by USFWS.

While MIT-6 was initially developed to limit impacts to visitors and impacts to natural resources, those engaged in traditional cultural practices would also benefit from this mitigation measure. It would limit traffic levels and hours of operation, the noise associated with construction traffic within the Park road corridor, and would result in only negligible, adverse, long-term direct impacts to those who wish to

conduct traditional cultural practices during daylight hours. No mitigation measures other than those required in the SUP would be implemented.

There would be construction traffic at night for transporting wide-loads. This would result in moderate, adverse short-term direct impacts to traditional cultural practices. Normally there is little traffic on the Park road overnight and baseline noise levels would be lower. There are no indirect impacts expected.

During operations, there would also be negligible, adverse, long-term direct impacts within the Park road corridor to cultural resources. No indirect impacts are expected.

HISTORIC RESOURCES

Construction and Operation Activities - HO.

At the Mees site, there are no historic sites within the grading and leveling footprint, soil placement area, or any staging and lay-down area. As mentioned in Section 3.2.2-Historic Resources, the only historic site within HO is the Reber Circle site, Site 50-50-11-5443, the radio telescope foundation considered to be an historic site for its association with 20th century science. Therefore there would be negligible, adverse direct, long-term impacts to historic resources associated with construction of the ATST proposed project at the Mees site alternative. There would be no operational impacts to historic resources at HO with construction of the ATST Project.

Park Road Corridor.

As explained in Section 3.2.2, the HALE Park road is an historic cultural landscape. It is the main access road to HO and would be traveled by all vehicles needing access to the Mees site. The Park road corridor is a functioning thoroughfare which is used on a daily basis and it is part of an historic roadway that has been evaluated by the NPS and Historic American Engineering Record as eligible for listing in the National Register of Historic Places under Criterion "A" (for its development of the National Park System, the development of early NPS landscape architectural design styles, and the craftsmanship of the Civilian Conservation Corps and under Criterion "C" (for its association with rustic Park design that characterized early NPS development during the 1930s). As explained in Section 3.2.2, the historic features of this roadway include: the road, itself, 1 bridge, 11 box culverts, and original culverts with mortared stone headwalls. In addition, the Park road corridor is within the boundaries of the Crater Historic District, which is listed on both the SIHP (SIHP 50-50-11-12-1739) and on the NRHP.

Construction Activities – Park Road Corridor.

All vehicles involved in construction related activities would adhere to the Hawai'i Department of Transportation (DOT) laws and regulations. According to the findings set forth in the recent road report prepared by the Federal Highway Administration (FHWA), the relatively small increase in traffic due to construction and operation activities — 2.8 percent and 1.4 percent, respectively (FHWA, 2009) — would have little measureable effect on traffic or wear to the Park road corridor, including the historic bridge and box culverts.

At most, therefore, construction of the proposed ATST Project would have moderate adverse, short-term direct impacts on the historic Park road corridor. Direct, short-term impacts during the construction phase would be related to construction vehicles, wide-loads, and increased truck and van traffic travelling along the Park road corridor to the Mees site. Increased traffic, especially wide-load vehicles, would increase the potential for damage to the historic elements of the road (i.e. bridges, culverts, and box culverts). HALE considered the FHWA recommended measures in the HALE Road Report and incorporated them, as appropriate, into the mitigation measures for the SUP. Accordingly, only the SUP mitigation measures for the Park road corridor would be implemented, and not those recommended by the FHWA. Mitigation measures designed to reduce the intensity level of the impacts are listed below. These measures, which

are included in the SUP, are anticipated to mitigate the impacts on historic resources from moderate to minor, adverse, short-term, and direct.

MIT-6. HALE would restrict noise levels during certain hours of the day and during certain months of the year, limit on-site ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, limit the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and prohibit wide or heavy loads from coming through the Park at night between April 20th and July 15th). The seasonal restriction on wide load traffic is also imposed by USFWS.

MIT-7. Prior to and after the proposed ATST Project, all historic features and other areas susceptible to potential impact along the Park road shall be photographed and documented (see FHWA report – "Haleakalā Highway, Haleakalā National Park, Pavement Drainage Condition Investigation, Distress Identification and Recommendations Report # HALA 3-2-2009, March 2, 2009 (revised April 2009)", found in Vol. II, Appendix P). This task will be funded by the ATST Project, and carried-out by a qualified person who has been selected, pursuant to mutual agreement, by both HALE and AURA/NSO.

MIT-12. All construction-related traffic within the Park road corridor would be coordinated with HALE and conducted in compliance with an SUP issued by HALE. The SUP would contain provisions designed to avoid or minimize: damage to the road pavement, potential damage to historic structures along the Park road corridor, traffic congestion, and other potential adverse impacts on Park resources and the visitor use and experience. SUP provisions issued by HALE would include mitigation measures to address traffic issues. A provision regulating wide-load truck access at the HALE entrance station would require a special mitigation measure, as described in Section 2.4.3-Construction Activities, Construction Traffic. This would include:

- 1. Assurance by the ATST Project that the septic system next to the entrance station is adequately protected. Mitigation may include metal plate covers, grade beams, other protective structures, or relocation of utilities as a last resort.
- 2. Protection of existing utility man-hole covers. Specifically, the ATST Project would:
 - a. avoid direct axle loading on the covers,
 - b. replace the existing covers with heavier gage steel; or,
 - c. reinforce the existing covers with additional steel bracing.
- 3. Provision of a barricade system, such as a gate, removable bollards or similar devices on the widened shoulder to deter Park visitors and staff from driving on it.
- 4. To minimize potential impact to the nēnē habitat in this area, the access widening project would be completed outside the nēnē nesting season, which is November through March.
- 5. Native plants in the area of the access widening project would be protected when possible and HALE staff would work with the Project on this mitigation.
- 6. When the widened access is no longer needed for the proposed ATST Project the area would be fully restored to its pre-existing condition.

Operation Activities – Park Road Corridor.

Based on the FHWA traffic study (HALE Road Report), operation of the proposed ATST Project would have minor, adverse, direct long-term impacts to historic resources along the Park road corridor. No indirect impacts are expected. Direct impacts would be a result of increased traffic associated with additional staff needed for the operation of ATST. Operation-related impacts on the Park road corridor would be less than the impacts from construction-related activities. The HALE Road Report determined there would be a relatively small increase in traffic associated with construction and operation of the ATST Project— 2.8 percent and 1.4 percent, respectively— that would have little measureable impact on traffic or wear to the Park road corridor, including the historic bridge and box culverts. Therefore operation of the new ATST project would have minor, adverse, direct long-term impacts to historic resources along the Park road corridor (FHWA, 2009). No mitigation measures for the Park road corridor are proposed due to operation of the ATST Project.

ARCHEOLOGICAL RESOURCES

Construction Activities - HO.

Archeological inspection of the Mees site indicates that the project site was previously affected by earthmoving activities associated with the construction of the MSO facility in 1964, the existing access road, the weather tower structures, and other structures. Pushed rocks, push piles, and old cleared areas (bulldozed) were noted in the vicinity of the towers (Vol. II, Appendix A-Archaeological Field Inspection). The grading and leveling, soil placement areas, staging and lay down areas that would be employed for the Mees site would not affect any archeological features. Construction activities at the Mees site would be conducted in accordance with the "Science City" Preservation Plan that has been approved by the SHPD (Vol. II, Appendix B[2]). The plan calls for passive preservation of sites during future activities. In addition, in acknowledgment of comments on the SDEIS from the Hawaii Office of Conservation and Coastal Lands (OCCL) of the Department of Land and Natural Resources, an archeological monitoring plan to monitor excavation activities would be submitted for approval to SHPD prior to construction.

The proposed ATST Project site contains three features that are interpreted as relatively recent additions/modifications. Rocks used for the construction of these features/modifications were not weathered like those contained in the many archeological sites and features that have been previously documented elsewhere at HO. Therefore, any archeological resources that may have existed prior to 1964 are no longer present and it is not anticipated that impacts would occur to archeological resources at HO.

In the event a previously unknown burial site is uncovered during construction of the proposed ATST Project the requirements of HAR, Title 13, Subtitle 13, Chapter 300, Rules of Practice and Procedure Relating to Burial Sites and Human Remains would be followed.

Impacts to archeological resources with construction of the ATST Project at the Mees site would be negligible, adverse, short-term, and direct. Mitigation Measure MIT-5 (Cultural Monitor) will ensure the protection of existing archeological resources during construction. No indirect impacts are expected.

Operation Activities – HO.

Impacts to archeological resources with operation of the ATST Project at the Mees site would be negligible, adverse, long-term, and direct.

Construction and Operation Activities - Park Road Corridor.

The construction and operations-related activities employed at the Mees site would not impact any archeological resources within the Park road corridor. The relevant activities that have the potential to affect archeological sites within the Park road corridor include the ATST construction and operations-

related traffic. Such traffic is expected to remain on the Park road and, thus, would not impact any nearby archeological sites. Therefore, construction and operation activities at the Mees site would result in negligible, adverse, and long-term direct impacts on archeological resources along the Park road corridor from the Proposed Action. There are no indirect impacts expected. There are no mitigation measures proposed other than MIT-7 (SUP requirements).

4.2.3 Evaluation of Potential Impacts at the Reber Circle Site

Construction- and Operation-Related Impacts at the Reber Circle Site

CULTURAL RESOURCES

Construction and Operation Activities – HO and Park Road Corridor.

By virtue of its height and location within HO, the construction of a project with the vertical elevation of the proposed ATST Project at the Reber Circle site would be more visible from both HALE and populated communities on Maui than at the Mees site (Section 4.5-Visual Resources and View Planes). As explained above for the Mees site alternative, some Native Hawaiians would interpret the visibility of the proposed ATST Project from these vantage points as cultural desecration of a sacred site. The impacts to those individuals would be more pronounced if the ATST Project were constructed at the Reber Circle site than the Mees site. With the exception of the increased vertical elevation, the analysis set for above for the Mees site applies equally to the Reber Circle site with regard to impacts on traditional cultural resources. Accordingly, the construction and operation of the proposed ATST Project at the Reber Circle site would result in major, adverse, and long-term direct impacts on traditional cultural resources. No indirect impacts are expected.

Mitigation for impacts to traditional cultural resources associated with construction at the Reber Circle site would be the same as those proposed for the Mees site: MIT-4 (Sense of Place training), MIT-5 (Cultural Monitor), and MIT-13 (Construction noise).

Mitigation for impacts to traditional cultural resources associated with operation of ATST at the Reber Circle site would be the same as those proposed for the Mees site: MIT-1 (Decommissioning), MIT-3 (Locate an area for a Hawai'i star compass), MIT-14 (Paint color), MIT-16 (Exterior design), MIT-18 (Rename roads at HO), MIT-15 (Additional Telescope Time), and MIT-17 (MCC Educational Program).

HISTORIC RESOURCES

Construction Activities - HO.

Construction at the Reber Circle site, which lies at the peak of Pu'u Kolekole, would have a major, adverse, long-term, and direct impact on historic resources including the Reber Circle Site 50-50-11-5443, which has been described in Section 3.2.3-Archeological Resources as the remnant of a 1952 radio telescope experiment. If the proposed ATST Project were built at the Reber Circle site, site 50-50-11-5443 would be removed in accordance with the Archaeological Data Recovery Plan for Reber Circle, which was accepted by SHPD (Vol. II, Appendix B(1)-Data Recovery Plan for Site 5443). As a result, there would be major, adverse, and long-term impacts on historic resources from the construction of the proposed ATST Project at the Reber Circle site. Applying the mitigation measure cited below would reduce the level of impacts due to construction at the Reber Circle site to minor, long-term, and direct. No indirect impacts are expected.

MIT-8. NSF would support the removal of Site 50-50-11-5443, concrete ring, which is a remnant of a 1952 radio telescope experiment, in accordance with the Archaeological Data Recovery Plan.

Operation Activities – HO.

Operation of the proposed ATST Project at the Reber Circle site would not likely result in any impacts to any other historic resources. Therefore, the impacts on historic resources based on operating the proposed ATST Project at the Reber Circle site would be negligible, adverse, long-term, and direct. No indirect impacts are expected. No mitigation is proposed.

Construction Activities – Park Road Corridor.

Construction of the ATST Project at the Reber Circle site would result in the same impacts to the Park road corridor as those associated with construction at the Mees site; impacts would be moderate, adverse, short-term, and direct. No indirect impacts are expected. Mitigation measures MIT-6 (Noise), MIT-7 (SUP requirements), and MIT-12 (Construction-related traffic) would be implemented during construction. Implementation of mitigation measures would reduce those moderate impacts down to minor, adverse, short-term, and direct.

Operation Activities – Park Road Corridor.

If the proposed ATST Project were built at the Reber Circle site, operational activities would result in the same impacts on historic resources within the Park road corridor as if the proposed ATST Project were built at the Mees site. Direct impacts would be a result of increased traffic associated with additional staff needed for the operation of ATST. Operation-related impacts on the Park road corridor would result in a relatively small increase in traffic associated with construction and operation of the ATST Project— 2.8 percent and 1.4 percent, respectively— that would have little measureable impact on traffic or wear to the Park road corridor, including the historic bridge and box culverts. Based on the HALE Road Report, operation of the proposed ATST Project (at either site) would have minor, adverse, and direct long-term impacts to historic resources along the Park road corridor. No indirect impacts are expected. No mitigation measures are anticipated to be implemented; however, some measures may ultimately be added as part of the SUP.

ARCHEOLOGICAL RESOURCES

Construction and Operation Activities – HO.

The construction and operations-related activities that would be employed at the Reber Circle site would be the same as those at the Mees site. Thus, impacts to archeological resources related to construction and operation activities at the Reber Circle site would also be negligible, adverse, long-term, and direct. No indirect impacts are expected.

Construction and Operation Activities – Park Road Corridor.

The construction and operation related activities within the Park road corridor for the Reber Circle site alternative would be the same as those for the preferred Mees site alternative; impacts on archeological resources would be negligible, adverse, long-term, and direct. No indirect impacts are expected. There are no mitigation measures proposed other than MIT-7 (SUP requirements).

4.2.4 Evaluation of Potential Impacts for the No-Action Alternative

If the No-Action Alternative were selected, the construction and operation of the existing facilities at HO would continue to have major, adverse, long-term, and direct impacts on the summit as a TCP. The incremental increase in those major impacts from the construction and operation of the proposed ATST Project would not, however, occur. No indirect impacts would be anticipated from the selection of the No-Action Alternative. Likewise, there would be no impact on historic or archeological resources under the No-Action alternative, as the proposed ATST Project would not be constructed.

4.2.5 Summary of Impacts on Cultural, Historic, and Archeological Resources

CULTURAL RESOURCES

Construction and operation of the proposed ATST Project at either the Preferred Mees or Reber Circle alternatives would result in major, adverse, short- and long-term, and direct impacts on the traditional cultural resources within the ROI. No indirect impacts would be expected to occur. Mitigation measures would be implemented, and while helpful, they would not, however, reduce the impact intensity to moderate: impacts would remain major, adverse, long-term, and direct. Mitigation measures during construction include: MIT-4 (Sense of Place training), MIT-5 (Cultural Monitor), and MIT-13 (Noise). Mitigation measures for operation include: MIT-1 (Decommissioning), MIT-3 (Locate an area for a Hawai'i star compass), MIT-14 (Paint), MIT-16 (Exterior Design), MIT-18 (Rename roads at HO), MIT-15 (Additional Telescope Time), and MIT-17 (MCC Educational Program).

Impacts on cultural resources within the Park road corridor associated with construction and operation activities of the proposed ATST Project at either the Mees site or the Reber Circle site are expected to be **negligible**, adverse, long-term, and direct. No indirect impacts are expected. Mitigation measures **associated with noise and traffic** include: MIT-6 (SUP requirements). Implementation of this measure, which would limit the levels, hours, and, thus, the noise of construction-related traffic along the Park road corridor would **maintain** the level of impacts **at** negligible, adverse, long-term, **and** direct impacts on cultural resources.

Under the No-Action alternative, the presence of the existing facilities at HO would continue to result in major, adverse, long-term, and direct impacts to the summit as a traditional cultural property. No indirect activities associated with selection of the No-Action alternative would result. Likewise, under the No-Action alternative, there would be no increase in traffic within the Park road corridor as a result of the construction and operation of the proposed ATST Project, and, thus, no direct impacts on cultural resources would result within the Park road corridor.

HISTORIC RESOURCES

There would be negligible, adverse, long-term, and direct impacts from the construction and operation of the proposed ATST Project at the Mees site. No indirect impacts would be expected. No mitigation would be required.

There would be major, adverse, direct, and long-term impacts on historic resources from the construction of the proposed ATST Project at the Reber Circle site. Implementation of MIT-8, however, would reduce the level of impacts to minor, adverse, long-term, and direct. Operation-related activities **at either site** would be negligible, adverse, long-term and direct.

Within the Park road corridor, there would be moderate, adverse, long-term, and direct impacts on historic resources associated with the construction-related activities for the proposed ATST Project regardless of whether it were built at either the Mees site or Reber Circle site. Mitigation measures MIT-6 (Noise), MIT-7 (SUP requirements), and MIT-12 (Construction-related traffic) would be implemented during construction, which would reduce the impacts down to minor, adverse, short-term, and direct.

Under either the Preferred Mees site alternative or the Reber Circle alternative, minor, adverse, and direct long-term impacts to historic resources along the Park road corridor would result from operation-related activities. No indirect impacts would be expected. Direct impacts would be a result of a relatively small increase (1.4 percent) in traffic associated with additional staff needed for the operation of ATST. According to the HALE Road Report, this slight increase would have little measureable impact on traffic

or wear to the Park road corridor, including the historic bridge and box culverts. No mitigation measures are anticipated to be implemented; however, some measures may ultimately be added as part of the SUP.

Under the No-Action Alternative, there would be no impacts on historic resources within the ROI.

ARCHEOLOGICAL RESOURCES

There would be negligible, adverse, long-term, and direct impacts on the archeological resources at HO and within the Park road corridor from construction and operation of the proposed ATST Project. This would be the same result if the proposed ATST Project were built at either the Preferred Mees site or the Reber Circle Site. Under the No-Action Alternative, there would be no impacts on archeological resources within the ROI.

4.3 Biological Resources

Section 4.3 – Biological Resources has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

This section identifies potential direct and indirect biological impacts that may result from implementing the proposed ATST Project at either the Mees or Reber Circle sites or the No-Action Alternative. The methods and significance criteria used in this analysis of the intensity and extent of impacts on listed species that would result from construction and routine operation are described in the following section.

For evaluation of the potential impacts on biological resources as a result of implementing the proposed ATST Project, the ROI would be primarily within both HO and the relevant areas within HALE, including the Park road corridor.

4.3.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have impacts on biological resources are as follows:

- 1. Review and evaluate existing and past actions to identify which actions within the ROI have resulted in diminished health, diversity, or population of biological resources, in order to evaluate the action's potential impacts on biological resources.
- 2. Review and evaluate each alternative to determine its potential for impacts on biological resources due to loss of habitat, noise, vibration, vehicular traffic, and the introduction of alien invasive species (AIS). Loss of habitat was evaluated based on what is known about existing and past loss of habitat within in the ROI. Noise and vibration were estimated from industry standards and applied to known thresholds for adverse impacts on various species. Traffic estimates were based on known requirements for construction and operations of similar facilities and applied to potential impacts from past and present actions. These methods were used to identify potential impacts on the ecosystem and its component parts within and adjacent to HO, including damage to the existing natural habitats, excessive disturbance of flora and fauna and introduction of invasive species.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations that apply to preservation of biological resources.

Impacts on biological resources were evaluated by determining sensitivity, significance, or rarity of each resource that would be adversely affected by the proposed ATST Project. Factors considered in determining whether an alternative would have an impact on biological resources include the extent or degree to which its implementation would do any of the following:

- 1. Substantially affect a rare, threatened, or endangered species or its habitat (HAR §11-200-12 and Endangered Species Act (ESA) 1973, Section 7 (a) 2, Interagency Cooperation).
- 2. Cause the "take" of a highly sensitive resource, such as a threatened, endangered, or special status species.
- 3. Result in non-concurrence with the National Science Foundation (NSF) based on a determination of No Adverse Impact in the Informal Consultation Document by the U.S. Fish & Wildlife Service (USFWS).
- 4. Reduce the population of a sensitive species, as designated by Federal and State agencies, or a species with regional and local significance by reducing numbers, altering behavior, reproduction, or survival, or by destroying or disturbing habitat.
- 5. Have an adverse impact on the 'ua'u (Hawaiian Petrel) habitat.
- 6. Conflict with Hawai'i Coastal Zone Management Program policies.
- 7. Introduce or increase the prevalence of AIS; or,
- 8. Cause long-term loss or impact of a substantial portion of local habitat.

Impact Intensity	Intensity Description	
Negligible	The alternative would either not impact biological resources or the impact would be below or at the lower levels of detection.	
Minor	The alternative would result in a detectable change to biological resources, however the impact would be small, localized, and of little consequence.	
Moderate	The alternative would result in a readily apparent change to biological resources over a relatively wide area. Mitigation measures would be necessary to offset adverse impacts and likely be successful.	
Major	The alternative would result in a substantial change to the character of the biological resource over a large area. Extensive mitigation measures to offset adverse impacts would be needed and their success could not be guaranteed.	
Duration: Short-term – occurs only during the ATST Project construction period. Long-term – continues after the ATST Project construction period.		

4.3.2 Evaluation of Potential Impacts for the Preferred Mees Site

Locating the proposed ATST Project at the Mees site (the Preferred Alternative) would likely result in impacts to biological resources during both the construction and operation phases. A detailed discussion of each of the potential impacts follows.

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Preferred Mees Site

Impacts on Native and Non-Native Botanical Resources Including AIS

HO and the Park road corridor contain biological ecosystems that are both unique and fragile. In assessing the impacts within the ROI, it is important to note that considerable efforts have been expended in recent years to keep feral animals off the upper slopes of HALE (a feral animal control fence encloses Haleakalā Crater and much of Manawainui), and there are extensive staff and volunteer efforts to check the spread of AIS.

As explained in Section 3.3.1-Botanical Resources, surveys were conducted within HO at various times to assess botanical habitats as part of earlier HO development activities, the LRDP for HO, and, more recently, as part of the EIS assessment of the affected environment for the proposed ATST Project. Identifiable impacts on those resources from earlier actions are useful in assessing what is likely to occur during construction.

According to the HO botanical surveys conducted in 2005 and 2009, there were more non-native plants on the HO site relative to similar adjacent "pristine" areas of HALE, Kahikinui Forest Reserve, and Kula Forest Reserve. This was due, in part, to development, which seems to promote plant growth, both native and non-native. This is likely due to disturbance to the soil from construction, additional water sources from discharge pipes and gutters, and protection from the elements by objects such as building foundations and sidewalks. Both native and non-native plants are able to find refuge in otherwise inhospitable locations. Considering the impacts from earlier construction of facilities at HO, the effect on botanical resources has been detectable, with an increase in weeds and non-native species. Since native species still flourish at HO, however; and, since small incidental benefits such as protection from the elements do occur at HO, the predicted overall impacts on botanical resources from construction of the proposed ATST Project at the Preferred Mees site would likely be detectable but of little consequence. Thus, the direct impact would be minor, adverse, and short-term. No indirect impacts to botanical resources are anticipated from construction activities.

As explained more fully in Section 3.3.1-Botanical Resources, botanical resources along the Park road corridor can be grouped into the alpine and subalpine shrubland habitat zones, depending upon the elevation. The upper, alpine zone largely contains the botanical diversity described above for HO. The lower elevations, below about 8,500 feet, are within the subalpine shrubland habitats; historically, both have been suppressed by feral goats (*Capra hircus*) and are recovering well in their absence. Non-native grasses, especially velvet grass (*Holcus lanatus*) are common and persistent between native shrubs (Medeiros, et al, 1998). It is not anticipated that construction-related traffic would impact those resources. Thus, the direct impacts would be negligible, adverse, and short-term. No indirect impacts to botanical resources are anticipated from construction activities.

Alien Invasive Species

Throughout the history of HALE, there has been encroachment by non-native botanical species. Some of these threats gain entry through the Park road corridor as seed or pod hitchhikers on vehicles and people. Construction of the proposed ATST Project at the Preferred Mees site would slightly increase the amount of traffic and, thus, the overall threat to botanical species within the Park road corridor would also be slightly increased.

Introduction or proliferation of alien invasive species (AIS) has been identified as a potential threat for most special status species located within the ROI. The introduction of AIS from the proposed ATST Project originates from the same two major sources as elsewhere on Haleakalā. Equipment, supplies, and

containers with construction materials that originate from elsewhere, such as the other islands or the mainland, could be infested by unwanted species when they arrive in Kahului. Secondly, vehicular traffic destined for the Mees site would increase during construction of the proposed ATST Project, thereby increasing the potential for the introduction of AIS, even though this increase in traffic is minor. These unwanted introductions of AIS are not anticipated to be substantially different from current levels of AIS. Therefore, the overall direct impacts on botanical resources within the Park road corridor during the construction phase would be considered minor, adverse, and long-term. There would be mitigation measures employed to reduce the impacts to biological resources:

MIT-9. Although AIS introduction could have a minor, adverse, and long-term direct impact on native botanical species, implementation of mitigation measures developed in accordance with the SUP and in coordination with NPS and USFWS would instill monitoring, avoidance, and minimization measures into the project to reduce this impact to negligible, adverse, and long-term. The relevant SUP mitigation measures to reduce impacts include:

- 1. The Project will fund an agreed upon and qualified person to conduct reasonable biological monitoring activities as outlined by the USFWS in its informal consultation.
- 2. Alien Invasive Species Prevention NPS vehicle, equipment, and materials washing and inspection protocol will be followed by the ATST Project. Further, as a backup to prevention, HO has implemented weeding throughout HO. This would alleviate AIS introduction if prevention is not successful.
- 3. Programmatic Monitoring A programmatic monitoring plan for invertebrates, flora and fauna during the project would be implemented.

The above measures in MIT-9 would reduce the anticipated direct impacts to botanical resources from construction-related activities to negligible, adverse, and long-term. No indirect impacts to botanical resources are anticipated from construction activities.

Impacts on Endangered, Threatened, Proposed, and Candidate Plant Species

[•]*Ahinahina (Haleakalā Silversword).* There are a number of 'ahinahina plants, 382 hectares (ha) (944 acres (ac) of designated Haleakala 'ahinahina critical habitat, and 1 ha (2 ac) of many-flower geranium (*Geranium multiflorum*) designated critical habitat, within the action area of the proposed ATST Project including the Park road corridor. In 2002, nine live 'ahinahina and three dead 'ahinahina flower stalks were located on HO property. All of the live plants were at the MSSC site. Despite being quite large, up to 50 cm (20 in) in diameter, these nine live 'ahinahina apparently were all less than five years old and grew since construction of the facility. The live 'ahinahina were located in landscaped areas, alongside retaining walls, on a steep slope just below the parking area, and in the MSSC leach field. There were also three dead 'ahinahina flower stalks on the UH property. HALE service personnel placed two stalks near the MSSC leach field. The other dead 'ahinahina flower stalk was located near the former LURE Observatory (now Pan-STARRS, PS-1) and was alive in 1991. In the most recent botanical survey, no 'ahinahina were found within the Mees site, and therefore there would be negligible, adverse, and short-term impacts from construction of the proposed ATST Project at the Preferred Mees site. No indirect impacts to 'ahinahina are anticipated from construction activities.

Many-flower geranium. In addition, the proposed ATST Project would have a negligible impact on the many-flower geranium critical habitat. The USFWS does not have any information that would indicate that the Haleakalā 'ahinahina plants and many-flower geranium critical habitat within the proposed ATST Project area would be affected. In providing for vehicle steam cleaning, invasive species inspections, and rapid response to on-site discoveries of introduced species, the proposed ATST Project is providing the

best available level of protection against habitat-modifying invasive insects, plants, and other pests. Accordingly, the anticipated direct impacts associated with the construction of the proposed ATST Project at the Preferred Mees site are negligible, adverse, and short-term. No indirect impacts to the many-flower geranium critical habitat are anticipated from construction activities.

In addition to the mitigation measures described above, direct impacts to botanical resources would be further reduced through implementation of the following mitigation measures from MIT-9:

- 1. The Project will fund an agreed upon and qualified person to conduct reasonable biological monitoring activities as outlined by the USFWS in its informal consultation.
- 2. Alien Invasive Species Prevention NPS vehicle, equipment, and materials washing and inspection protocol will be followed by the ATST Project. Further, as a backup to prevention, HO has implemented weeding throughout HO. This would alleviate AIS introduction if prevention is not successful.
- 3. Programmatic Monitoring A programmatic monitoring plan for botanical resources would be implemented at HO.

Implementation of all of these mitigation measures will not reduce the intensity level of direct impacts to botanical resources associated with the construction of the proposed ATST project at the Preferred Mees site, however, they will help to ensure that the impacts are as nominal as possible. No indirect impacts to botanical resources are anticipated from construction activities.

Impacts on Endangered, Threatened, Proposed, and Candidate Avifaunal Species

'Ua'u. Construction activities that could induce ground vibration (i.e., heavy equipment grading, excavating, drilling, and compacting) could disrupt resident avifaunal resources at HO, adversely affecting 'ua'u nesting and fledging success. Confirmed construction-related causes of 'ua'u mortality could arise from nest collapse, predation by introduced predators, road-kills, collision into such objects as buildings, utility poles, fences, lights, and vehicles (UH IfA, 2005). No impact was observed on nesting or fledgling success of 'ua'u from two previous construction efforts, the Faulkes Telescope Facility (FTF) in HO in September 2002 and the new HALE restroom facility in September 2003. 'Ua'u were at the colony during both construction activities, but excavation took place during non-nesting season when the 'ua'u were not on site. No reports of earlier impacts to the other two special status species ('ope'ape'a, or Hawaiian Hoary Bat, and nēnē, or Hawaiian Goose) in the HO area have been reported.

Impacts from construction would include the potential for disturbance of the habitat, in which the 'ua'u would not remain in their burrows during the nesting season. Construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year. Construction activity also has the potential of causing burrow collapse, directly related to excavation, vibration, or other human activities. Collapse of a burrow could result in 'ua'u mortality.

The risks to 'ua'u from construction of the proposed ATST Project at the Preferred Mees site may be summarized as follows:

- 1. Collision of petrels with equipment and buildings,
- 2. Burrow collapse from construction vibration,
- 3. Harm from noise for nesting and incubating petrels,

- 4. Increase in predator population,
- 5. Invasive species brought to the site; and,
- 6. New burrows that may be occupied closer to construction than previously surveyed.

In informal consultation with USFWS, and in discussions with NPS concerning issuance of an SUP, the following mitigation measures from MIT 6, MIT-9, and MIT 13 were adopted to address each of these risks (note: additional measures may be included in the SUP):

- 1. Collision risk will be reduced by lowering construction cranes at night and marking them with white polytape for visibility. All structures will be painted white. No outdoor lighting will be associated with the proposed ATST Project.
- 2. Burrow collapse would be avoided through strict adherence to ground vibration thresholds of 0.12 in/sec during most construction periods and 0.0019 in/sec during the incubation period, as set by USFWS for burrow collapse. Vibration will be monitored to ensure that the burrow collapse threshold is not exceeded.
- 3. Noise would be mitigated through a number of measures, including:
 - a) limitation on construction noise at burrows within 80 meters of construction activities to no louder than 83 dBA measured at 5 feet from the source during incubation periods (April 20th through July 15th).
 - b) only two truck round-trips per day will be driven to the construction site during the incubation period.
 - c) restriction on noise levels during certain hours of the day and during certain months of the year, such as limiting on-site ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, limiting the hours for wide load vehicles to traverse the Park road (such vehicles need to traverse the Park road during the night between approximately 8:00 p.m. and 4:00 a.m.), and prohibiting wide or heavy loads from coming through the Park at night between April 20th and July 15th. The seasonal restriction on wide load traffic is also a requirement of the USFWS.
 - d) To mitigate construction noise, contractors would implement reasonable noise-reduction practices and abatement procedures.
- 4. The predator population would be controlled by careful management of trash, as required in the IfA LRDP, and by vector control methods already in use at HO.
- 5. New burrows would be identified at Kolekole and 'ua'u would continue to be managed by the NPS, in cooperation with the State Division of Forestry and Wildlife (DOFAW), as has been the case for over 25 years. Independently, a biological monitor provided by the ATST Project would work with NPS resource staff to routinely survey the colony for new burrows. Should newly active burrows be found closer to the proposed ATST Project than those shown in **Figure 3-7** (40-feet), additional Section 7 consultation with USFWS would be necessary.

A most vulnerable period during which 'ua'u have the greatest potential to experience mortality is the incubation period, between about April 20th and July 15th of each year. According to the USFWS Section 7 Informal Consultation Document (Appendix M),

The egg incubation period (April 20th and July 15th (Simons 1985) is the only time of year when adult petrels are at the Haleakala colonies during the day. Adult birds incubate their egg for an uninterrupted shift

of one to three weeks, during which time the petrel maintains a low metabolic rate, conserving energy by sleeping 95 percent of the time (Simons 1985). Incubating petrels would be more sensitive to noise and vibration disturbance during this period. Undisturbed birds can lose substantial percentages of body weight during their incubation periods. Sleeping bird metabolism is approximately half that of awake, resting birds (Simons 1985). If birds are frequently awakened by noise or vibration from construction activities during incubation, they could lose enough weight that they would be forced to leave on a foraging trip prior to their mate's return. They would be more likely to leave an egg unattended, for a longer period, due to asynchronous parental incubation, than undisturbed birds.

While the proposed ATST Project would be constructed close to a few of the currently identified 'ua'u burrows on the south slope of HO, negligible or minor adverse and long-term impacts are anticipated on most avifaunal resources. The following subsections describe those potential impacts and the mitigation measures developed to protect the incubating 'ua'u during the period when they are at higher risk of mortality due to "take".

Road Noise Impacts to Incubating Adults. From April 20th through July 15th, only two trucks, with maximum sound production of 83 (decibel scale) dBA (measured at 50 feet, pursuant to the Environmental Protection Agency (EPA) standards) would make one round trip each to the ATST site, per day throughout the construction period of the project. Approximately 11 'ua'u burrow entrances, located closer than 15 meters (50 feet) to the road may be exposed to sound levels higher than 83 dBA, resulting from ATST construction trucks, four times per day. Approximately 149 additional 'ua'u burrow entrances are located within the road corridor of the Action Area, where they may be exposed to truck noise levels, at burrow entrances, of 65 dBA or greater. An estimated 600 to 900 vehicles, including buses and touring vans access the Park road corridor per day (Cathleen Natividad Bailey personal communication), in addition to the two trucks and seven to eight passenger vehicles scheduled to visit the ATST construction site during the 'ua'u incubation period. Although Natividad Bailey's (personal communication) data analysis was not yet complete, preliminary reports suggest that egg neglect has not resulted in 'ua'u mortality at Haleakalā, due to noise disturbance or otherwise. The birds occupying burrows close to the road may be habituated to the vehicle noise. In 2002 and 2003, Natividad Bailey (HALE, 2003) documented two egg mortalities which were both attributed to infertility. Nevertheless, in comments on the SDEIS, NPS considers the impacts from road noise due to the proposed construction to be major, adverse, and long-term. The noise mitigations developed with USFWS and NPS and described above would be likely to reduce the potential impacts from construction-related activities to negligible, adverse, and long-term.

Noise Impacts to Incubating Petrels. Because construction is not expected to produce noise that is louder than ambient wind noise at the burrow entrance or at the nest chamber between April 20th and July 15th, disturbance of incubating adult birds by construction site noise is not anticipated. Because birds occupying burrows adjacent to the Park road corridor appear to be habituated to traffic noise caused by the 600 to 900 vehicles that access HALE each day, and because only two truck round trips would be associated with the proposed ATST Project during the incubation period, construction activities associated with the proposed ATST Project are not likely to result in any 'ua'u egg loss. The monitoring protocols developed to document egg neglect would yield additional information regarding petrel incubation behavior. The noise mitigation measures for traffic and construction noise described above would reduce the potential impacts from construction-related activities to negligible, adverse, and long-term.

Vibration Impacts to Incubating Petrels. Construction activities associated with the proposed ATST Project would have the potential to cause ground vibration that could disturb the nearby colony of endangered Hawaiian petrels. The USFWS imposed thresholds of 0.12 in/sec on vibrations at burrows during most of the year and 0.0019 in/sec during incubation season from April 20th through July 15th

(Appendix M). In order to characterize potential vibrations from construction, the ATST Project has obtained and analyzed extensive vibration data from recent similar deconstruction/demolition activities that occurred outside HO, but within 500 feet of the proposed Mees construction site in January and February 2009. This information is provided in Appendix Q, Study of Vibration due to Construction Activities at Haleakala (Vibration Study). The results of the Vibration Study provide quantitative data for construction activities near petrel burrows that confirm that construction equipment or activities associated with the proposed ATST Project would not result in vibrations close to, or at levels that would harm either the petrels or their burrows. Specifically, the incorporation of the noise standard between April 20th and July 15th, limiting maximum equipment noise to 83 dBA (at five feet), would eliminate the use of any equipment at the construction site which would cause a vibration greater than 0.0019 in/sec at any of the closest burrows during this period. Fewer than 20 percent of people can perceive a vibration with a peak particle velocity (PPV) of 0.0019 in/sec (Turunen-Rise et al 2003, Klaeboe et al 2003). The two round-trips taken by trucks per day during this period may produce noticeable vibration at the burrow sites along the road. Because the duration of the vibration would be limited, and because the birds are exposed to vibration from 600 to 900 vehicles, including buses, which produce vibration amplitudes which are identical to trucks (Jensen, 1993), it is not anticipated that the direct impacts of these two vehicles on the incubating birds would be measurable. The overall direct and indirect impacts on incubating 'ua'u would, therefore, be negligible, adverse, and short-term (during construction only).

Construction Impacts During Nestling Period. Construction activities that would produce daily prolonged loud noises and vibration are scheduled to coincide with the nestling period (July 1 through the end of November). 'Ua'u nestlings have been observed on their nests, in their burrows, and near their burrow entrances during this period. Adults visit the burrows at night to feed the nestlings and would presumably be unaware of any noise disturbance. The noise generated by construction equipment and vehicles are expected to increase startle, alarm, and alert behavior and disturb the day time sleep of nestlings occupying burrows within 780 meters (2,560 feet) of the construction site and within 122 meters (400 feet) of the Park road corridor. The closest burrow entrance is 12 meters (40 feet) from the outer edge of the construction site. The noise level at a point 12 meters (40 feet) away from an operating crane is 84 dBA when the crane is operating, and 101 dBA when the rock hammer is in use. Topographical shielding between the line of sight view of the construction site, and the burrow entrance, cuts 9 dBA off of the noise level (Fein, unpublished) so that the maximum noise level at any burrow entrance would be 92 dBA. Sound attenuation of 0.625 dBA per inch of burrow depth (KCE, unpublished data) would result in a maximum noise level of 85 dBA within the nest chamber of the burrow closest to the construction site.

A potential consequence of increased noise and vibration could be nest abandonment by juvenile 'ua'u. No references to chick abandonment of their nests due to noise or vibration disturbance were found in literature review using CSAMultiSearch (2007). It is not expected that 'ua'u chicks would abandon their nest (which is where they are fed) due to the noise and vibration associated with the ATST construction activities. 'Ua'u chicks, exposed to noise and vibration associated with the Park road corridor and past construction projects on Haleakalā have not resulted in a documented and published decrease in chick survival or in chick nest abandonment. Construction impacts during the entire nesting season, including the fledgling cycle, have the potential to be major, adverse, and long-term. With implementation of the mitigation measures described above for noise and vibration during the periods other than April 20th through July 15th, however, the potential for impacts on burrows during nestling and fledging periods after those dates would also be reduced to negligible, adverse, and long-term.

The USFWS provided a detailed analysis of potential impacts on 'ua'u from construction of the proposed ATST in their Informal Consultation Document (Appendix M). The presence of 'ua'u in their burrows during the months from February to October would not require noise and vibration mitigation measures, except for the period between April and July, when incubation takes place. Data from studies done by

NSO and KCE (Appendix M and Appendix Q-Vibration Report) and from research by USFWS indicate that anticipated noise levels during February to November would not exceed thresholds that would be likely to adversely affect those 'ua'u not incubating eggs in their burrows. During incubation periods, however, the birds sleeping on eggs would be more susceptible to disturbance, and, therefore, noise and vibration restrictions would be imposed during those times.

Heavy construction activities during nighttime are not anticipated during the proposed ATST Project. MIT-13 restricts all noise-emitting activities to strict day and time constraints, with work prohibited during sensitive nighttime periods.

Although the mitigation measures for the protection of 'ua'u are comprehensive, the risks of a delay to the construction schedule and increased cost associated with an inadvertent "take" are such that Formal Section 7 consultation would be initiated to address potential "take" prior to construction. If, however, an incidental take permit has not yet been obtained by the start of construction, and a Hawaiian petrel or nēnē is harmed or killed as a result of the proposed ATST construction activities, the USFWS would be contacted immediately and any work action would cease until the cause for the "take" is formally addressed if the proposed ATST Project were constructed at the Preferred Mees site.

 $N\bar{e}n\bar{e}$. Nēnē may be affected by human activities through the application of pesticides and other contaminants, ingestion of plastics and lead, collisions with stationary or moving structures or objects, entanglement in fishing nets, loss of habitat, disturbance at nest and roost sites, attraction to hazardous areas through human feeding and other activities, and mortality or disruption of family groups through direct and indirect human activities. None of these activities are anticipated to occur within the normal habitat of the nēnē in connection with the construction of the proposed ATST Project. Therefore, negligible, adverse, and long-term impacts on the nēnē are anticipated from the construction of the proposed ATST Project at the Preferred Mees site.

NSF requested USFWS concurrence with its determination that the proposed ATST Project is not likely to adversely affect the nēnē. Based on vehicle use and nēnē fatality estimates provided by Natividad Bailey (personal communication), one nēnē is killed on the road at HALE, for every 224,454 round-trips taken by vehicles through the Park. Based on the USFWS calculation, during the 31-year life of the ATST project, a total of 66,294 vehicle round-trips would be taken to the project site (11,544 during construction and 54,750 during operation and use). By combining the average nēnē fatality rates due to vehicles driving the Park road corridor and the ATST vehicle use data, USFWS calculated that there would be a collision with 0.3 nēnē during the 31-year life of the project.

MIT-9 would further reduce the chance of a collision with a nēnē and would require that all drivers accessing the ATST site during the life of the proposed ATST Project construction and operation period would receive a nēnē briefing from the IfA. Drivers would receive a refresher briefing regarding the nēnē at the beginning of this species' breeding season approximately November 1 of each year. MIT-9 would further reduce the probability of affecting this endangered species within the action area. The impact would remain negligible, adverse, and long-term.

In addition to driver collisions, to enable wide loads to clear the HALE entrance station, an area 12-feet wide (currently occupied by a septic tank, underground utilities, and native vegetation), would be temporarily developed into a drivable surface. Measures summarized in MIT-9 to reduce risk to nēnē would include:

1. Temporarily widening of the shoulder that would be completed outside of the nēnē nesting season.

- 2. Park staff would work with the ATST project team to implement nēnē avoidance methods for this road-widening work.
- 3. Avoidance measures would include a survey of the site for nēnē prior to construction and installation of temporary "orange fencing" around the outer perimeter of the construction area to prevent nēnē from walking into the site during construction.
- 4. The site would be restored with native vegetation after use to further reduce impacts on nēnē.

These mitigation measures would further reduce the probability of affecting this endangered species within the small area of the Park road corridor involved.

Overall the proposed ATST Project would result in a negligible, adverse, and long-term effect on the nēnē population within the ROI if the project were constructed at the Preferred Mees site.

Impacts on Other Endangered, Threatened, Proposed, and Candidate Faunal Species

'Ope'ape'a. Additional threats to the 'ope'ape'a identified by the USFWS include direct and indirect impacts of pesticides, predation, alteration of prey availability (introduced insects), and roost disturbance (USFWS, 1998). The Mees site would not change the current operating procedures or the associated impacts on the ecosystem and would have a negligible, adverse, and long-term impact.

Impacts on Other Native and Introduced Fauna

Occasionally, feral goats, **roof** rats, cats, and mice have been seen or captured at HO, but not many other fauna have been present. The Park road corridor below the summit area has a much more abundant diversity of species that are not listed as Federal- or State-threatened or endangered species. Avian species are particularly abundant and those which are likely to be found along the Park road corridor include, but are not limited to, quails, francolins, pheasants, chukars, plovers, sandpipers, doves, pigeons, short-eared owls, northern mockingbird, common myna, house finch, common Amakihi (*Hernignathus virens*), and liwi, (*Vestiaria coccinea*) (Conant and Stemmermann Kjargaard, 1984). Introduced fauna that could be observed closer to the summit area and along the upper Park road corridor include the chukar, the feral goat, the Polynesian rat, and the roof rat (AFRL, 2005). The Indian mongoose is occasionally observed on the summit. Cats and mice are also found along the Park road corridor, with cats occasionally seen crossing the Park road (HALE, unpublished data).

The arthropod surveys conducted between 2002 and 2009 described in Section 3.3.3.3-Invertebrate Resources revealed the diversity and abundance of species at the Mees site. The results of these studies indicate that development of the ATST facility would diminish a small amount of arthropod habitat, including the presence of native plants, and thereby reduce native arthropod species diversity and abundance at both the proposed ATST sites, but would not likely to have a direct impact on the persistence of arthropod species on Haleakalā.

Although the location of HO is at an elevation high enough to be outside the range of many of these species, the proposed ATST Project would maintain daily refuse management during construction which would not promote rat and mice populations. During construction of the proposed ATST Project at the Preferred Mees site, noise limits and strict on-road use only of traffic would not be likely to jeopardize bird habitats or other fauna in the Park road corridor, and the impacts on those resources would be negligible, adverse, and long-term.

Operations-Related Impacts at the Preferred Mees Site

Impacts on Native and Non-Native Botanical Resources Including AIS

To some extent, development at HO seems to promote plant growth, both native and non-native. Given the disturbance to the soil from construction, additional water sources from discharge pipes and gutters, and protection from the elements by objects such as building foundations and sidewalks, both native and non-native plants are able to find refuge in otherwise inhospitable locations (Vol. II, E-Botanical Survey). It is assumed that this trend would continue if the proposed ATST Project were to become operational. Loss of numbers and diversity of native plants has already occurred at HO, as reported in the botanical survey (2005) and, therefore, it is anticipated that botanical resources would experience the same minor, adverse, and long-term impacts from operations of the proposed ATST Project at the Mees site. Mitigation measures from MIT-9 would reduce these impacts and would include:

- 1. A biological monitor to monitor native and non-native botanical resources during construction to ensure that AIS is not proliferated, and if AIS is introduced, it would be eradicated.
- 2. Alien Invasive Species Prevention NPS vehicle, equipment, and materials washing and inspection protocol will be followed by the ATST Project. Further, to augment prevention, the IfA has implemented weeding throughout HO. This would reduce or eliminate AIS introduction if prevention is not successful.

Impacts on Endangered, Threatened, Proposed, and Candidate Plant Species

'Ahinahina. There have been no 'ahinahina found during the most recent survey at the Mees site. It is not anticipated that additional surveys would identify any plants around the Mees site, but if they were to be found after operations commenced at the proposed ATST Project, the USFWS would be contacted for consultation and arrangements to protect them from damage or loss. It is anticipated that operations of the proposed ATST Project at the Mees site would have negligible, adverse, and long-term impacts on the small 'ahinahina population found at HO.

Many-flower geranium. In addition, operations of the proposed ATST Project at the Preferred Mees site would have a negligible impact on the many-flower geranium critical habitat. The USFWS has provided data on Species of Concern for the Proposed ATST Project site and the Park road corridor and it does not include this plant species.

Impacts on Endangered, Threatened, Proposed, and Candidate Avifaunal Species

'Ua'u. The lack of a significant difference in 'ua'u burrow activity and nesting success between sites near HO and those away from HO suggest that current activities do have negligible, adverse impacts on nesting 'ua'u (HALE unpublished report). Confirmed causes of adult 'ua'u mortality outside of the ROI include predation by introduced predators and collision with objects such as buildings and vehicles, utility poles, fences, and lights. Although these risks exist at HO, 'ua'u mortality has not been documented. Nevertheless, monitoring to establish whether the 'ua'u habitat at the Kolekole colony has been adversely affected by construction would continue for three years after the construction phase ends.

 $N\bar{e}n\bar{e}$. Mortality or disruption of family groups through direct and indirect human activities is unlikely as a consequence of operations at the Mees site, since none of these threats have been observed at the site as a consequence of other operations at HO. There would still be a risk to 0.3 nēnē per year on the Park road from vehicle collisions arising from ATST operations. This would be considered negligible, adverse, and long-term. Mitigation measures listed in MIT-9 would be implemented to further reduce the risk to nēnē:

Driver education would be implemented and all drivers would receive a briefing and a breeding season refresher to further reduce the risk of a vehicle associated with the proposed ATST Project would injure or kill a nēnē on the Park road corridor.

'Ope'ape'a. Operations of the proposed ATST Project at the Preferred Mees site would not change the current low potential for adverse impacts to the 'Ope'ape'a, since it is rarely seen at the site. It is possible, however, that at some time during the lifetime of the project, a bat would collide with the facility. With rare over-flights, the risk of impacts is seen as low and would be negligible, adverse, and long-term.

Impacts on Other Native and Introduced Fauna

The proposed ATST Project would maintain daily refuse management during construction which would not promote rat and mice populations. During construction of the proposed ATST Project, noise limits and strict on-road use only of traffic would not be likely to jeopardize bird habitats or other fauna, including arthropods, in the Park road corridor, and the impacts on those resources would be negligible, adverse, and long-term.

Impacts from Stormwater, Wastewater Treatment, and Electrical Power Requirements

Rainwater falling on structures of the proposed ATST Project would be captured, piped to a cistern, and stored for domestic and cooling use. After use, an individual treatment plant would be installed underground. This plant would utilize aeration and biologically accelerated treatment to achieve effluent standards (biological oxygen demand, total suspended solids, and pH levels) acceptable for infiltration directly to ground. Effluent would be disposed of in an on-site infiltration well (Fig. 2-16). Therefore, negligible, adverse, and long-term impacts on biological resources are anticipated from stormwater or wastewater.

The most common objects that 'ua'u collide with are fences, utility lines, and poles. Human-made lights may confuse flying 'ua'u, causing them to become disoriented. There are no known instances of 'ua'u becoming confused by human-made lights near HO or within HALE. Utility lines would be placed underground from the proposed substation. Therefore, operations would have negligible, adverse, and long-term impacts.

Impacts from Vehicular Traffic

A recovery plan (USFWS, 2004) for the nēnē identifies collisions with vehicles as a potential threat, stating that fourteen nēnē were killed by cars in HALE from 1988 to 1998, and it was anticipated that an additional 10 nēnē may have succumbed during the period from 1998 to 2005 as a result of current activities which includes traffic associated with approximately 1.7 million annual visitors to HALE (HALE, 2006).

During the heavy construction phase for the proposed ATST Project (approximately 2009 to 2011), an average of about nine round trips per day by construction-related vehicles is estimated. This is a temporary increase in traffic that would end when construction is completed. The current daily operational workforce level of 15 to 30 individuals at the HO site generates an average of 95.9 round trips per day to HO. After construction and during the preliminary operational phase of ATST, six to ten individuals would be added to the workforce. It is anticipated that this number would be maintained during the operational phase. This could result in 5 to 25 additional round trips per day. This increase is small relative to the total number of round trips per day from traffic accessing both HO and HALE and, therefore, impacts are anticipated to be negligible, adverse, and long-term. (HALE visitor impact is assessed as approximately 1.7 million visitors per year, on average 2,300 visitors per day. Assuming two visitors per vehicle, this means approximately 1,150 vehicle round trips per year. So, the increase would be less than or about equal to one percent.) There would be negligible impact from lighting during

construction because construction would occur only during daylight hours, security lighting at HO is strictly regulated to prevent light pollution of telescope sensors, and therefore vehicles would be required to turn off lights when accessing the site at night. Moreover, to further reduce the potential for adverse impacts, all drivers would continue to receive a briefing and a breeding season refresher to further reduce the chance of collision mortality. Therefore, impacts from vehicular traffic would be considered negligible, adverse, and long-term if the Preferred Mees site were selected.

4.3.3 Evaluation of Potential Impacts at the Reber Circle Site

Locating the proposed ATST Project at the Reber Circle site would likely result in impacts to biological resources during both the construction and operation phases. A detailed discussion of each of the potential impacts follows.

Construction-Related Impacts at the Reber Circle Site

Construction at the Reber Circle site would result in the same impacts on biological resources as at the Preferred Mees site with a few exceptions, as described below. The same mitigation measures would be implemented as described for the Mees site to reduce potential impacts to biological resources.

Impacts on Endangered, Threatened, Proposed, and Candidate Plant Species

'Ahinahina. There have been 'ahinahina close to the Reber Circle site. The 'ahinahina identified in the 1991 survey was found again during a more recent survey. The lone 'ahinahina is located near an existing small building and appeared to have been dead for some time after having gone to flower before dying. The dead 'ahinahina flowering stalk skeleton was not observed and it is not known where it went. The area around the 'ahinahina plant was searched for seeds, but none were found. While no other plants have been found in the immediate area, future surveys would be necessary to identify young plants should the Reber Circle site be chosen. Overall, negligible, adverse and long-term direct and indirect impacts to this species are anticipated if the proposed ATST Project were to be built at the Reber Circle site.

Impacts on Endangered, Threatened, Proposed, and Candidate Avifaunal Species

'Ua'u. Only minor differences in construction impacts exist between the Mees site and the Reber Circle site. The Reber Circle site, however, is located at a greater distance from 'ua'u burrows and is on previously developed land. The Reber Circle site would require more excavation for site leveling (about 5,000 cubic yards, compared to about 2,500 cubic yards). Although the potential for adverse impact on that avian biological resource is slightly less at the Reber Circle site than at the Mees site, the potential still exists. Potential (although highly unlikely), major, adverse impacts from construction could include the disturbance of the 'ua'u habitat at HO, where birds would not be willing to remain in their burrows during the nesting season. Construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year. Because unconstrained noise, vibration, lighting, etc., could potentially have a major, adverse, short-term impact on 'ua'u habitat, mitigation measures that are specific to the scope of construction for the proposed ATST Project were developed. The implementation of MIT-6 and MIT-9, which were developed over a period of several years, would also reduce any such impacts on 'ua'u to negligible, adverse, and long-term if the proposed ATST Project were constructed at the Reber Circle site.

Operations-Related Impacts at the Reber Circle Site

Locating the proposed ATST Project at the Reber Circle site would result in the same impacts as described above for the Preferred Mees site.

4.3.4 No-Action Alternative

Under the No-Action Alternative, no construction would take place and operations would continue unaltered. Therefore, the proposed ATST Project would result in no additional impacts. Impacts resulting from previous construction and current operations at HO, which include those described below, would continue to occur.

Construction-Related Impacts

No new construction would take place under the No-Action Alternative; therefore, there would be no continuation of the 'ua'u monitoring program. This would have a minor, adverse, and long-term impact on the ability to assess the health, numbers, and behavioral characteristics of the colony population offered by the 'ua'u monitoring program. Botanical species, both native and non-native, would continue to grow at HO. No change in distribution would be anticipated with the No-Action Alternative.

Operations-Related Impacts on Endangered, Threatened, Proposed, and Candidate Avifaunal Species

The lack of significant difference in 'ua'u burrow activity and nesting success between sites near and away from HO suggest that current activities at HO do not have adverse impacts on nesting 'ua'u (HALE unpublished report). Confirmed causes of adult 'ua'u mortality include predation by introduced predators, collision with unnatural objects, such as buildings and vehicles, utility poles, fences, and lights. While these risks exist at HO and records show one reported instance of an 'ua'u flying into a building (HALE unpublished report), there have been no 'ua'u fatalities resulting from past construction or current operation. Furthermore, the nests that are near HO are somewhat protected from non-human predators and HALE regularly maintains predator control traps within a limited radius near the area. Therefore, negligible, adverse, and long-term impacts would result from selection of the No-Action alternative.

Nēnē would continue to be affected by human activities through the application of pesticides and other contaminants, ingestion of plastics and lead, collisions with stationary or moving structures or objects, entanglement in fishing nets, habitat degradation, disturbance at nest and roost sites, attraction to hazardous areas through human feeding and other activities, and mortality or disruption of family groups through direct and indirect human activities. None of these threats have been identified as a consequence of operation at HO and, therefore, negligible, adverse, and long-term impacts would result from selection of the No-Action alternative.

Impacts on Other Endangered, Threatened, Proposed, and Candidate Faunal Species

Threats to the 'ope'ape'a include direct and indirect impacts of pesticides, predation, alteration of prey availability (introduced insects), and roost disturbance (USFWS, 1998). Similarly, there have been no reported **impacts** on the 'ope'ape'a as a result of HO operations. Therefore, there would be a negligible impact on sensitive species under the No-Action Alternative.

Impacts from Stormwater, Wastewater Treatment, and Electrical Power Requirements

Rainwater falling on most structures within HO is either directed via stormwater channels and berms to an onsite infiltration basin or captured, piped to one of two HO-based cisterns, and stored for domestic use. After domestic use, the wastewater is treated to achieve effluent standards acceptable for discharge directly to the ground through seepage pits. This is a temporary diversion from the natural system, since there are no surface water bodies on the property. Ultimately, water is returned to the natural system to facilitate recharge. The impacts on stormwater, wastewater treatment and electrical power requirements would continue to be minor, adverse, and long-term if the No-Action alternative were selected.

Impacts from Vehicular Traffic

The current daily operational workforce at HO averages from 15 to 30 individuals, which result in only a small increase of vehicular traffic entering and leaving HALE compared to the approximately 1.7 million

annual visitors at HALE (HALE, 2006). That level of traffic activity would continue under the No-Action Alternative. This impact would be negligible, adverse, and long-term.

Impacts from the Introduction of AIS

Introduced fauna that could be observed within HO and surrounding areas include the chukar, the feral goat, the Polynesian rat, and the roof rat (U.S. AFRL, 2005). The Indian mongoose is occasionally observed on the summit. The introduction of these species was not a result of HO construction or operation, but the risk of inadvertently introducing alien species accompanying individuals and vehicles entering HALE and HO would continue under the No-Action Alternative. This impact would be negligible, adverse, and long-term.

4.3.5 Summary of Impacts on Biological Resources

Botanical species would be removed during construction, but there would be no loss of any endangered or threatened species. The Proposed Action would have negligible, adverse impacts on the 'ahinahina population at HO and elsewhere within the ROI under either action alternative. Programmatic monitoring shown in Table 4-1 will, nevertheless, be implemented to ensure that impacts on botanical species would be reduced.

Potential major, adverse impacts from construction could include the disturbance of the 'ua'u habitat at HO, where birds would not be willing to remain in their burrows during the nesting season. Construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year. Construction activity at either the Preferred Mees site or Reber Circle site has the potential of causing burrow collapse, directly related to excavation, vibration, or other human activities. Collapse of a burrow could result in 'ua'u mortality. Mitigation measures developed to address these potential major, adverse, and long-term impacts are set forth in Table 4-2, below.

Table 4-1. Programmatic Monitoring for Active Preservation of Invertebrates, Flora, and Fauna at
HO During and After Construction of the Proposed ATST Project.

	Frequency/			
Survey Type	Duration	Description		
Botanical Reconnaissance	Semi- Annually/ three days	Characterization of types, diversity, stage of development, coverage, and health of endangered 'ahinahina, and non-endangered endemic or AIS plant species at HO and within selected areas of the Park road corridor. Report new occurrences of 'ahinahina to HALE and USFWS. (<i>NOTE: Monitoring measures/studies need to be coordinated/approved by</i> <i>HALE and would be included in the final version of the EIS. Any activities</i> <i>conducted along the Park road corridor would be approved within the SUP</i> <i>process.</i>)		
Invertebrate Collections	Semi- Annually/ one week	Day and night collection of invertebrates during one week in winter and one week during summer months. Identification and taxonomy for both ground and shrub dwellers. Population estimates for developed and undeveloped areas within HO, and selected areas of the Park road corridor. Report collections at HO to State Forestry Division and to NPS for endangered arthropods. Collections transmitted to Bishop Museum or other authorized repository. (<i>NOTE: Monitoring measures/studies need to be coordinated/approved by</i> <i>HALE and would be included in the final version of the EIS. Any activities</i> <i>conducted along the Park road corridor would be approved within the SUP</i> <i>process.</i>)		

Table 4-1. Programmatic Monitoring for Active Preservation of Invertebrates, Flora, and Fauna at HO During and After Construction of the Proposed ATST Project. (cont.)

Survey Type	Frequency/ Duration	Description
Field Faunal Survey	Semi- Annually/ one week	Field observations at HO and selected areas of the Park road corridor for faunal presence, e.g., scat, tracks, eaten plants, etc. (NOTE: Monitoring measures/studies need to be coordinated/approved by HALE and would be included in the final version of the EIS. Any activities conducted along the Park road corridor would be approved within the SUP process.)
Video Avian Monitoring	Throughout Nesting Season	Ongoing monitoring using visible and nighttime infrared techniques to observe endangered 'ua'u in and around HO during construction to identify any behavioral changes. Monitoring also includes tracking threats to 'ua'u, such as rats, feral domestic animals, goats, and pigs. Report to USFWS, HALE resource management.
Faunal Radar Survey	Upon Project Completion/ 10 days during 'ua'u nesting season	Radar observations for endangered 'ua'u and 'ope'ape'a flight patterns around the Proposed ATST Project, upon completion of the structure. Characterization of flight paths, altitudes, frequency, to compare with baseline obtained earlier in decade. Assess and document any effects due to proximity of structure near 'ua'u burrow colony. Provide report to USFWS upon request.

Table 4-2. Summary of Mitigation Measures Adopted During Section 7 Consultations.

Possible Impact	Avoidance and Minimization Measure Adopted	
Collision of petrels with equipment and buildings	e	
Burrow collapse from construction vibration	USFWS set ground vibration threshold for burrow collapse. Vibration will be monitored to ensure that the burrow collapse threshold is not reached.	
Noise concerns and incubating Hawaiian petrels	Construction noise will not be louder than ambient wind noise at nest during incubation period (April 20 th through July 15 th). Only two truck round-trips per day will be taken to the construction site during the incubation period.	
Predator population increase	Trash will be contained. Rat predation at HO.	
Transport of invasive species to Haleakala	Cargo will be thoroughly inspected for introduced non-native species. All ATST facilities and grounds with 100 feet of the buildings will be thoroughly inspected for introduced species on an annual basis and any introduced species found will be eradicated.	
Driver education	All drivers will receive a briefing and a breeding season refresher to further reduce the chance that a vehicle associated with the project would cause injury or mortality to nēnē.	

With respect to other native and non-native species, the only one that would experience a minor, adverse, and long-term effect would be arthropods. Development of the ATST facility would diminish a small amount of arthropod habitat, including the presence of native plants, and thereby reduce native arthropod species diversity and abundance at both the proposed ATST sites, but would not likely have a direct impact on the persistence of arthropod species on Haleakalā.

Operational impacts on botanical resources are anticipated to be similar to those that currently exist at HO. Disturbance to the soil from routine maintenance and other construction, additional water sources from discharge pipes and gutters, and protection from the elements by objects such as building foundations and sidewalks, provides opportunity for both native and non-native plants to find refuge in otherwise inhospitable locations. It is assumed that this trend would continue if the proposed ATST Project were to become operational at either the Preferred or alternative site. Loss of numbers and diversity of native plants have already occurred at HO, as reported in the botanical survey (2005) and, therefore, it is anticipated that botanical resources would experience the same minor, adverse, and long-term impacts from operations of the proposed ATST Project at either the Preferred Mees site or at the Reber Circle site.

No additional threats to endangered species have been identified as a consequence of operation at HO.

The No-Action Alternative would result in a negligible, adverse impact on the monitoring of the Kolekole 'ua'u colony and less information would be available on their behavior and population.

In summary, construction impacts could have a major, adverse, long-term impact to 'ua'u. Mitigation measures to address impacts to biological resources related to construction and operation of the proposed ATST Project at either the Preferred Mees site or the alternative Reber Circle site would include more than one approach. MIT- 6 and MIT-9 would reduce these impacts to negligible, adverse, and long-term.

4.4 Topography, Geology, and Soils

The ROI for topography, geology, and soils is considered to be HO and the Park road corridor.

4.4.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on the topography, geology, and soils are as follows:

- 1. Review and evaluate existing and past actions to identify what **impacts** they have had on topography, geology, and soils within the ROI in order to evaluate the proposed ATST Project's potential **impact** on the topography, geology, and soils.
- 2. Review the historical data on topographic changes due to past and present actions. Geology was evaluated by survey of geologic resources, and soils were investigated by professional analysis so that the potential for each alternative of the proposed ATST Project could be assessed to determine whether it would adversely affect the ecosystem and its component parts within and adjacent to HO and the Park road corridor, including damage to the existing topography, geology, and soils.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations to ensure that any **impacts** of the proposed ATST Project on topography, geology, or soils would not result in regulatory non-compliance.

Environmental consequences of the proposed ATST Project alternatives would have similar **impacts** on topography, geology, and soils (i.e., erosion removal). Therefore, to reduce redundancy, the resource areas are discussed under one heading. However, methodologies for assessing intensities are different and presented separately.

The impact analysis and the conclusions for possible **impacts** to the topography at HO and along the Park road corridor were based on historical topographic data for the proposed ATST Project areas onsite inspections, and professional judgment. **The impact analysis and the conclusions for possible impacts to geological resources were based on the site survey of known and potential geological resources at the Mees and Reber Circle sites and along the Park road corridor, published data, and professional judgment.** All available information on soils potentially affected in various areas of HO was **compiled through a soil investigation (Vol. II, Appendix K-Soil Investigation Report).** Where **possible, map locations of geological resources and sensitive soils were compared with the locations of proposed construction of the ATST and modifications of existing facilities.** Predictions about shortand long-term site impacts were based on previous studies of impacts on topography, **geologic resources, and similar soils** from similar projects and recent scientific data. The thresholds of change for the intensity of an impact are defined as follows:

Impact Intensity	Intensity Description		
Negligible	The alternative would either not result in a change to the topography, natural physical resource, or soils, or changes would be so small that it would not be of any measurable or perceptible consequence.		
Minor	The alternative would result in a detectable change to the topography, natural physical resource, or soils, but the change would be small, localized, and of little consequence.		
Moderate	The alternative would result in a measurable and consequential change to the topography, natural physical resource, or soils. Mitigation may be needed to offset adverse impacts and would be relatively simple to implement and likely be successful.		
Major	The alternative would result in a substantial change to the topography, natural physical resource, or soils. Extensive mitigation measures to offset adverse impacts would be needed and their success could not be guaranteed.		
Duration: Short-term – occurs only during the ATST Project construction period. Long-term – continues after the ATST Project construction period.			

4.4.2 Evaluation of Potential Impacts at the Mees Site

Construction of the proposed ATST Project at the Mees site would require excavation and would result in excess soil placed at locations outside the proposed ATST footprint (Section 2.5.3-Construction Activities). The material would be spread over a soil disposal area that would not affect the topography. There are no anticipated major, adverse, and long- or short-term **impacts** on topography, geology, and soils at HO or along the Park road corridor from this action.

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Preferred Mees Site

The construction activities under the proposed ATST Project include land clearing, demolition, grading/leveling, excavating, soil retention and placement, construction, paving, and other site improvement activities which may increase the potential for soil erosion and off-site transport of

sediment. An estimated 2,500 cubic yards of soils and rock would be removed during the construction of the level pad and approximately 2,150 cubic yards of soil would be removed during initial excavation activities to accommodate the foundation systems and during trenching activities for utilities installation.

Grading would be required for the proposed ATST Project and would alter the topography. A grade cut at the Mees site would be at approximately the 9,980-foot contour elevation. This would be done using a bulldozer, backhoe, jackhammer, dump truck, and other standard heavy equipment. The grading would level about ten feet of existing topography, but within the context of HO that would not substantially alter the appearance of the Kolekole cinder cone land form in which HO resides. No additional soil would be brought into the site. The removed material would be distributed within HO and would not substantially alter the topographic profile of the area. No substantial changes to the soil or underlying geology would be required for the proposed ATST Project.

Soil disturbance from construction activities would occur within a specified area and would not extend beyond the limits of the proposed ATST Project, thereby minimizing the potential for adverse **impacts** from erosion. During construction, excavated material would be placed in the designated locations that have already been identified as unlikely to adversely affect stormwater drainage or infiltration and every effort would be made to implement Best Management Practices (BMPs) as recommended in the Stormwater Management Plan (SWMP) for HO (Vol. II, Appendix L) to prevent erosion, excessive losses of soil, and reduce the potential for off-site sedimentation. Minor, adverse, **short-term, direct impacts** on soils from erosion could be expected during construction of the ATST at the Mees Site.

Park resources **other than the Park road corridor** are not expected to be affected during the construction of the ATST at the Mees site as all construction-related vehicles are anticipated to remain on the existing pavement within the Park road corridor and are not expected to deviate from the road onto adjoining soils. (Specific anticipated **impacts** on the Park road corridor during construction are discussed in Section 4.9-**Infrastructure and Utilities**.) Accordingly, the **impacts on geology and** soils within the Park road corridor are anticipated to be negligible, adverse, and short-term.

Operations-Related Impacts at the Mees Site

The construction of the proposed ATST Project would result in increased impervious areas, which would increase the potential for soil erosion during the operation phase of the proposed ATST Project. The combined capacity of the existing underground holding tank and cistern is, however, adequate to capture rainwater flowing off the roof and building surfaces during a 5-year rain event. **Runoff from the paved service yard would be captured in on-site ground drains and directly filtered into the substrate.** Furthermore, the operation of the ATST facility at the Mees Site would implement the BMPs recommended in the SWMP for HO (Vol. II, Appendix L), which should further reduce the threat of erosion.

The potential adverse impacts on the topography, geology, and soils from operations-related activities would be negligible, adverse, long-term, and direct during operation of the proposed ATST Project. There would be no indirect impacts and no mitigation would be necessary to reduce this impact, however BMPs would be implemented as required in the SWMP.

4.4.3 Evaluation of Potential Impacts at the Reber Circle Site

Construction of the proposed ATST Project at the Reber Circle site would require excavation and would result in excess soil placed at locations outside the ATST footprint (Section 2.5.3-Construction Activities). The material would be spread over a soil disposal area that would not affect the topography.

There are no anticipated major, adverse, and long- or short-term **impacts** on topography, geology, and soils at HO or along the Park road corridor.

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Reber Circle Site

An estimated 5,000 cubic yards of soils and rock would be removed during the construction of the level pad and approximately 2,150 cubic yards of soil would be removed during initial excavation activities to accommodate the foundation systems and during trenching activities for utilities installation. The removal of material for leveling would be approximately twice what is required for the Mees site and would result in slight changes to the existing topography; however the changes would be localized and would not affect the overall topography of the area within the ROI.

Soil disturbance from construction activities would occur within a specified area and would not extend beyond the limits of the proposed ATST Project, thereby minimizing the potential for adverse **impacts** from erosion. During construction, excavated material would be placed in the designated locations that have already been identified as unlikely to adversely affect stormwater drainage or infiltration and every effort would be made to implement BMPs as recommended in the SWMP for HO (Vol. II, Appendix L) to prevent erosion, excessive losses of soil, and reduce the potential for off-site sedimentation. Minor, adverse, and short-term **impacts** on soils from erosion would be expected during construction of the ATST at the Reber Circle Site. The **impacts** on the soils within the Park road corridor are anticipated to be the same as those articulated for the Mees site; the Park road corridor would be utilized in the same manner if the proposed ATST Project were built at either of the alternative sites and, thus, the anticipated **impacts** to soils within the Park road corridor would be not extend the project were to be built at the Reber Circle site.

Operations-Related Impacts at the Reber Circle Site

The **impacts** on topography, geology, and soils from the operations at the Reber Circle Site are anticipated to be similar to those described for the Mees Site. The amount of impervious area would be slightly higher than that of the Mees Site since the existing MSO facility would remain. **However, the runoff would be captured in a similar manner to that proposed for the Mees site. The rainwater flowing off of the roof and building surfaces would be captured and piped to an underground holding tank and the existing cistern. Runoff from paved service yards would be captured and directed to dry wells to prevent erosion from surface flow.** Therefore, negligible, adverse, and longterm **impacts** from erosion on soils would also be expected during the operation phase of the proposed ATST Project if it were located at the Reber Circle site.

The potential adverse impacts on the topography, geology, and soils from operations-related activities would be negligible, adverse, long-term, and direct during operation of the proposed ATST Project. There would be no indirect impacts and no mitigation would be necessary to reduce this impact; however BMPs would be implemented in accordance with the SWMP.

4.4.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

There would be negligible, adverse **impacts** to topography, geology, and soils under the No-Action Alternative, as the proposed ATST Project would not be constructed.

4.4.5 Summary of Impacts on Topography, Geology, and Soils

The potential adverse **impacts** on the topography, geology, and soils would be minor, adverse, and shortterm during construction and negligible and long-term during operation of the proposed ATST Project at either the Mees or Reber Circle sites. **No mitigation would be necessary to reduce these impacts. The removal of material for leveling at Reber Circle would be approximately twice what is required for the Mees site and would result in slight changes to the existing topography; however the changes would be localized and would not affect the overall topography of the area within the ROI.**

4.5 Visual Resources and View Planes

Section 4.5 – Visual Resources and View Planes has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The ROI for consideration of impact on visual resources and view planes encompasses two general areas: 1) land within the HALE, including the Park road corridor and the Crater; and, 2) certain portions of the landmass of Maui, from which structures at HO are generally visible.

As explained in Vol. II, Appendix J(4)-Proposed ATST Project and Alternatives: Supplemental Description of the ATST Equipment and Infrastructure, operations of the proposed ATST Project during the daytime, when ground heating and turbulence is at a maximum, would require that it be placed above the turbulent boundary layer on the ground, necessitating the maximum height of the structure to be 143 feet above ground level, and painted white. A structure of that size and color would be potentially visible from locations along the Park road corridor and from certain populated and unpopulated areas of Maui.

Potential impacts to visual resources and view planes are assessed in this section for both the Preferred site (Mees site) and the alternative site (Reber Circle site). All figures (including maps, photographs and renderings) referred to below are included at the end of this section.

4.5.1 Impact Assessment Methodology

The methodology used to determine whether the proposed ATST Project would have a significant impact on visual resources and view planes included reviewing existing and past actions at HO, to identify what impacts they have had on the visual resources within the ROI, including views from HALE and from wider Maui. These impacts are discussed in Section 3.5.

The visual analysis for the proposed ATST Project began with a review of maps, on which the Project location had been plotted, followed by the determination of anticipated impacts on the viewshed associated with the proposed ATST Project. A viewshed analysis is most commonly a computergenerated graphic that relies upon the maximum elevations of a project's features and surrounding topography to identify locations from which the project would theoretically be visible via an unobstructed or partial line-of-sight. For the proposed ATST Project, the entire island of Maui was included in the potential viewshed. Results of this analysis indicated the areas from which the proposed ATST Project has the potential to be visible. Specific details regarding the refinement of the viewshed analysis development, implementation and interpretation since publication of the SDEIS are included in Appendix R-New Viewshed Study. Accessible viewpoints were identified within the viewshed. Photographs were taken toward the location of the ATST Project from representative viewpoints, and a set of viewpoints were selected to use as the basis for the analysis.

Figure 4-1 shows the viewshed analysis for the Preferred Mees site. (All figures in this Visual Resources and View Planes subsection (Section 4.5) are presented at the end of the subsection.)

Figure 4-2 shows the viewshed analysis for the Reber Circle alternative site. A circle indicating a threemile radius from the Project site has been included on each of these graphics for reference. Figure 4-3 shows the location of selected viewpoints on a map of Maui, relative to the Project site. Figures 4-4 through 4-27 include photographs of existing views toward the Project site alongside simulated images of the views with the proposed ATST Project included. As detailed in Table 4-3 below, some figures include simulated views of the alternative Project site and/or views during the construction phase of the proposed ATST Project.

Viewpoint Number	Viewpoint Location and View Description	Figure Number			
	Views from within HALE				
	View from Pu'u Ula'ula (Red Hill) Overlook and Mees Site Rendering				
	View from Pu'u Ula'ula (Red Hill) Overlook and Reber Circle Site Rendering	4-5			
1	View from Pu'u Ula'ula (Red Hill) Overlook and Mees Site Pier Construction Rendering				
	View from Pu'u Ula'ula (Red Hill) Overlook and Reber Circle Site Pier Construction Rendering				
2	View from Park Road and Mees Site Rendering	4-8			
2	View from Park Road and Reber Circle Site Rendering	4-9			
3	View from Park Road and Mees Site Rendering	4-10			
4	View from Park Road and Mees Site Rendering	4-11			
5	5 View from Park Road at Entrance to Hosmer Grove and Mees Site Rendering				
(View from Paliku Cabin and Mees Site Pier Construction Rendering	4-13			
6	View from Paliku Cabin and Reber Circle Site Pier Construction Rendering	4-14			
	Views from throughout Maui				
7	View from Kula Highway, below Holy Ghost Church, and Mees Site Rendering	4-15			
8	View from 'A'apueo Drive, Kula, and Mees Site Rendering	4-16			
9	View from Lower Piiholo Road, Olinda, and Mees Site Rendering	4-17			
10	View from Pukalani Terrace Shopping Center and Mees Site Rendering	4-18			
11	View from Kahikinui and Mees Site Rendering	4-19			
12	View from Kaupo and Mees Site Rendering	4-20			
12	View from Keonekai, Kihei, and Mees Site Rendering	4-21			
13	View from Keonekai, Kihei, and Reber Circle Site Rendering	4-22			
14	View from Lipoa Parkway, Kihei, and Mees Site Rendering	4-23			
15	View from Mokulele and Pi'ilani Highways, Kihei, and Mees Site Rendering	4-24			
16	View from Ma'alaea Harbor and Mees Site Rendering	4-25			
	View from High Street and Kuikahi Drive, Wailuku, and Mees Site Rendering	4-26			
17	View from High Street and Kuikahi Drive, Wailuku, and Reber Circle Site Rendering	4-27			

The evaluation of potential impacts to visual resources resulting from the proposed ATST Project was conducted by the comparison of existing views and proposed views, which include the photographic renderings, or simulations. For each of the viewpoints used in the analysis, a photograph was selected to provide the basis for development of a simulation to depict the view as it would appear with the completed proposed ATST Project in place. The single-frame photographs used as the basis for the simulations were all taken with a digital camera. Photographs were taken from various locations on Maui, including from areas identified in the viewshed analysis as areas where the proposed ATST Project could be visible. These photographs were taken during various times of the year and times of day (to account for changes in atmospheric transparency and lighting).

For each view, computer modeling and rendering techniques were used to produce the simulated images. Existing topographic and site data provided the basis for developing an initial digital model. NSO provided detailed site plans and architectural plans for the proposed ATST Project, which were digitized, using MS Digital Image Pro, into sections of the proposed facilities. These were used to create three-dimensional (3D) digital models of the proposed ATST Project. These models were then combined with the digital site model to produce a complete computer model of the proposed ATST Project as seen within the views from certain viewpoints. Computer "wire frame" perspective plots were overlaid on the photographs of the views from the simulation viewpoints to verify scale and viewpoint location. Color and reflectivity matched digital visual simulation images were produced as a next step based on computer renderings of the 3D model combined with high-resolution digital versions of base photographs. The final "hardcopy" visual simulation images that appear in this document were produced from the digital image files using a color printer. For photographs taken at distant locations outside HALE, inserts have been included that show how the proposed ATST Project would appear if the viewer were to use optical enhancement, i.e., binoculars, telescope, telephoto camera lens, etc.

Comparison of the "before" photographs with the simulations of the proposed ATST Project as it would appear after construction provided the basis for determining impacts on views and visual quality. This comparison was informed by the evaluative process set out by the Federal Highway Administration (FHWA) in Visual Impact Assessment for Highway Projects.¹ The FHWA approach to the assessment of visual impacts considers the change to visual resources resulting from a proposed project and viewer response to the change. Existing visual resources are discussed in terms of the proposed project site's visual character and the quality of views, and changes to visual resources are assessed by the degree to which the existing visual character or visual quality would be altered. Viewer response to the proposed changes takes into account viewer exposure to the proposed project and viewer sensitivity. Though essentially a qualitative analysis, this approach does allow for some quantitative assessment in that the amount of space in existing visual character and visual quality.

Once the changes were identified between existing and proposed views, the intensity of the impact to views was assessed using the thresholds described in the table below. These thresholds were used in the evaluation of views from subareas within HALE and from areas throughout Maui. They are also used in this discussion to summarize the overall impacts to visual resources that would result from the proposed ATST Project at the Preferred Mees site (discussed in Section 4.5.2 below) and the alternative Reber Circle site (Section 4.5.3).

¹ US Department of Transportation Federal Highway Administration (FHWA). 1988. Visual Impact Assessment for Highway Projects. Publication No. FHWA-HI-88-054.

Impact Intensity	Intensity Description		
Negligible	The alternative would either not impact the visual quality of the landscape, or changes would be so slight that there would be no measurable or perceptible consequence to the observer.		
Minor The alternative would result in a detectable change to the visual quality of the land this change would be localized, small, and of little consequence to the observer.			
Moderate	The alternative would impact the visual quality of the landscape; this impact would be readily detectable, localized, with consequences at the regional level. Mitigation measures would be necessary to offset adverse impacts and would likely be successful.		
Major	The alternative would result in a substantial change to the visual quality of the landscape with substantial consequences to the visitor use and experience in the region. Extensive mitigation measures would be needed to offset any adverse impacts and their success would not be guaranteed.		
Duration: Short-term – occurs only during the ATST Project construction period.			
Long-term – continues after the ATST Project construction period.			

The evaluation in the following sections updates previous analysis in the SDEIS, in response to comments on that document. Previously analyzed viewpoints and visual simulations have been retained for use in this analysis; however, in response to comments on the previous draft, the methodology has been revised to base the quantitative analysis of impacts on the degree to which the space occupied by the proposed ATST Project would affect the visual character and/or visual quality of the existing view.

4.5.2 Evaluation of Potential Impacts at the Preferred Mees Site

Potential impacts are discussed by geographic location, and the evaluation is organized into six sub-areas. The first five sub-areas are located within HALE. The sixth encompasses areas throughout Maui, outside of HALE. Specifically, the six subareas are as follows:

- 1. Pu'u Ula'ula (Red Hill) Overlook
- 2. The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, Including Magnetic Peak
- 3. The Upper Road Corridor, Including the Haleakalā Visitor Center
- 4. The Lower Park Road Corridor, Including Hosmer Grove
- 5. The Crater
- 6. Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui Locations

Viewer sensitivity is assumed to be relatively high within the HALE, based on the fact that viewers in the area are predominantly visitors to the national park with an expectation of high visual quality in the area. An estimated 1.7 million people visit HALE each year (HALE, 2006). Viewer exposure is similarly assumed to be relatively high, given the proximity of HALE to the proposed ATST Project site; however, the mountainous terrain of the area allows for intermittent views from most locations within the HALE near the proposed ATST Project site. Views from populated areas of Maui are more sustained, though from much longer distances than those within HALE. Viewer sensitivity is lower than that for viewers within HALE; while it is likely that some viewers would have a direct line of sight from their homes toward the proposed ATST Project site (residents are assumed to have high visual sensitivity), it is

equally likely that some people with views toward the proposed ATST Project site would be motorists driving along local roadways. Motorists are generally assumed to have low levels of visual concern.

DIRECT AND INDIRECT IMPACTS

Impacts are discussed separately for the construction and operations phases of the proposed ATST Project.

Construction-Related Visual Impacts at the Mees Site

A 250-foot lattice crane and 3 to 5 much smaller cranes (under 100 feet) would be employed to install telescope and building components (see Section 2.4.3 – Construction Activities). It is anticipated that cranes would be needed at various times over a period of approximately four years during construction.

<u>Pu'u Ula'ula Overlook.</u> Construction would result in a moderate, adverse visual impact to observers at the Pu'u Ula'ula Overlook, as a result of the use of 3 to 5 cranes to lift building and telescope components and as a result of the evolving building structures during construction. Figure 4-4a shows the existing view toward the Project site from the Pu'u 'Ula'ula Overlook (Viewpoint 1). Figure 4-6 shows a simulated view of the site during construction from the same location. The Pu'u Ula'ula Overlook is approximately 0.3 miles away from the Project site.

These types of obstructions would be clearly visible from the Pu'u Ula'ula Overlook in HALE during periods when they are raised into operating position. The 250-foot crane would be considerably taller than any other structure at the summit and would be readily visible when extended during daytime working hours. Since the cranes would be 5 to 10 feet in width and of lattice construction, they would, when raised, obstruct a small portion of the horizontal landscape, compared with the existing view from this location. The northeastern rim of the cinder cone that constitutes Pu'u Kolekole would obscure portions of the cranes from some parts of the overlook. However, the appearance of a large crane within the natural viewshed would be readily detectable in the view, and the use of these cranes during construction would result in a moderate, adverse, but short-term impact to visual resources at the Pu'u Ula'ula Overlook.

Other, shorter cranes and smaller construction equipment would be visible to lesser degrees during the construction phase, appearing closer in scale to existing structure within HO. They would also be partially obscured from the Pu'u Ula'ula Overlook by topographic shielding from the northeastern rim of the cinder cone of Pu'u Kolekole. Therefore, the presence of smaller construction equipment, including small cranes would constitute a minor, adverse, and short-term impact.

As construction of the proposed ATST Project progresses, the structure would become visible from the Pu'u Ula'ula Overlook when the structure reached a height a little over 30-feet, which would be during construction of the lower enclosure. From then until the rotating upper enclosure is constructed, the proposed ATST Project would be clearly visible and increasingly co-dominant with other existing structures. Therefore, the impact to visual resources is considered to be moderate, adverse, and long-term.

<u>The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, including Magnetic Peak</u>. Within the part of the ROI for visual resources that includes the areas of HALE adjacent to HO but outside of the Pu'u Ula'ula Overlook (within approximately 0.5 miles of the Project site), the degree to which the proposed ATST Project construction equipment at the Mees site would be visible would vary. Views toward the project site are intermittent in this area, as intervening natural topographic features such as cinder cones and lava flows rapidly alter the line-of-sight between objects over very short distances. A 250-foot crane would not be visible from the HALE Visitor Center during either day or night, due to these intervening landmasses such as Pa Ka'oao (White Hill).

A 250-foot crane would be visible on cloudless days from the extreme western edge of the parking area of the Haleakalā Visitor Center. It would also be visible from the summits of Pa Ka'oao and Magnetic Peak. From those locations a 250-foot lattice crane would be readily detectable in views. Its narrow width and lattice structure would not obscure a substantial portion of the horizontal viewshed, but the crane's height would make it the tallest man-made structure in the summit area. As such, the overall visual impact would be moderate, adverse, and short-term.

During construction at the Preferred Mees site, the proposed ATST Project would not be visible from anywhere in this portion of the ROI until structure height reached about 30 feet. It would then be clearly visible from the summits of Pa Ka'oao and Magnetic Peak, where the impact would be moderate, adverse, and long-term. Elsewhere in this portion of the ROI adjacent to HO but outside of the Pu'u Ula'ula Overlook construction would not be visible until structure height reached about 78 feet at which time the lower enclosure and support structure would be clearly visible from the extreme western end of the Haleakalā Visitor Center parking area and a short portion of the summit access road between that parking area and Pa Ka'oao. The impact to visual resources in this portion of the ROI from the construction of the lower and upper enclosure would also be moderate, adverse, and long-term.

The Upper Park Road Corridor, Including the Haleakalā Visitor Center. Along the approximately two miles of the Park road corridor from the Kalahaku Overlook to the summit terminus of the road, the 250foot crane would be visible on clear days where the road direction and topographic shielding permit HO to be seen, as exemplified by the visibility of AEOS at HO (see Vol. II, Appendix R-New Viewshed Study, Table R-3, waypoints 142, 143, 148-152 and Figure R-12). From Kalahaku Overlook to approximately 0.6 miles from HO (at the junction of the Park road and Haleakalā Visitor Center parking area), the crane would be visible but not necessarily identifiable within a cluster of other structures. Therefore, the visual impact on the observer would be small, resulting in a minor, adverse, and short-term impact. Other cranes and equipment would be visible where there is direct line-of-sight to HO along this section of road, as above. From more than 0.6 miles, these objects would be difficult to identify or separate from one another, or from current structures within HO, but would extend further into the skyline than do the existing structures. The overall impact would be minor, adverse, and short-term. From the short distance closer than 0.6 miles to HO in which the proposed ATST Project would be seen along the summit access road (between the Haleakalā Visitor Center and Pa Ka'oao, where there is direct line-ofsight to HO the 250-foot crane would be taller than other structures on the summit, be readily visible and identifiable, but would not occupy an amount of space that would allow it to dominate the vista. It would therefore result in a moderate, adverse, and short-term impact to visual resources.

The construction of the proposed ATST Project at the Mees site would not be visible to observers on the upper two miles of the Park road corridor until the lower enclosure structure is completed, at about 78 feet above ground level. Once the lower enclosure of the proposed ATST Project is constructed, observers along the road would be able to see the structure along the Park road corridor from locations between the Kalahaku Overlook to the Haleakalā Visitor Center parking area. Between a distance of 2 miles and approximately 0.6 miles from HO, the proposed ATST Project would be partially obscured in some locations by Magnetic Peak. Where visible, it would appear without the upper enclosure as a cylinder seen in profile, located outside of the area currently occupied by existing structures. Thus, from this vantage point, the portion of the landscape that would appear developed would extend horizontally beyond the currently developed area. While the increase in the amount of occupied space would not be substantial, a structure under construction would appear where no structure currently exists, although the appearance of the crane would be intermittent. As such, the visual impact would be moderate, adverse, and short-term.

<u>The Lower Park Road Corridor, Including Hosmer Grove.</u> The cranes, but not the other construction equipment, would be visible along approximately one mile of the Park road corridor from the HALE entry station to just beyond the Park Headquarters Visitor Center, including Hosmer Grove. From the entry station to just beyond the Park Headquarters Visitor Center, the cranes would appear as very thin, relatively short, linear objects against the ridgeline near the summit and would, from locations near Hosmer Grove (approximately 4.3 miles away from the Project site) be barely discernable alongside existing structures in the HO area. From these locations the visual presence of cranes would be just barely at the level of detection and, therefore, would result in a negligible, adverse, and short-term impact.

The evolving facility structure of the proposed ATST Project construction at the Mees site would not be visible from the lower portion of the Park road corridor until structure height reached about 100 feet, at which time the upper enclosure would become visible along the approximately one mile of Park road corridor from the entry station to just beyond the Park Headquarters Visitor Center, including Hosmer Grove. At that distance from the Mees site the structure would be visible but would be very similar in height and appearance to the other structures in HO, but would not increase the horizontal area occupied by buildings in the view. From this distance, the increase in space occupied along the skyline would be barely noticeable. The impact to visual resources would, therefore, be minor, adverse, and long-term.

<u>The Crater.</u> The viewshed modeling that was completed for the proposed ATST Project (Fig. 4-1) predicted that structures taller than 153 feet could be seen from the crater. Therefore the 250-foot crane, but not other shorter construction equipment, would be potentially visible from roads, trails, and campsites within the crater. Figure 4-13 shows the existing and simulated view during construction from Paliku Cabin within the Crater, approximately 7.5 miles away from the proposed ATST Project site (Viewpoint 6). From this distance, the crane would be invisible to the naked eye. With magnification, the upper portion of the crane would be visible. Magnetic Peak would obstruct views of the lower part of the crane. From other points along trails within the Crater, the crane would be barely perceptible alongside other barely perceptible facilities at the summit, including the Haleakalā Visitor Center and the Pu'u Ula'ula Overlook. The impacts from the construction equipment would, therefore, be considered minor, adverse, and short-term.

At no time during construction would the proposed ATST Project structure, itself, be visible within the crater. At the completion of construction, its tallest point would be 143-foot height above ground level, which is below the 153-foot threshold predicted by viewshed modeling to be visible from within the crater. In addition, at the Preferred Mees site, the proposed ATST Project would be shielded from view in the crater by Magnetic Peak and other topography in the line-of-sight to the crater trails and campsites. The impact to visual resources from within the crater would, therefore, be negligible, adverse, and long-term.

<u>Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui</u> <u>Locations.</u>

Construction activities would be barely visible in long-distance views from the population centers on Maui, which are located no closer than 5 miles from the Preferred Mees site. Where visible, cranes would be barely detectable as thin objects along the ridgeline. Therefore, from these distant locations, the impact would be minor, adverse, and short-term.

As construction of the proposed ATST Project progresses, the structure would become visible from portions of Maui. Due to terrain shielding at the Preferred Mees site, the current 30-foot tall Mees Observatory is not visible from any populated location on Maui. Viewshed modeling predicts that observers within central, windward, upcountry and south Maui locations areas of Maui would begin to see the proposed ATST Project by the time the approximately 78-foot tall non-rotating elements of the

building structure are completed. This part of the proposed ATST Project would include the lower enclosure and some fixed structure above the catwalk (see Vol. II, Appendix J (4). Until such time as the lower enclosure was constructed, the proposed ATST Project would not be visible to observers in populated areas within the ROI, and the impacts to visual resources from the proposed ATST Project structures while under construction would be negligible, adverse, and short-term.

Operations-Related Visual Impacts at the Mees Site

If completed at the Preferred Mees site, the proposed ATST Project would be visible from certain areas within HALE, from HO, and from portions of the Maui landmass. As concluded by the viewshed analysis (Fig. 4-1), however, the proposed ATST Project would not be visible from any HALE public trails or campsites within the crater or from approximately two-thirds of the Park road corridor. It also would not be visible from those portions of the Maui landmass shielded by terrain. The following sections discuss impacts to the visual resources of areas from which the proposed ATST Project would be visible.

Pu'u Ula'ula Overlook. Figure 4-4a shows the existing view toward the ATST Project site from the Pu'u Ula'ula Overlook (Viewpoint 1), and Figure 4-4b shows the same view with the ATST Project simulated. The Overlook is approximately 0.3 miles away from the Project site. From HALE, the current HO complex is plainly visible from the Pu'u Ula'ula Overlook, and the existing view is characterized by the presence of observatories and associated structures. Comparison of the existing and simulated views shows that the proposed ATST Project at the Mees site would be a noticeable and prominent addition to HO. The new structure would appear taller than existing HO structures (it would appear taller than the AEOS facility, which, at 117 feet, is currently the tallest structure at HO), but would be co-dominant in terms of scale and appearance. The new structure would slightly increase the amount of horizontal space in the view occupied by structures, but would not appear to substantially expand the footprint of the currently disturbed landscape. Further, because it would appear with the sky as backdrop, it would not obstruct views of any significant visual resources. Its appearance would be consistent with the visual character of the area. The Pu'u Ula'ula Overlook is the closest location from which HALE visitors could observe the proposed ATST Project if constructed at the Preferred Mees site, and the structure would appear closer and larger from this vantage point than from anywhere else in HALE. Because the proposed structure would appear to intensify an already developed portion of the landscape, rather than substantially expand the space occupied by man-made features, the visual impact from this viewpoint would be considered moderate, adverse, and long-term.

The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, Including Magnetic Peak. Visibility of the proposed ATST Project at the Preferred Mees site would vary within the part of the ROI that includes the areas of HALE adjacent to HO but outside of the Pu'u Ula'ula Overlook. Figure 4-8a shows the existing from a location along the along the access road to the summit from the Visitor Center, approximately 0.5 miles away from the proposed ATST Project site (Viewpoint 2). This view is characterized by the contrast between Magnetic Peak, which appears in the left side of the view and is the dominant visible feature, and the existing HO. Figure 4-8b shows the same view with the proposed ATST Project simulated. Comparison of the existing and simulated views shows that the proposed ATST Project would be a prominent new feature along the skyline in the view toward HO from Viewpoint 2. It would increase the amount of space occupied by the existing complex of structures, both horizontally and vertically. Though taller than the existing structures, it would not appear out of scale with the other facilities, nor would it appear dissimilar in terms of design. Though it would alter the skyline in this view from the road, such alteration would not be substantial and no significant visual resources would be obstructed by the new building. Magnetic Peak would remain the dominant feature in the view, appearing above and in front of the proposed ATST Project. Further, in views from locations further uphill, the land feature would completely obscure views of HO, including the proposed ATST Project. The impact to

visual resources from the proposed ATST Project in views from Viewpoint 2 would be moderate, adverse and long-term.

From other locations throughout the area, natural topographic features such as cinder cones and lava flows would allow for only intermittent views of the Project site. It would be visible from the summits of Pa Ka'oao and Magnetic Peak. From those locations the proposed ATST Project would be readily visible and be the tallest man-made structure. As such, the impact to visual resources in these views from elsewhere in the area would be moderate, adverse, and long-term.

The Upper Park Road Corridor, Including the Haleakalā Visitor Center.

Along the two miles of the Park road corridor that approach the summit, the proposed ATST Project would be intermittently visible depending on atmospheric conditions, intervening terrain, and location of the vehicle along the winding mountain road.

Figure 4-10a shows the view from the Park road corridor approximately 0.6 miles away from the Project location (Viewpoint 3) and Figure 4-10b shows the view with the ATST Project simulated. This view is similar to the view from Viewpoint 2, but further away. Magnetic Peak remains the dominant physical feature in the landscape, and is one of a number of peaks that characterize the view in that they trend toward lower elevations from left to right. The existing HO is prominent along the ridgeline to the right and lower than Magnetic Peak, and the Visitor Center is visible to the left of Magnetic Peak. Comparison of the existing and simulated views shows that the proposed ATST Project would be prominently visible from this viewpoint, appearing in the left portion of the area where the HO is currently located. The proposed ATST Project would appear to extend the actual footprint of the HO only slightly in this view, but the scale of the facility results in the appearance of HO occupying substantially more space in the overall view. The proposed ATST Project would, however, appear shorter than Magnetic Peak and would be consistent with the stepping-down, landscape form that characterizes this view. Though it would result in an additional object along the skyline, no significant visual resources would be blocked in this view as a result of the construction of the proposed ATST Project. As such, the impact to visual resources in views from Viewpoint 3 would be moderate, adverse and long-term.

Figure 4-11a shows the view from the Park road corridor approximately 2.3 miles away from the Preferred Mees site (Viewpoint 4) and Figure 4-11b shows the view with the proposed ATST Project simulated. The existing HO is a distant feature in this view, which is characterized by the visibly winding road and the relatively steep, sloping terrain. The addition of the proposed ATST Project would be visible and while it would not substantially affect the form of the skyline, it would appear to increase the horizontal space occupied by the HO in the view such that it would appear atop two separate ridgelines. This alteration, however, would be visible in the background distance of the view. The new structure would not be a dominant feature within the view, and it would not substantially alter the existing visual character. The impact to visual resources in views from Viewpoint 4 would be moderate, adverse and long-term.

The proposed ATST Project at the Mees site would not be visible from the Haleakalā Visitor Center during either day or night, due to the intervening landmass of White Hill (Pa Ka'oao) though the viewshed analysis indicates that it would be visible on cloudless days from the western edge of the Visitor Center parking area for the Haleakalā Visitor Center. From this vantage point, where views would be intermittent as vehicles would drive through the parking area or pedestrians traveled between vehicles and the Visitor Center, the visual impact is likely to be moderate, adverse, and long-term.

<u>The Lower Park Road Corridor, Including Hosmer Grove.</u> The viewshed analysis (Fig. 4-1) indicates that the proposed ATST Project at the Preferred Mees site would be visible along approximately one-third

of the Park road corridor from the entry station to the Visitor Center Overlook at the crater. Figure 4-12a shows the view from the Park road at the entrance to Hosmer Grove (Viewpoint 5), approximately 4.2 miles away from the HO and the proposed ATST Project at the Mees site. Figure 4-12b shows the view with the ATST Project simulated. Comparison of the existing and simulated views indicates that there would be a barely detectable difference between the appearance of the HO without the proposed ATST Project and with the ATST Project. The structures associated with the HO are visible atop the ridgeline in this view, but are not a dominant feature in the landscape. Views in the area are characterized by the grassland, vegetation and generally sloping hills visible in and beyond the foreground. The Park Headquarters Visitor Center is visible in the right portion of the view. Construction of the ATST Project would not result in any substantial change to the existing visual character in the view. It would increase the amount of horizontal space occupied by HO in the view, but it would be difficult to discern the increase in such space from this distance. The visual impact from Viewpoint 5 is therefore minor, adverse, and long-term.

The Crater. The viewshed analysis (Fig. 4-1) indicates that structures taller than 153 feet at the Mees site location would be visible on trails and in campsites within the HALE crater area. At a height of 143 feet, the proposed ATST Project would not be visible on any visitor trail or within any campsite and the impact to visual resources within the crater would therefore be negligible, adverse, and long-term.

Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui Locations. The viewshed analysis (Fig. 4-1) indicates that the proposed ATST Project would be visible from large portions of the Maui landmass that are populated, including from central, windward, Upcountry, and south Maui. From some of these locations, depending on atmospheric conditions, the proposed ATST Project and other HO facilities would be identifiable, either as a cluster of buildings, or as structures that are distinguishable from one another. For example, in views from the Upcountry area (see Figs. 4-15 through 4-18, showing existing and simulated views from Viewpoints 7 – 10), which centered around the towns of Pukalani and Makawao approximately 10 miles away from the ATST Project site, the HO is barely discernable, if visible at all, along the ridgeline. Construction of the ATST Project would not be noticeable to viewers and would have no impact on the visual quality of the existing views.

In views from the coastal area south of the HALE (see Figs. 4-19 and 4-20, showing existing and simulated views from Viewpoints 11 and 12), near Kaupo, which is approximately 10 miles away from the proposed ATST Project site, the existing HO structures are barely discernable (Fig. 4-19a) or not visible at all (Fig. 4-20a). The proposed ATST Project at the Mees site would similarly be obscured from view in certain areas, as in the coastal view from Viewpoint 12 (Fig. 4-20b). From the inland view at Viewpoint 11 (Fig. 4-19b), however, the ATST Project would appear as a distant but noticeable structure along the ridgeline. It would not be a dominant feature in the landscape and would not substantially alter the visual quality of the view; however, it would result in a man-made feature being discernable along a small portion of the skyline.

In views from south Maui (see Figs. 4-21, 4-23, and 4-24, showing existing and simulated views from Viewpoints 13 - 15), near Kihei, which is approximately 13 miles away from the ATST Project site, the HO is visible in long distance views on clear days. Existing structures are discernable to varying degrees (noticeable in the view from Viewpoint 13, barely detectable in the view from Viewpoint 15). Construction of the ATST Project would not result in any substantial change to the existing visual quality of these long distance views, but the new structure would appear in some views as a new feature among already discernable structures along the ridge top.

In views from the central valley area of Maui (see Figs. 4-25 and 4-26, showing existing and simulated views from Viewpoints 16 and 17), near Maalaea and Kahului, approximately 18 miles away from the

proposed ATST Project site, existing HO structures are barely detectable, and visibility would depend heavily on atmospheric conditions. Construction of the proposed ATST Project would be similarly barely detectable based on atmospheric conditions (see Fig. 4-25b), or not detectable at all (Fig. 4-26b). The visual quality of these long-distance views would not be affected by the addition of the ATST Project.

In general, for most Maui population centers from which the proposed ATST Project would be detectable, changes to the visual quality of the landscape would be so slight that they would not be of any measurable or perceptible consequence. From some viewpoints, however, the ATST Project would be noticeable as a new feature along a distant ridgeline. It would appear as a slight intensification of an already visible cluster of structures (Viewpoints 13 and 15 in south Maui), or as a new feature in views where no existing structures are visible or clearly discernable (Viewpoint 11, in the south coastal area, Viewpoint 14 in South Maui, and Viewpoint 16 in the Central Valley). The visual impact of the proposed ATST Project would be negligible from many of these viewpoints, but because of the relatively slight visibility from some areas, the overall impact to visual resources within the populated areas of Maui would be minor, adverse, and long-term.

4.5.3 Evaluation of Potential Impacts at the Reber Circle Site

Potential impacts are discussed by geographic location, and the evaluation is organized into the same six subareas as discussed for the Mees site (Section 4.5.2).

DIRECT AND INDIRECT IMPACTS

Impacts are discussed separately for the construction and operations phases of the proposed ATST Project.

Construction-Related Impacts at the Reber Circle Site

A 250-foot lattice crane and 3 to 5 much smaller cranes (under 100 feet) would be employed to install telescope and building components (Section 2.4.3-Construction Activities). It is anticipated that cranes would be needed at various times during construction over a period of approximately four years.

<u>Pu'u Ula'ula Overlook</u>. Construction activities would be clearly visible from the Pu'u Ula'ula Overlook in HALE during periods when cranes are raised into operating position. Figure 4-5a shows the existing view toward the Project site from the Pu'u 'Ula'ula Overlook (Viewpoint 1). Figure 4-7 shows a simulated view of the site during construction from the same location. The Pu'u Ula'ula Overlook is approximately 0.3 miles away from the Project site.

The 250-foot crane would be considerably taller than any other structure at the summit and would be readily visible when extended during daytime working hours. Since the cranes would be 5 to 10 feet in width and of lattice construction, they would, when raised, obstruct a small portion of the horizontal landscape, compared with the existing view from this location. The northeastern rim of the cinder cone that constitutes Pu'u Kolekole would obscure portions of the cranes from some parts of the overlook. The appearance of a large crane within the natural viewshed would, however, be readily detectable in the view, and the use of these cranes during construction would result in a moderate, adverse, but short-term impact to visual resources at the Pu'u Ula'ula Overlook.

The 250-foot crane would be considerably taller than any other structure at the summit and would be readily visible when extended during daytime working hours. Since the cranes would be 5 to 10 feet in width and of lattice construction, they would, when raised, appear entirely within the horizontal space occupied by structures already present in the existing view (Fig. 4-5). Unlike the Preferred Mees site,

however, there would not be any terrain shielding of cranes behind the northeastern rim of the cinder cone that constitutes Pu'u Kolekole, and the cranes would be plainly visible during construction activities. Overall, the use of cranes during construction would result in a moderate, adverse, but short term impact on visual resources at the Pu'u Ula'ula Overlook. Other, shorter cranes and smaller construction equipment would be visible during the construction phase, appearing among other currently visible structures. Therefore, the smaller construction equipment, including small cranes, would constitute a minor, adverse, and short-term impact to visual resources.

As the proposed ATST Project would be constructed, it would be visible from the Pu'u Ula'ula Overlook. From the time excavation began, prior to construction of the lower enclosure, the proposed ATST Project would be prominently visible and would be increasingly co-dominant with existing facilities over the duration of the construction period. The presence of this structure in unobstructed views would result in a moderate, adverse, and long-term impact on visual resources.

The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, Including Magnetic Peak. Within the part of the ROI for visual resources that includes the areas of HALE adjacent to HO but outside of the Pu'u Ula'ula Overlook (within approximately 0.5 miles of the proposed Project site), the degree to which the proposed ATST Project construction equipment at the Reber Circle site would be visible would vary. Views toward the proposed ATST project site are intermittent in this area, as intervening natural topographic features such as cinder cones and lava flows rapidly alter the line-of-sight between objects over very short distances. A 250-foot crane would not be visible from the Park Headquarters Visitor Center during either day or night, due to these intervening landmasses such as Pa Ka'oao (White Hill).

A 250-foot crane would be visible on cloudless days from the near the middle of the parking area of the Haleakalā Visitor Center. It would also be visible from the summits of Pa Ka'oao and Magnetic Peak. From those locations, a 250-foot lattice crane would be readily detectable in views. Its narrow width and lattice structure would not obscure a substantial portion of the horizontal viewshed, but the crane's height would make it the tallest man-made structure in the summit area. As such, the overall visual impact would be moderate, adverse, and short-term.

Because most of these portions of HALE are lower than HO, the topography would provide some shielding; during construction at the Reber Circle site, the proposed ATST Project would not be visible from anywhere in this portion of the ROI until structure height reaches about 30 feet. From excavation onward, it would then be clearly visible within the cluster of HO structures from the summits of Pa Ka'oao and Magnetic Peak. From these locations, as at the Pu'u Ula'ula Overlook, the presence of this structure in unobstructed views would result in a moderate, adverse, and long-term impact on visual resources.

Elsewhere in this portion of the ROI, adjacent to HO but outside of the Pu'u Ula'ula Overlook, construction would not be visible until structure height reached about 30 feet at which time the lower enclosure and support structure would be clearly visible from about the middle of the Haleakalā Visitor Center parking area and along a short portion of the summit access road between that parking area and Pa Ka'oao. The subsequent addition of the upper rotating enclosure would match the appearance of other astronomical facilities at HO in terms of scale and color. But the proposed ATST Project would be prominent in views without any terrain or other facility shielding the structure. Overall, the impact on visual resources in this portion of the ROI from the construction of the lower and upper enclosure would be moderate, adverse, and long-term.

<u>The Upper Park Road Corridor, Including the Haleakalā Visitor Center.</u> Along the approximately two miles of the Park road corridor from the Kalahaku Overlook to the summit terminus of the road, the 250-foot crane would be visible on clear days where the road direction and topographic shielding permit HO

(see Vol. II, appendix R-New Viewshed Study, Table R-3, waypoints 142, 143, 148-152 and Figure R-12). From Kalahaku Overlook to approximately 0.6 miles from HO (at the junction of the Park road and Haleakalā Visitor Center parking area), the crane at Reber Circle would be visible, but not but not necessarily identifiable within a cluster of other structures. Visitors to HALE would not have a distinct view of the crane. Overall, the impacts likely to be noticed by viewers would result in minor, adverse, and short-term impacts to visual resources. Other cranes and equipment would be visible where there is direct line-of-sight to HO along this section of road. From more than 0.6 miles, these objects would be difficult to identify or separate from one another or from current structures within HO), but would extend slightly further into the skyline than the existing structures. The overall impact would be minor, adverse, and short-term.

From the short distance closer than 0.6 miles to HO in which the proposed ATST Project would be seen along the summit access road (between the Haleakalā Visitor Center and Pa Ka'oao), there is direct lineof sight to HO. The 250-foot crane would be taller than other structures on the summit and would be readily visible and identifiable, but would not occupy an amount of space that would allow it to dominate the vista. From this vantage point, however, it would still be a large structure in relation to the natural topography and landforms and existing structures. The overall impact would result in a moderate, adverse, and short-term impact to visual resources.

The construction of the proposed ATST Project at the Reber Circle site would become visible to observers on the upper two miles of the Park road corridor when the lower enclosure structure was under construction, at about 30 feet above ground level. Observers along the road would be able to see the structure along the Park road corridor from locations between the Kalahaku Overlook to the Haleakalā Visitor Center parking area. Between a distance of 2 miles and approximately 0.6 miles from HO, the proposed ATST Project would be intermittently visible, and without the upper enclosure, it would appear as a cylinder seen in profile. The small viewing angle it would occupy would result in a minor, adverse, and long-term impact to visual resources.

The Lower Park Road Corridor, Including Hosmer Grove. The cranes, but not the other construction equipment, would be visible from Reber Circle along approximately one mile of the Park road corridor from HALE's entry station to just beyond the Park Headquarters Visitor Center, including Hosmer Grove. From the entry station to just beyond the Park Headquarters Visitor Center, the cranes would appear as very thin, relatively short, linear objects against the ridgeline near the summit and would, from locations near Hosmer Grove (approximately 4.3 miles away from the Project site) be barely discernable alongside existing structures in the area. From these locations the visual presence of cranes would be just barely at the level of detection and would therefore result in a negligible, adverse and short-term impact.

The evolving facility structure of the proposed ATST Project construction at the Reber Circle site would not be visible from the lower portion of the Park road corridor until structure height reached about the height of the upper enclosure, which would become visible along the approximately one mile of Park road corridor from the entry station to just beyond the Park Headquarters Visitor Center, including Hosmer Grove. At that distance from the Reber Circle site, the structure would be visible, but difficult to clearly distinguish from the other portions of the HO complex. Any increase in horizontal space occupied by constructed facilities would be barely detectable, if visible at all. The impact to visual resources would therefore be minor, adverse, and long term.

<u>The Crater.</u> The viewshed modeling that was completed for the proposed Reber Circle site (Fig. 4-2) predicted that structures taller than 153 feet could be seen from the crater. Therefore, the 250-foot crane, but not other shorter construction equipment, would be potentially visible from roads, trails and campsites within the crater. Figure 4-14 shows the existing and simulated view during construction of the Reber Circle site from Paliku Cabin within the Crater, approximately 7.5 miles away from the Project site

(Viewpoint 6). From this distance, the crane would be invisible to the naked eye. With magnification, the upper portion of the crane would be visible. Magnetic Peak would obstruct views of the lower part of the crane. From other points within the Crater, the crane would be barely perceptible alongside other barely perceptible facilities at the summit, including the Haleakalā Visitor Center and the Pu'u Ula'ula Overlook. The overall impact from the construction equipment would, therefore, be considered minor, adverse, and short-term.

The proposed ATST Project structure at Reber Circle would become visible along some trail points within the crater when completed. The visual analysis (Fig. 4-2) indicates that, because the ground level is higher at the Reber Circle site, the addition of the upper enclosure would bring the structure to its full 143-foot height above ground level and at 10, 133 feet above sea level, the threshold of visibility from some areas within the crater would be slightly exceeded. At some locations on crater trails, the very top of the proposed ATST Project would potentially be visible. At the Reber Circle site, the proposed ATST Project would be slightly exceeded and other topography in the line-of-sight to the crater trails and campsites. Where it would be visible, it would be distinguishable as a man-made object in the landscape. In views from backcountry areas within the crater, the structure would not be likely to be identifiable without the scanning of the crater rim with magnified lenses. Unlike the Haleakalā Visitor Center with its large, reflective glass panels, the proposed ATST Project would be less reflective. The impact to visual resources from within the crater would, therefore, be minor, adverse, and long-term.

Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui Locations. Construction activities would be barely visible in long distance views from the population centers on Maui, which are located no closer than 5 miles from the Reber Circle site. Where visible, cranes would be barely detectable as thin objects along the ridgeline, and difficult to discern from other structures at HO, where visible. Therefore, from these distant locations, the impact would be minor, adverse, and short-term.

As the proposed ATST Project would be constructed, the structure would become visible in long-distance views from portions of Maui. Due to less terrain shielding at the Reber Circle site than at the Mees site, viewshed modeling predicts that observers within the central, windward, Upcountry and west Maui areas would begin to see the proposed ATST Project earlier than when the approximately 78-foot tall, non-rotating elements of the building structure are completed. Until such time as the lower enclosure is constructed, the proposed ATST Project would not be visible to observers in populated areas within the ROI, and the impact to visual resources from the proposed ATST Project structures would be negligible, adverse, and short-term.

Operations-Related Impacts at the Reber Circle Site

If constructed at the Reber Circle site, the fully-built proposed ATST Project would be visible from portions of the Maui landmass. It is also likely to be visible from some HALE public trails or campsites within the crater. It would not be visible from approximately two thirds of the Park road corridor nor from those portions of the Maui landmass shielded by terrain (Fig. 4-3). The following sections discuss impacts on the visual resources of areas from which the proposed ATST Project would be observed.

<u>Pu'u Ula'ula Overlook.</u> Figure 4-5a shows the existing view toward the ATST Project site from the Pu'u Ula'ula Overlook, and Figure 4-5b shows the same view with the proposed ATST Project simulated at the Reber Circle site. The existing view is characterized by the presence of observatories and associated structures. Comparison of the existing and simulated views shows that, like the Mees site, the proposed ATST Project at the Reber Circle site would be a noticeable and prominent addition to HO. The new structure would appear taller than existing HO structures, and would be co-dominant in terms of scale and appearance. Unlike the Preferred Mees site, the Reber Circle site, in views from the Overlook, would

appear entirely within the existing footprint of HO. The proposed structure would extend into the skyline, but it would not expand the amount of horizontal space that is currently occupied by HO structures, and it would not block views of any significant visual resources. Its appearance would be consistent with the visual character of the area. Similar to the Preferred Mees site, the new structure would appear closer and larger from this vantage point than from anywhere else in HALE. Because, however, the proposed structure would appear to intensify an already developed portion of the landscape rather than substantially expand the space occupied by man-made features, the visual impact from this viewpoint would be considered moderate, adverse, and long-term.

The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, Including Magnetic Peak. Visibility of the proposed ATST Project at the Mees site would vary within the part of the ROI that includes the areas of HALE adjacent to HO but outside of the Pu'u Ula'ula Overlook. Figure 4-9a shows the existing view from a location along the along the access road to the summit from the Visitor Center, approximately 0.5 miles away from the Project site (Viewpoint 2). This view is characterized by the contrast between Magnetic Peak, which appears in the left side of the view and is the dominant visible feature, and the existing HO. Figure 4-9b shows the same view with the proposed ATST Project simulated at the Reber Circle site. Comparison of the existing and simulated views shows that the proposed ATST Project would be a prominent new feature along the skyline in the view toward the HO from Viewpoint 2. It would increase the amount of space occupied by the existing complex of structures, both horizontally and vertically. Though taller than the existing structures, it would not appear out of scale with those facilities, nor would it appear dissimilar in terms of design. Though it would alter the skyline in this view from the road, such alteration would not be substantial and no significant visual resources would be obstructed by the new building. Magnetic Peak would remain the dominant feature in the view, appearing higher the proposed ATST. Further, in views from locations further uphill, the land feature would obscure views of HO completely, including the proposed Project. The impact to visual resources from the Project in views from Viewpoint 2 would be moderate, adverse and long-term.

From other locations throughout the area, natural topographic features such as cinder cones and lava flows would allow for only intermittent views of the Project site. It would be visible from the summits of Pa Ka'oao and Magnetic Peak. From those locations the proposed ATST Project would be readily visible and be the tallest man-made structure. As such, the impact to visual resources in these views from elsewhere in the area would be moderate, adverse, and long-term.

<u>The Upper Park Road Corridor, Including the Haleakalā Visitor Center.</u> Along the two miles of the Park road corridor that approach the summit, the proposed ATST Project at the Reber Circle site would be intermittently visible depending on atmospheric conditions, intervening terrain, and location of the vehicle along the winding mountain road.

Figure 4-10a shows the view from the Park road corridor approximately 0.6 miles away from the Reber Circle site location (Viewpoint 3) and Figure 4-11a shows the view from the Park road corridor approximately 2.3 miles away from the Project location (Viewpoint 4). Views from these locations toward the proposed ATST Project constructed at the Reber Circle site would look similar to those with the proposed ATST Project constructed at the Mees site (see Figs. 4-10b and 4-11b), except that the new structure would appear further to the right in each view. In both views, the proposed ATST Project would appear prominently as a new feature in the landscape and would be visible along the skyline in unobstructed views from both viewpoints. It would not, however, appear to increase the total horizontal space occupied by HO as it would at the Mees site, and would appear slightly shorter than Magnetic Peak, retaining the stepping-down, landscape form that characterizes these views. Though it would result in an additional object along the skyline, no significant visual resources would be blocked in this view as a result of the Project being constructed. As such, the impact to visual resources from the proposed ATST

Project at the Reber Circle site, in views from Viewpoint 3 and Viewpoint 4, would be moderate, adverse and long-term.

The Lower Park Road Corridor, Including Hosmer Grove. The viewshed analysis (Fig. 4-2) indicates that the proposed ATST Project at the Reber Circle site would be visible along approximately one-third of the Park road corridor from the entry station to the Visitor Center Overlook at the crater. In views from the Park road at the entrance to Hosmer Grove (Viewpoint 5), approximately 4.2 miles away from the HO, the proposed ATST Project at the Reber Circle site would be visible but difficult to distinguish from existing structures at the HO from this distance. The proposed structure would be closer to the cluster of existing structures than the proposed ATST Project at the Mees site, and there would be no increase in horizontal space that would be occupied by the HO with the proposed ATST Project at the Reber Circle site would not substantially alter the visual character of the existing view. The appearance of structures associated with the HO visible atop the ridgeline would increase slightly, but the buildings would not become a dominant feature in the landscape. The visual impact from Viewpoint 5 is, therefore, minor, adverse, and long-term.

<u>The Crater</u>. The viewshed analysis (Fig. 4-2) indicates that portions of the proposed ATST Project structure at Reber Circle, likely the very top of the structure, would be potentially visible along some trail points within the crater. If developed at the Reber Circle site, the proposed ATST Project would be shielded, in part, by Magnetic Peak and other topography in the line-of-sight to the crater trails and campsites. Where it would be visible, it would be distinguishable as a man-made object, though likely not identifiable as an observatory. The impact on visual resources from within the crater would, therefore, be minor, adverse, and long-term.

Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui *Locations.* Visibility of the proposed ATST Project at the Reber Circle site would be generally the same in the long-distance views from the populated areas of Maui as was described for the Mees site. The Reber Circle location is, however, both higher and offers less terrain shielding than the Preferred Mees site. Therefore, visibility from populated areas would be slightly increased. The proposed ATST Project would be visible to varying degrees, not discernable in some locations, but appearing from others as a new feature along a distant ridgeline. Where visible, it would appear either as a structure where there are currently no structures visible or as a slight intensification of an already discernable developed area. Figure 4-22a shows the existing view from Viewpoint 13, in south Maui, and Figure 4-22b shows the view with the proposed ATST Project simulated. The new structure would appear slightly larger than the existing, visible structures, but this change would occur at such a distance from the viewer as to not substantially alter the quality of the view. In the view from Viewpoint 17, a new structure would be barely detectable alongside existing structures that are even less discernable along the ridgeline (see Fig. 4-27; the photograph for the simulation of the ATST Project at the Reber Circle site was taken from a slightly different location than the one for the simulation of the structure at the Mees site). In general, changes to the visual quality of the landscape resulting from the proposed ATST Project at the Reber Circle site would be of little measurable or perceptible consequence, and operation at this site would result in an impact to visual resources that would be minor, adverse, and long-term.

4.5.4 No-Action Alternative

There would be negligible, adverse, and long-term impacts to visual resources and view planes under the No-Action Alternative, as the proposed ATST Project would not be constructed.

4.5.5 Summary of Impacts on Visual Resources and View Planes

This section evaluated the impacts from the proposed ATST Project to views within the HALE and to views from populated areas around mainland Maui. Impacts and their intensities were determined based on the comparison of existing views from throughout HALE and Maui with images of views including simulations of the ATST Project. Views were selected from within areas identified in a computer-generated viewshed analysis as areas from which the ATST Project would theoretically be visible, given project dimensions and topography.

Impacts for each of the development alternatives are summarized in this section and listed in Table 4-4.

ATST Project	Impact	Mitigation	Final Impact
Mees Site Alternative	ConstructionModerate, adverse, and short-term;Minor, adverse, and short-term;Negligible, adverse and short-termOperationsModerate, adverse, and short-term;Minor, adverse, and short-term;Negligible, adverse and short-term;	No Mitigation	ConstructionModerate, adverse, and short-term;Minor, adverse, and short-term;Negligible, adverse and short-termOperationsModerate, adverse, and short-term;Minor, adverse, and short-term;Negligible, adverse and short-term;
Reber Circle Site Alternative	Negligible, adverse and short-term No		Construction Moderate, adverse, and short-term; Minor, adverse, and short-term; Negligible, adverse and short-term Operations Moderate, adverse, and short-term; Minor, adverse, and short-term
No Action Alternative	Negligible, adverse, and long-term	No Mitigation	Negligible, adverse, and long-term

Table 4-4. Summary of Impacts on Visual Resources and View Planes

Impacts from Development of the Mees Site

From within HALE, the prominence of the proposed new structure in views from within two miles of the ATST Project site (Viewpoints 1 - 4) would result in moderate, adverse and long-term impacts to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible to the point of co-dominance with other nearby structures. It would intensify the already developed appearance in its immediate surroundings, and would also appear to increase slightly the amount of horizontal space occupied by structures in views from within the Park. The new structure would not substantially alter the existing visual character visible in any view. In views from further away in the Park (Viewpoint 5), impacts to visual resources would be negligible, adverse, and long-term. The proposed ATST Project would be barely detectible, if visible at all from these locations.

From outside of the Park, in views from throughout Maui (Viewpoints 7 - 17), the proposed ATST Project would result in a minor, adverse and long-term impact to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible atop distant ridgelines from a number

of viewing locations and indistinguishable in views from other locations. Because of the distance of these views, regardless of whether the HO is visible at present or not, the proposed ATST Project would not substantially alter the visual quality of the views.

Impacts from Development at the Reber Circle Site

From within HALE, the prominence of the proposed new structure in views from within two miles of the ATST Project site (Viewpoints 1 - 4) would result in moderate, adverse and long-term impacts to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible to the point of co-dominance with other nearby structures. It would intensify the already developed appearance in its immediate surroundings, and would appear more prominent in some views that the Mees site alternative. It would also, however, appear completely within the existing HO development footprint, and would not appear to increase the horizontal space occupied by structures in views toward the site from points within the Park. The structure would not substantially alter the existing visual character visible in any view. In views from further away in the Park (Viewpoint 5), impacts to visual resources would be minor, adverse, and long-term. The proposed ATST Project would be visible, but not dominant, along ridgelines in these views. No mitigation would adequately reduce this impact.

From outside of the Park, in views from throughout Maui (Viewpoints 7 - 17), the proposed ATST Project would result in a minor, adverse and long-term impact to visual resources. No mitigation would adequately reduce this impact. The new structure would be visible atop distant ridgelines from a number of viewing locations and indistinguishable in views from other locations. Because of the distance of these views, regardless of whether the HO is visible at present or not, the proposed ATST Project would not substantially alter the visual quality of the views.

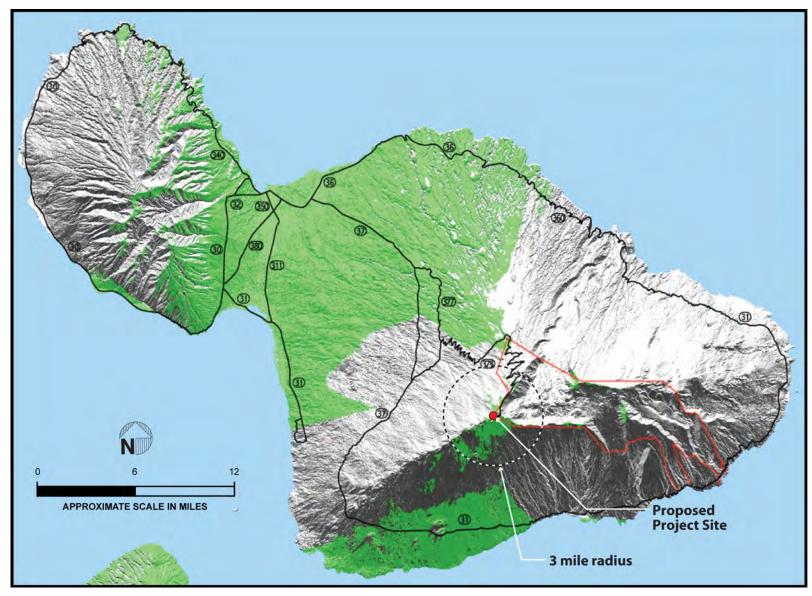


Figure 4-1. Mees Site Viewshed Analysis.

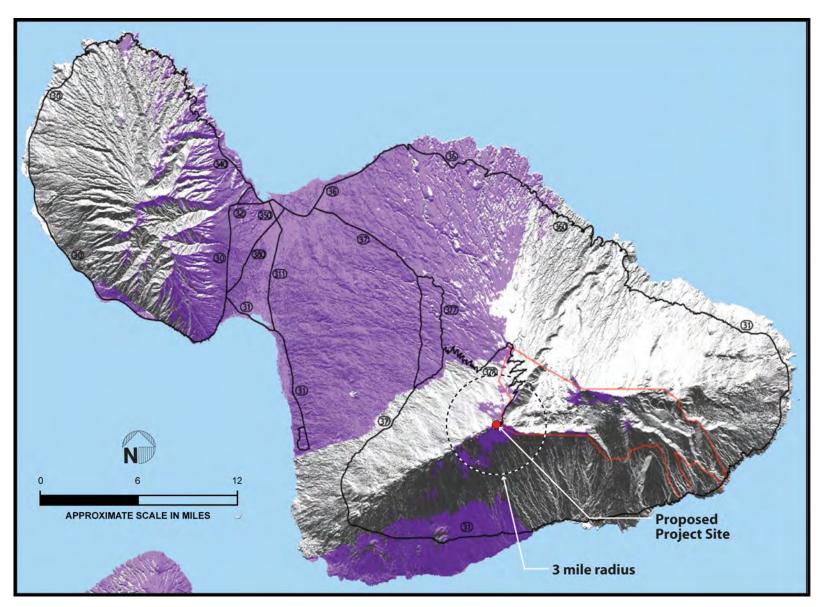


Figure 4-2. Reber Circle Site Viewshed Analysis.

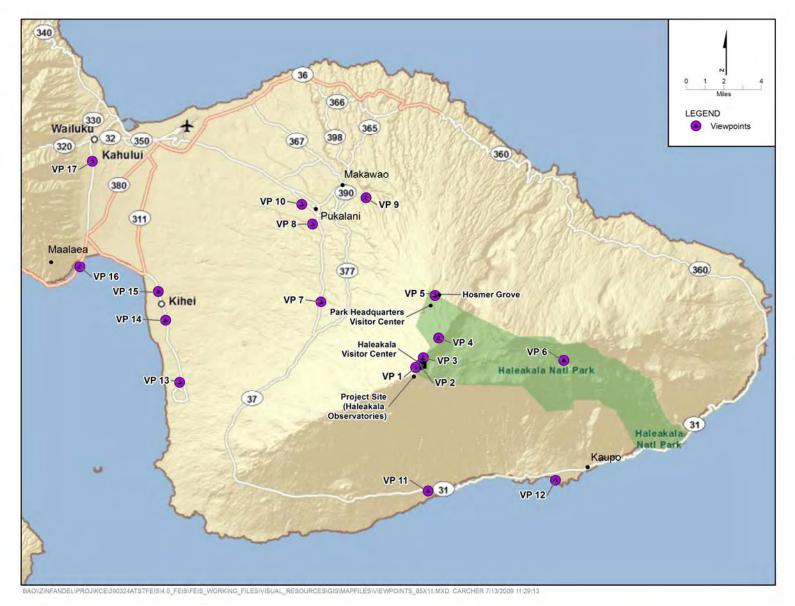


Figure 4-3. Viewpoint Locations.

Final Environmental Impact Statement — Advanced Technology Solar Telescope

This page intentionally left blank.

Figure 4-4a. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1).

Figure 4-4b. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Mees Site Rendering.

Figure 4-5a. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1).

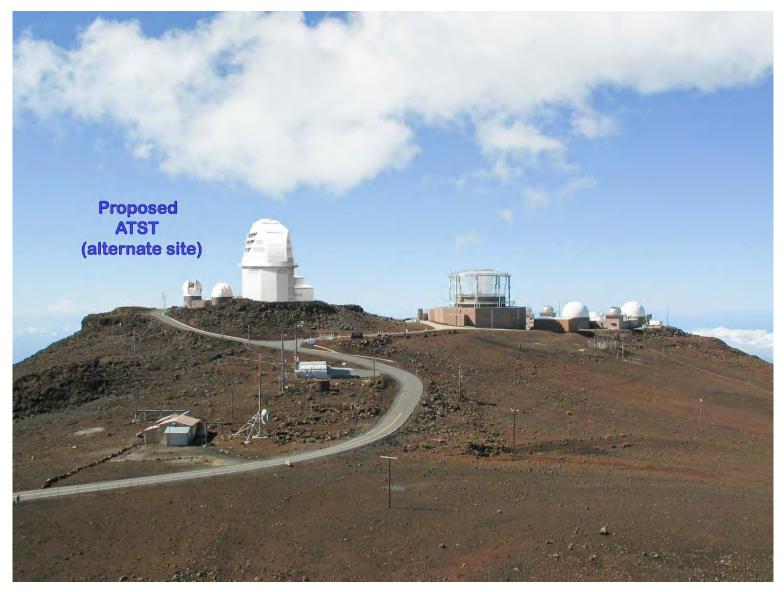


Figure 4-5b. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Reber Circle Site Rendering.

Figure 4-6. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Mees Site Pier Construction Rendering.

Figure 4-7. View from Pu'u Ula'ula (Red Hill) Overlook (Viewpoint 1) and Reber Circle Site Pier Construction Rendering.

Figure 4-8a. View from Park Road (Viewpoint 2).

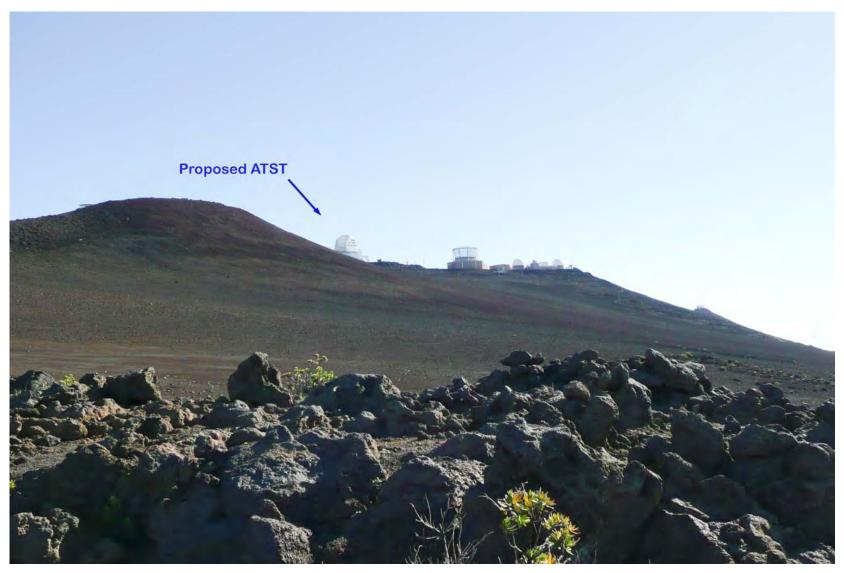


Figure 4-8b. View from Park Road (Viewpoint 2) and Mees Site Rendering

Figure 4-9a. View from Park Road (Viewpoint 2).



Figure 4-9b. View from Park Road (Viewpoint 2) and Reber Circle Site Rendering

Figure 4-10a. View from Park Road (Viewpoint 3).

Figure 4-10b. View from Park Road (Viewpoint 3) and Mees Site Rendering.

Figure 4-11a. View from Park Road (Viewpoint 4).

Figure 4-11b. View from Park Road (Viewpoint 4) and Mees Site Rendering

Figure 4-12a. View from Park Road at Entrance to Hosmer Grove (Viewpoint 5).

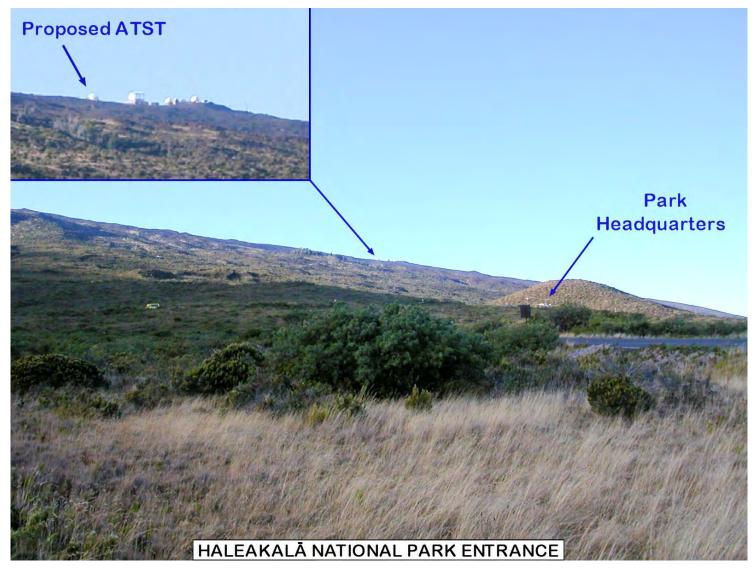


Figure 4-12b. View from Park Road at Entrance to Hosmer Grove (Viewpoint 5) and Mees Site Rendering.

Figure 4-13a. View from Paliku Cabin (Viewpoint 6).

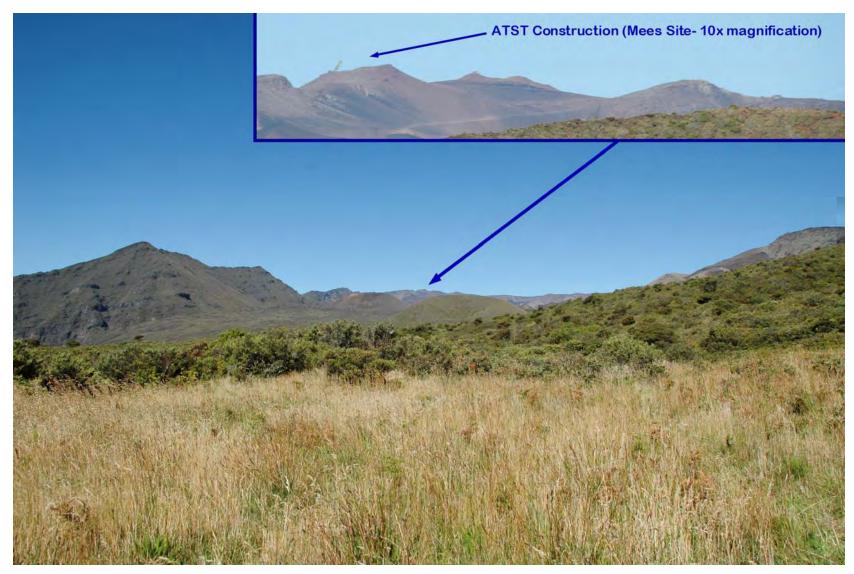


Figure 4-13b. View from Paliku Cabin (Viewpoint 6) and Mees Site Pier Construction Rendering

Figure 4-14a. View from Paliku Cabin (Viewpoint 6).

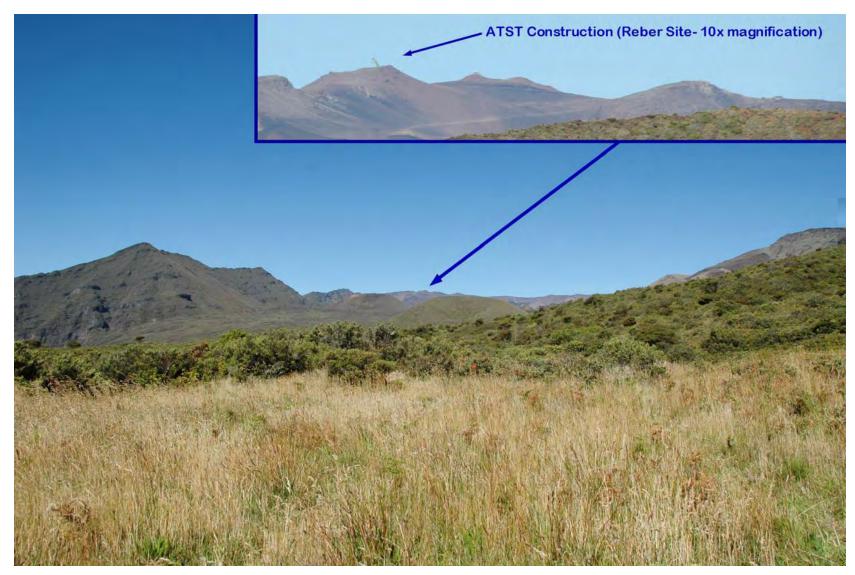


Figure 4-14b. View from Paliku Cabin (Viewpoint 6) and Reber Circle Site Pier Construction Rendering

Figure 4-15a. View from Kula Highway, below Holy Ghost Church (Viewpoint 7).

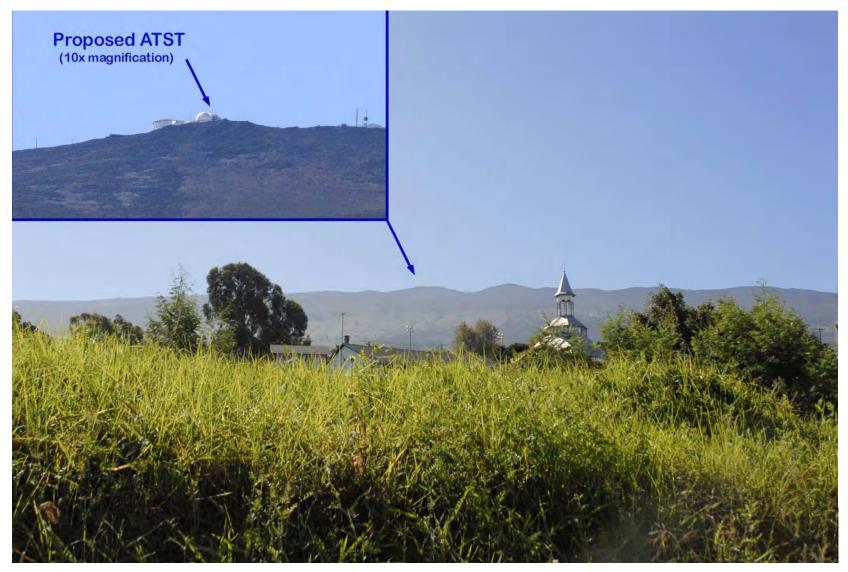


Figure 4-15b. View from Kula Highway, below Holy Ghost Church (Viewpoint 7), and Mees Site Rendering.

Figure 4-16a. View from 'A'apueo Drive, Kula (Viewpoint 8).

Figure 4-16b. View from 'A'apueo Drive, Kula (Viewpoint 8), and Mees Site Rendering.

Figure 4-17a. View from Lower Piiholo Road, Olinda (Viewpoint 9).

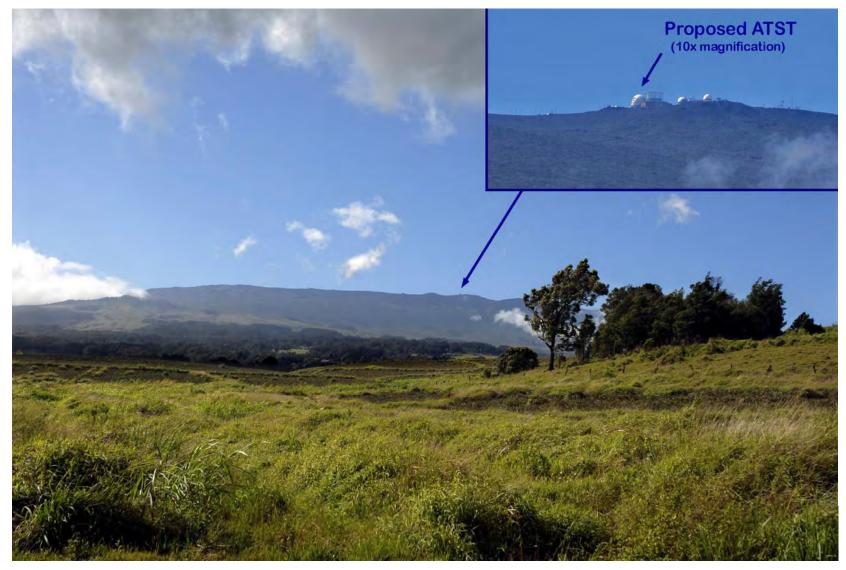


Figure 4-17b. View from Lower Piiholo Road, Olinda (Viewpoint 9), and Mees Site Rendering.

Figure 4-18a. View from Pukalani Terrace Shopping Center (Viewpoint 10).

Figure 4-18b. View from Pukalani Terrace Shopping Center (Viewpoint 10) and Mees Site Rendering.

Figure 4-19a. View from Kahikinui (Viewpoint 11).

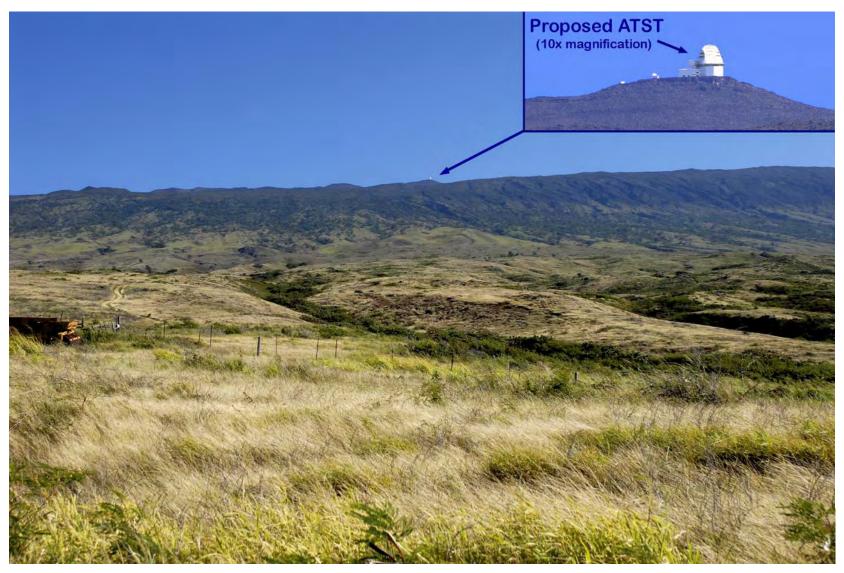


Figure 4-19b. View from Kahikinui (Viewpoint 11) and Mees Site Rendering.

Figure 4-20a. View from Kaupo (Viewpoint 12).

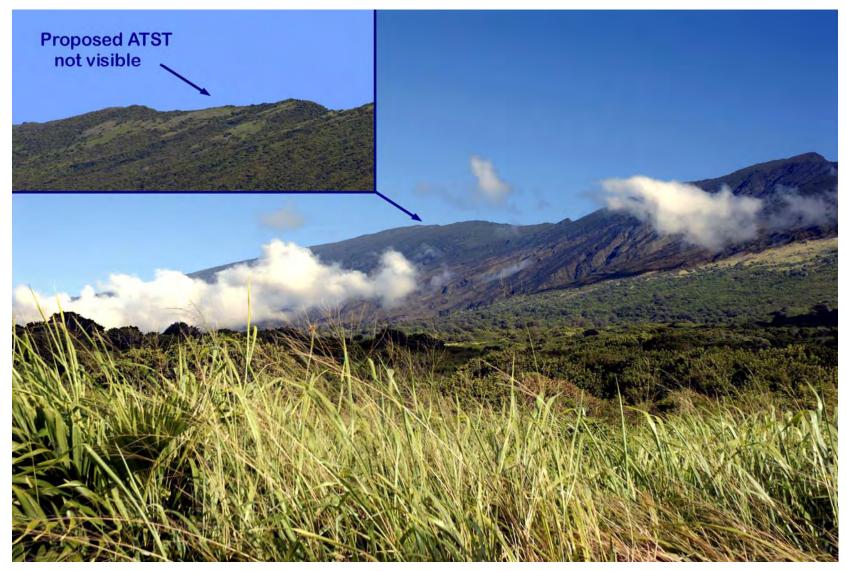


Figure 4-20b. View from Kaupo (Viewpoint 12) and Mees Site Rendering.

Figure 4-21a. View from Keonekai, Kihei (Viewpoint 13).

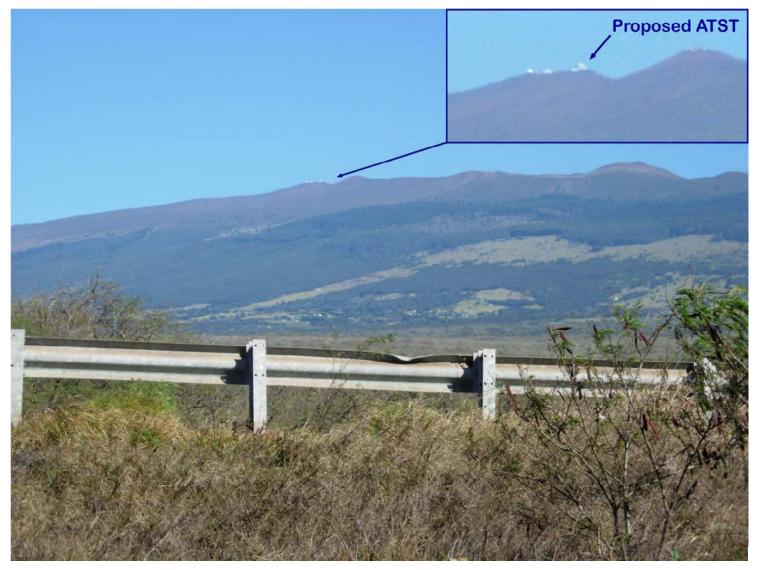


Figure 4-21b. View from Keonekai, Kihei (Viewpoint 13), and Mees Site Rendering.

Figure 4-22a. View from Keonekai, Kihei (Viewpoint 13).

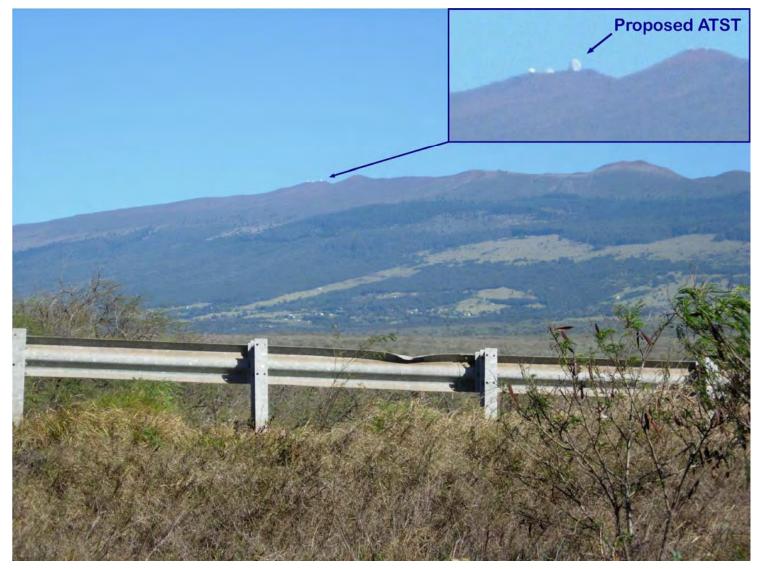


Figure 4-22b. View from Keonekai, Kihei (Viewpoint 13), and Reber Circle Site Rendering.

Figure 4-23a. View from Lipoa Parkway, Kihei (Viewpoint 14).



Figure 4-23b. View from Lipoa Parkway, Kihei (Viewpoint 14), and Mees Site Rendering.

Figure 4-24a. View from Mokulele and Pi'ilani Highways, Kihei (Viewpoint 15).

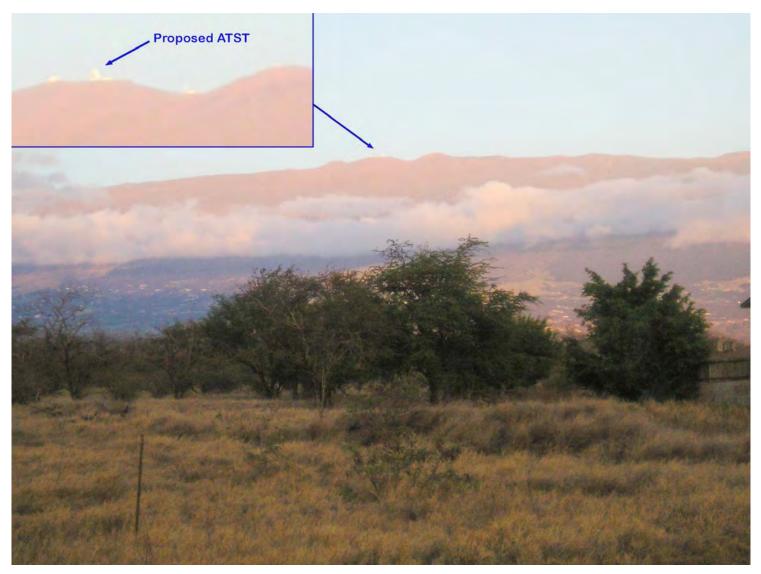


Figure 4-24b. View from Mokulele and Pi'ilani Highways, Kihei (Viewpoint 15), and Mees Site Rendering.

Figure 4-25a. View from Ma'alaea Harbor (Viewpoint 16).

Figure 4-25b. View from Ma'alaea Harbor (Viewpoint 16) and Mees Site Rendering.

Figure 4-26a. View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17).

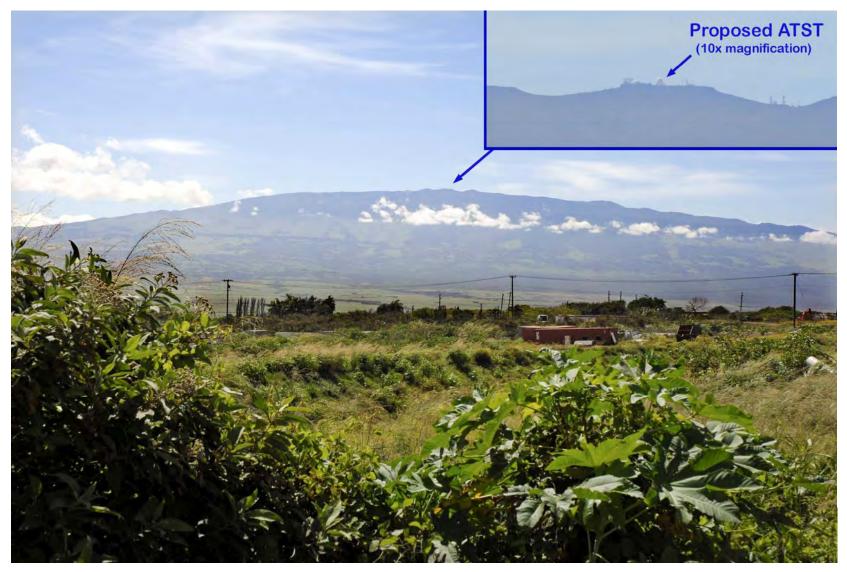


Figure 4-26b. View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17), and Mees Site Rendering.

Figure 4-27a. View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17).

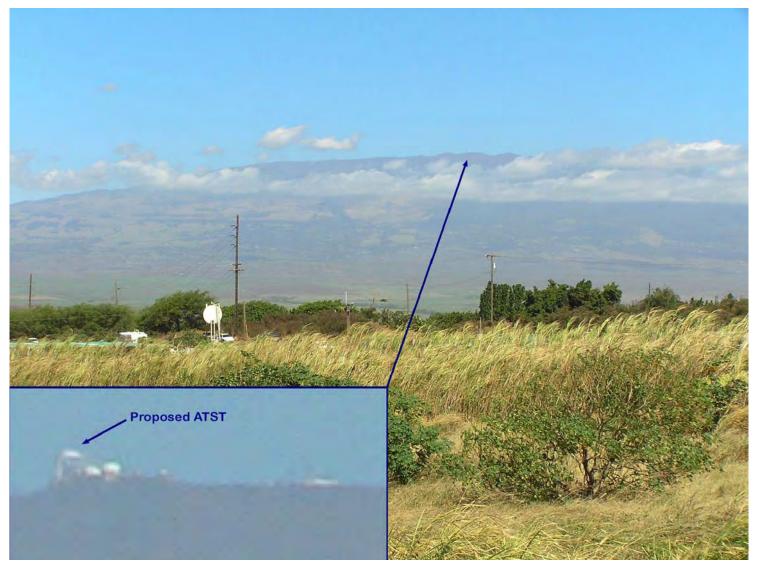


Figure 4-27b. View from High Street and Kuikahi Drive, Wailuku (Viewpoint 17), and Reber Circle Site Rendering.

4.6 Visitor Use and Experience

Section 4.6-Visitor Use and Experience has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The ROI for consideration of impacts on visitor use and experience encompasses certain portions of the landmass of Maui, HO, and other areas within HALE (including the Park road corridor) from which structures at HO are visible.

4.6.1 Methodology for Impacts Assessment

The methods used to determine the extent to which the proposed ATST Project would affect visitors' services and experiences are as follows:

- 1. Review and evaluate existing and past actions to identify the proposed ATST Project's potential impact on visitor use and experience.
- 2. Review and evaluate each alternative to identify its potential to adversely affect the visitor use and experience within the ROI, including the impacts of the proposed ATST Project on the existing visual resources and soundscapes.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations.

Impacts on visitor use and experience could be considered adverse if they result in a decline in the quality or quantity of existing recreational facilities. Park facilities include the grounds and structures within park borders.

Impacts are analyzed by direct and indirect impacts to visitor use and experience from the proposed ATST Project, alternatives, and the No-Action Alternative. Direct impacts are those caused by the proposed ATST Project and occurring at the same time and place. For example, a decrease in the overall quality of experience for a visitor at the Park due to increased noise levels during construction or operation of the proposed ATST Project is a direct impact of the proposed action. A change in Park hours, accessibility to the public, or amount of available land due to the construction or operation of the ATST are also examples of direct impacts. Indirect impacts are those caused by an action but occurring later or farther away, but at a reasonably known time or place. If wildlife relocate away from the easily accessible visitor areas due to increased noise levels during construction or operation of the ATST, the lower number of wildlife sightings could be an indirect impact on visitor experience.

The thresholds of change for the intensity of impacts on visitors' services are defined as follows:

Impact Intensity	Intensity Description				
Negligible	The alternatives would not impact visitor use and enjoyment of Park resources. Visitors would not likely be aware of the changes.				
Minor	The alternatives would result in detectable changes to the character of the Park and would impact visitor use and enjoyment of park resources. The changes in visitor use and experience would, however, be slight and likely short-term. Other areas in the Park would remain available for similar visitor use and experience without degradation of Park resources and values.				

Impact Intensity	Intensity Description		
Moderate	The alternatives would result in detectable changes to the character of the Park and would impact visitor use and enjoyment of Park resources. Changes in visitor use and experience would be readily apparent and likely long-term. Other areas in the Park would remain available for similar visitor use and experience without degradation of Park resources and values, but visitor satisfaction might be measurably affected (visitors could be either satisfied or dissatisfied). Some visitors who desire to continue their use and enjoyment of the activity/visitor use and experience would be required to pursue their choice in other available local or regional areas. Mitigation measures, if needed to offset adverse impacts, would be extensive and likely successful.		
Major	Implementation of the alternatives would result in substantial changes to the character of the Park and would impact visitor use and enjoyment of Park resources. Changes in visitor use and experience would be readily apparent and long-term. The change in visitor use and experience from the proposed alternative would preclude future generations of some visitors from enjoying Park resources and values. Some visitors who desire to continue their use and enjoyment of the activity/ visitor use and experience would be required to pursue their choice in other available local or regional areas. Extensive mitigation measures would be needed to offset any adverse impacts and their success would not be guaranteed.		
Duration: Short-term – occurs only during the ATST Project construction period.			
Long-term – continue after the ATST Project construction period.			

4.6.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Visual Resources and the Visitor Use and Experience

Section 4.5-Visual Resources and View Planes describes how construction and operation of the proposed ATST Project would result in a moderate, adverse, and long-term impact on visual resources if the Preferred Mees site were implemented. Those impacts, however, are specific to and within the context of overall visual resources and view planes. With this in mind, impacts to visual resources exclusive to visitor use and experience are evaluated herein based on the respective intensity thresholds defined in Section 4.6.1, above.

Depending on the elevation and shielding topography of the Sliding Sands hiking trail at various points along the designated route, hikers into the crater may be able to view the 250-foot crane that would be used during construction. Potential views of this crane would be most likely to occur during the last three years of the construction period and during daytime construction hours. The impacts could be minimized through BMPs imposed during construction, such as lowering construction cranes at night and whenever it is not in use, so as to not create a mishap hazard or obstruct any views. Visitors would still have the opportunity to appreciate and experience visual resources in other areas of the Park without degradation of their experience. Since these impacts would only last during construction, the impacts would be minor, adverse, and short-term. No mitigation would be necessary to reduce this impact.

The completed, operational ATST Project would be clearly visible from the access road to the Sliding Sands trail and would have a limited contribution to the viewscape at HO. Therefore, the impacts would be minor, adverse, and long-term. HO and the proposed ATST facility would not, however, be visible from trails within the crater (see Section 4.5, Visual Resources and View Planes, which discusses specific views from various locations where the proposed ATST Project would likely be visible). Thus, the impacts from this viewshed would be negligible, adverse, and long-term.

Construction and operation of the proposed ATST Project would be quite apparent from the Pu'u Ula'ula Overlook where viewing the sunrise, sunset, and crater are some of the most important reported experiences sought by Park visitors. This experience would be disrupted to the same extent that it is currently affected. The visitor experience would be further affected in that some visitors who desire to continue their use and enjoyment of the activity/visitor use and experience would be required to pursue their choice in other available local or regional areas. Visitors would still have the opportunity to appreciate and experience visual resources in other areas of the Park without degradation of their experience, but the impact on visitor expectations at this location would continue to be major, adverse, long-term, and direct. No mitigation would be possible to reduce this impact during daytime construction.

A 2007 survey of visitors exiting from HALE (**Appendix N**) had three objectives. They were to: 1) measure current reaction to the Park among a cross-section of visitors, 2) measure visitor reaction to the addition of a large solar observatory in the adjacent Haleakalā High Altitude Observatory site; and, 3) provide other information that may be useful in evaluating visitor reaction to the proposed ATST Project. As such, the survey results indicated that the visitor's experience includes the HO site and those who mentioned the observatories in their comments were no less likely to have valued their time at the Park. Visitors surveyed were shown a rendering of the proposed facility (what became Fig. 4-4b), and most people surveyed expressed an indifference regarding whether the new observatory is built. It should be noted that HALE did not commission this study nor have a role in its design. HALE notes flaws in this survey, citing the presence of a likely bias, technical errors in the instrument, and errors in the related reporting. HALE also indicated that the conclusions are based on an insufficiently designed and administered survey. NSF contends, however, that this survey is not intended to imply more about the visitor experience than what was presented in the survey, but it does provide some information as to whether visitors have a strong negative reaction to a new structure of taller height than what is currently present.

Soundscape

Noise changes due to construction activities would also have a major, adverse, and short-term direct affect on the visitor use and experience at HALE. Many visitors report that the most important reasons for backpacking and overnight camping trips in the Park are to experience the sounds of nature, experience a sense of connection with nature, and experience a sense of remoteness, as well as to remove themselves from human development and man-made noises (Lawson, et al, 2008). Because the proposed ATST Project area is located within two-thirds of a mile of high-use trailheads (Sliding Sands), in addition to various trails throughout the summit and mountain areas such as those in and around Pa Ka'oao (White Hill) and Magnetic Peak, visitors would experience construction-related noise during construction hours that would adversely affect the quality of their experience while hiking and backpacking in the Park. Construction activities associated with the proposed ATST Project such as caisson driving would create more man-made noise in relation to other construction activities, e.g., actual renovations and building of the new facilities. As noted in Section 4.10-Noise, noise attenuation from the construction site would decrease at approximately 6 to 7 dBA by every doubling of distance. For the loudest construction activities, at about 120 dBA approximately 72-75 dBA of noise would be heard near the crater and the Pu'u Ula'ula Overlook. This is considered to be in the same range as a "Jeep" type or loud passenger vehicle ascending the road (KCE, unpublished).

From this noise analysis, it can be concluded that, prior to mitigation, construction noise would have a major, adverse, and short-term impact on visitor use and experience. Mitigation measures for reducing noise impacts would, however, be applied, which would reduce the intensity level of the impacts on visitor use and experience from major to moderate, adverse, and short-term:

MIT-6. HALE would restrict noise levels during certain hours of the day and during certain months of the year, limit onsite outdoor ATST-related construction activities during the time-frame from 30

minutes after sunrise to 30 minutes prior to sunset, and limit the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and are prohibited from coming through the Park at night between April 20th and July 15th). The seasonal restriction on wide loads is also imposed by USFWS. Following implementation of mitigation measures, construction noise would be reduced to_moderate, adverse, and short-term between April 20th and July 15th; at other times of the year noise impacts would be mitigated to moderate, adverse and short-term.

The nearest HALE visitor would be at a distance of about 0.3 miles at the Pu'u Ula'ula Overlook. At that distance, 83 dBA noise levels would be geometrically attenuated to about 35 dBA, which is considered ambient background noise for rustling leaves, tall grass in a light to moderate wind (Resource Systems Group, Inc., 2006, p. 12).

Traffic

ATST-related traffic levels during construction are expected to increase by 15 trips per day. As concluded in the FHWA road study, this is only a small increase of vehicular traffic entering and leaving HALE compared to the approximately 1.7 million annual visitors at HALE (Vol. II, Appendix P-FHWA HALE Road Report; and HALE, 2006). This small increase would have a negligible impact on travel time and visitor use and experience. The traffic increase would also increase the noise level by approximately up to 3 dBA during construction. This increase would be barely perceptible to users and would have a minor, short-term impact on the visitor use and experience. During operations, the increased traffic would be even less and the noise increase would not be noticeable (less than 1 dBA). Due to traffic congestion, there would be a moderate, adverse, and short-term impact on visitor experience as described in Section 4.9.2 but the traffic levels would have a negligible, long-term impact on the visitor use and experience.

MIT-10. Slow moving vehicles and/or vehicles that are class 5 or larger should not travel through the Park between approximately 11:00 a.m. and 2:00 p.m. These are peak visitation hours. The ATST Project shall provide regular updates to appropriate NPS staff during the project so NPS staff can provide information to Park visitors. Following mitigation the small increase in traffic would have a negligible impact on travel time and visitor use and experience.

Air Quality

Impacts on air quality associated with increased construction vehicle traffic and use would be minor, adverse, and short-term, as described in Section 4.11-Air Quality. These impacts would occur over the short-term, would be mitigated to the greatest possible extent, and the impacts on visitor use and experience would diminish in the long-term.

4.6.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Visual Resources and the Visitor Use and Experience

The Reber Circle site is higher and more visible from the Pu'u 'Ula'ula Overlook and from the summit of Pa Ka'oao and Magnetic Peak than is the Mees site. Impacts on visual resources related to visitor use and experience would be similar to those described for the Mees site.

In particular, while visitors would likely be aware of the crane during the construction phase, it would only slightly detract from the visitor use and experience associated with visual resources. In this respect, visitors would still have the opportunity to appreciate and experience visual resources in other areas of the Park without degradation of their experience. Since these impacts would be slight and only last during construction, the impacts would be minor, adverse, and short term. The completed ATST Project would be visible and as with HO, it would be counter to visitor expectations for the summit area. It would further detract from the quality or quantity of visitor use and experience associated with visual resources. Visitors would still, however, have the opportunity to appreciate and experience visual resources in other areas of the Park without degradation of their experience. Implementation of the Reber Circle alternative would result in major, adverse, and long-term impact on the visual aspect of visitor use and experience. No mitigation would be possible.

Soundscape and Traffic

The impacts to visitor use and experience due to traffic and noise along the Park road corridor would be similar to those described for the Mees site. MIT-6 and MIT-10, as described in Section 4.6.2, would be implemented to reduce these impacts down from moderate, adverse, and short-term down to negligible, adverse, and short-term.

Air Quality

Impacts on air quality associated with increased construction vehicle traffic and use would be minor, adverse, and short-term, as described in Section 4.11-Air Quality. These impacts would occur over the short-term, would be mitigated to the greatest possible extent, and the impacts on visitor use and experience would diminish in the long-term.

4.6.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

The direct impact to visitor use and experience under the No-Action Alternative would remain the same as the existing conditions outlined in Section 3.0-Description of Affected Environment. The existing visual impact of HO could, however, still be considered to be contrary to visitor expectations for the summit area, with respect to the natural landscape vistas, and, with selection of the No-Action alternative, would continue to have a major, adverse, and long-term, direct impact on the viewshed.

4.6.5 Summary of Impacts on Visitor Use and Experience

In conclusion, there would be moderate, adverse, and long-term impacts on visitor use and experience from changes in the quality of recreational activities such as sightseeing, hiking, backpacking, photography, and camping associated with changes in the viewshed from construction activities at either the Preferred Mees site or the alternative Reber Circle site, and along the Park road corridor. Changes in the viewshed during the operations phase would result in major, adverse, and long-term impacts on the visitor use and experience from locations where the proposed ATST Project would be prominently seen, as described in Section 4.5-Visual Resources and View Planes. This would be true regardless of whether the Preferred Mees site or the alternative Reber Circle site were selected.

Construction noise, prior to mitigation, would have a major, adverse, and short-term impact on visitor use and experience. However, these impacts would occur over the short-term and would be mitigated (MIT-6) to intensity levels of negligible, adverse, and long term between April 20th and July 15th; at other times of the year noise impacts would be mitigated to moderate, adverse and short-term.

The small increase in traffic during construction would have a negligible impact on travel time and visitor use and experience. During operations, the increased traffic would be even less and would have a negligible, long-term impact on the visitor use and experience. Additionally, slow moving vehicles and/or vehicles that are class 5 or larger would not be allowed to travel through the Park between approximately 11:00 a.m. and 2:00 p.m., which are peak visitation hours (MIT-10).

Impacts on air quality associated with increased construction vehicle traffic and use would be minor, adverse, and short-term, as described in Section 4.11-Air Quality. These impacts would occur over the short-term, would be mitigated to the greatest possible extent, and the impacts on visitor use and experience would diminish in the long-term.

There would be no additional direct impact to the visitor use experience under the No-Action Alternative. The visual impact of HO could, however, still be considered to be contrary to visitor expectations for the summit area, with respect to the natural landscape vistas, and would continue to have a major adverse and long-term direct impact on the viewshed.

4.7 Water Resources

HO is within the Waiakoa and the Manawainui Gulch watersheds. The groundwater boundaries are the Kamaole and Makawao Aquifer Systems of the Central Aquifer Sector and the Lualailua and Nakula Aquifer Systems of the Kahikinui Aquifer Sector (U.S. AFRL, 2005). The ROI for water resources includes HO, the affected areas within HALE and the Park road corridor. The entire ROI is within the Waiakoa and the Manawainui Gulch watersheds and the Central Aquifer and Kahikinui Aquifer Sectors. The ROI for water resources includes HO, the affected areas within HALE areas within HALE and the Park road corridor. A sector is a large region with hydro-geological similarities that primarily reflects broad hydro-geological features, and secondarily, geography. A system is an area within a sector showing hydro-geological continuity.

4.7.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on water resources are as follows:

- 1. Review and evaluate existing and past action's **impacts** on surface water, drainage, and ground water to identify the action's **impacts** on surface water, drainage, and ground water to identify the action's potential **impact** on water resources.
- 2. Review each alternative from the perspective of **impacts** on:
 - a) surface water from calculations of potential flow from impervious surfaces of the proposed facility,
 - b) drainage from the addition of surface water anticipated from the proposed ATST Project,
 - c) ground water from known water infiltration patterns; and,
 - d) identifying the potential of each alternative to adversely affect the ecosystem and its component parts within and adjacent to HO, including detrimental **impact** on existing water quality or on water resources.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations with respect to stormwater and groundwater.

The following **impact** thresholds were established in order to describe the relative changes in water quality (overall, localized, short- and long-term, cumulatively, adverse and beneficial) under the management activities.

Impact Intensity	Intensity Description				
Negligible	Implementation of the alternative would either not impact water resources (chemical, physical, or biological) or impacts would be well below water quality standards or criteria, and would be within historical or desired water quality conditions.				
Minor	Implementation of the alternative would impacts water resources (chemical, physical, or biological, but the impact would be well below water quality standards or criteria and within historical or desired water quality conditions.				
Moderate	Implementation of the alternative would result in a measurable and consequential impact to water resources (chemical, physical, or biological), but the impact would be at or below water quality standards or criteria. Historical baseline or desired water quality conditions would be temporally altered. Mitigation measures would be necessary to offset adverse impacts and likely be successful.				
Major	Implementation of the alternative would result in a substantial impact to water resources (chemical, physical, or biological); the impact would be frequently altered from the historical baseline or desired water quality conditions. Chemical, physical, or biological water quality standards or criteria would temporarily be slightly and singularly exceeded. Extensive mitigation measures to offset adverse impacts would be needed and their success could not be guaranteed.				
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the proposed ATST Project construction period.					

4.7.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Surface Water Features and Drainage

Based on the hydrologic modeling prepared to control runoff of the IfA facilities on Haleakalā, under existing drainage conditions, the infiltration basin appears to adequately contain the stormwater runoff for all but the most extreme storm events (50 years and above). The infiltration basin is estimated to overtop at storm events larger than the five-year recurrence interval. Containment of larger storm events is, however, considered to be for flood control only (Vol. II, Appendix L-Stormwater Management Plan for HO).

The current area of the MSO facility parking lot is 4,855 sq ft, as outlined in the Vol. II, Appendix L-Stormwater **Management** Plan for HO. The proposed parking/service area to serve both **MSO** and ATST would be 6,850 square feet for a total of 1,995 additional square feet, or a 41 percent increase in "impervious" area. The total impervious surfaces at HO are, however, 144,178 square feet, counting all existing roads and pavements and the additional area estimated for the U.S. Air Force Mirror Coating Facility (MCF). Therefore, an additional 1,995-square foot parking/service area to serve the MSO facility and the proposed ATST Project would represent a 1.4 percent increase in impervious area. **Since the total area covered by these impervious surfaces is very small compared to the undisturbed portions of the ROI the impacts on surface water and drainage from implementation of the Preferred Mees site are anticipated to be minor, adverse, and long-term.**

Some of the runoff from the MSO facility parking area currently flows down the abandoned road and off the west side of the mountain (Vol. II, Appendix L-Stormwater **Management** Plan for HO). The proposed ATST Project **would be designed so that** most of the stormwater and surface water **would be captured** for reuse **in the existing MSO cistern**, reducing potential adverse **impacts** on the infiltration basin. Stormwater that does not reach the cistern would be filtered through on-site ground drains, where water would percolate to the natural subsurface environment. Furthermore, adherence to the guidelines in the SWMP for HO would reduce the potential for adverse impacts on surface water features and drainage due to the increased impervious areas at the Mees site.

Land-disturbing activities would occur for a limited duration, and construction activities would comply with State-administered National Pollutant Discharge Elimination System (NPDES) regulations, to minimize the impacts on surface and groundwater resources. Compliance measures would include the use of BMPs to control erosion.

Although the ATST Project team has no agreement or permission to use the FAA property for staging, it is helpful, for descriptive purposes, to discuss the soils at the portion of the FAA property that grades topographically into HO property, which are comprised of compacted soils. The soil compaction lessens the natural percolation on site. Runoff on this property from the HO roadway and Faulkes Telescope Facility (the primary soil placement area; see Figure 2-9) are captured and redirected to the infiltration basin, however stormwater from the FAA site itself flows off the southwest edge of the cinder (Vol. II, Appendix L-Stormwater Management Plan for HO). This area would experience negligible adverse impacts from construction at the Preferred Mees site.

Overall, the proposed ATST Project at the Preferred Mees site would have minor, adverse, direct, short- and long-term impacts on surface water and drainage. Since no changes to the Park road corridor are proposed, there would be no changes in stormwater runoff and no impacts along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated.

Groundwater

The proposed ATST Project would have minor beneficial and negligible, adverse, **direct impacts** on groundwater sources or supplies. No mitigation would be necessary and no indirect impacts are anticipated. Temporary, localized, minor impacts are anticipated during construction and standard BMPs would be implemented to minimize impacts to surface water and drainage during construction.

Under the proposed ATST Project, the existing cesspool at the MSO facility would be removed and an advanced aerobic individual wastewater system (IWS) would be installed to treat sanitary wastewater. The specifications of the treatment plant and its related piping/discharge system would be in compliance with the applicable regulations of the State of Hawai'i Department of Health. Effluent from the IWS would be discharged to the subsurface similar to that of a septic tank leach field. The IWS will consume more energy due to the need for an electrical supply for operation of the aeration system and pumps, as well as routine monitoring and periodic maintenance, but would be less susceptible to system backups than the cesspool. The design of the IWS would provide wastewater treatment and discharge high quality effluent resulting in minor beneficial, long-term impacts on groundwater as compared to the existing cesspool system. This is a result of the reduced concentrations of pathogens and nutrients in IWS effluent compared to cesspool effluent. The IWS will require the periodic collection and off-site disposal of solids. The IWS is further discussed in Section 4.9.2-Evaluation of Potential Impacts at the Preferred Mees Site.

Groundwater could potentially be **adversely impacted** by wastewater discharges during system installation, maintenance, or in the event of system failure. The likelihood of a discharge is, however, minimal and the **impacts** would be negligible, adverse, and short-term as compared to minor, adverse, and long-term **impacts** from cesspool **operations** on groundwater resources. Additionally, site personnel would be adequately trained on handling wastewater and operating the IWS to prevent discharges to

groundwater. Since no changes to the Park road corridor are proposed, there would be no **impacts** to groundwater along the Park road.

4.7.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Surface Water Features and Drainage

If the proposed ATST Project were to be constructed at the Reber Circle site, similar surface water impacts to those at the Mees site would be anticipated.

The proposed service area at the Reber Circle site would be 10,480 square feet, which would be a 7.3 percent increase in the total impervious surface. As described for the **Preferred** Mees site, the existing infiltration basin is estimated to overtop during storm events larger than the five-year recurrence interval, resulting in minor, adverse, and short-term **impacts** on the infiltration basin. Containment of larger storm events is, however, considered to be for flood control only, and, therefore, the present containment for stormwater would be adequate to capture additional runoff as a result of increased impervious areas at the Reber Circle site. **The ATST Project would be designed so that stormwater from the Reber Circle site would be captured and routed to the existing cistern at the MSO facility for reuse, thus reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through on-site ground drains where water would percolate to the natural subsurface environment. Additionally, adherence to the guidelines in the SWMP for HO (Vol. II, Appendix L) would reduce the potential for adverse impacts on surface water features and drainage due to increased runoff from the Reber Circle site. Compliance with State-administered NPDES regulations would minimize the impacts on surface water resources. Compliance measures would include the use of BMPs to control erosion.**

Drainage impacts resulting from construction staging and soil placement on the HO property below the Faulkes Telescope facility or on the FAA site (if permission to use the FAA property were ultimately obtained) would be the same as those discussed for the Preferred Mees site alternative. Overall if the proposed ATST Project were constructed at the Reber Circle site, minor, adverse, direct impacts on surface water and drainage would be anticipated. Since no changes to the Park road are proposed, there would be no changes in stormwater runoff and no impacts along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated

Groundwater

If the proposed ATST Project **were constructed** at the Reber Circle site, it would include the installation of a new wastewater treatment plant to capture and process domestic wastewater. The characteristics of the new wastewater treatment system would be similar to the one described for the **Preferred** Mees site. Installation of the plant would equally follow the legal procedures and requirements. Effluent from the system would be of high quality and would be discharged to the subsurface similar to that of a septic tank leach field. During handling and operations or in the event of system failure, groundwater could potentially be affected by wastewater discharges. The likelihood of a discharge is, however, minimal and the **impacts** of a single event would be negligible, adverse, and short-term. Additionally, site personnel would be adequately trained on handling wastewater and operating the system to prevent discharges to groundwater.

If the proposed ATST Project were constructed at the Reber Circle site, a new wastewater treatment plant would be constructed to process wastewater from the ATST facility. There would be no change to the MSO wastewater treatment system and the MSO would continue to use the existing cesspool. Untreated wastewater and septic waste is discharged directly into the ground in cesspool systems. Pathogens and nutrients in potentially high concentrations (particularly nitrogen and phosphorous) are typically released from such systems, possibly degrading subsurface water quality and resulting in minor, adverse, and long-term impacts on groundwater within a discrete distance of the cesspool. Given the distance of approximately 11 miles to the nearest drinking water well, it is unlikely that continued operation of the cesspool would have an adverse affect on drinking water. If cesspool contaminants reach perched groundwater, which then flows to surface water, then some adverse affects from cesspool operation could be posed to human or ecological exposures to the surface water. Any dissolved recalcitrant contaminants (e.g. metals) discharged to the cesspool would be expected to migrate further from the cesspool, and/or remain present longer than less recalcitrant contaminants. Organic and inorganic solids would continue to accumulate in the cesspool, requiring ongoing periodic removal and off-site disposal.

The **impacts** to groundwater sources from construction of the ATST at the Reber Circle site would be minor, adverse, and both short- and long-term since wastewater from both the new treatment system at Reber Circle and the existing cesspool at the MSO facility would result.

4.7.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

Surface Water Features and Drainage

Although the conditions would remain unchanged under the No-Action Alternative, based on the conditions described in the Stormwater Erosion Report (UH IfA, 2005a), the SWMP for HO (Vol. II, Appendix L) would still need to be implemented. Based on the results of the erosion study, culverts were cleaned out of soils that were previously interrupting the flow to the infiltration basin. This routine cleaning is being maintained in order to avoid diversion of water through prior erosional zones.

Groundwater

The No-Action Alternative would have continuing minor, adverse, and long-term impacts on groundwater from the continued discharges of domestic wastewater to the existing MSO cesspool. These impacts would be the same as discussed under the Reber Circle site alternative and would be minor, adverse, and long-term.

4.7.5 Summary of Impacts on Water Resources

The proposed ATST Project, whether built at the Mees site or the Reber Circle site, would have minor, adverse, direct, short- and long-term impacts on the surface water and negligible, adverse short- and long-term impacts on groundwater within the ROI. The proposed ATST Project would be designed so that the most onsite stormwater would be captured for reuse in an existing cistern, thus reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through on-site ground drains where water would percolate to the natural subsurface environment.

If the Mees site were selected, replacement of the cesspool would result in a minor, beneficial, and long-term impact on groundwater. The new wastewater treatment system for the proposed ATST Project would be constructed and treatment to domestic wastewater would occur prior to infiltration into subsurface water. Negligible, adverse, and short-term impacts could result if discharges of untreated wastewater occurred while handling, during operations, or in the event of system failure. Otherwise a minor, beneficial, long-term impact would result from removal of the cesspool under the Mees site alternative. If the Reber Circle site were selected, the new wastewater treatment system for the ATST facility would be constructed and treatment to domestic wastewater would occur prior to infiltration into subsurface water. Negligible, adverse, and short-term impacts could result if discharges of untreated wastewater occurred while handling, during operations, or in the event of system failure. The ATST would not discharge to the existing cesspool however it would continue to be used by the existing user, and would result in a minor, adverse, and long-term impact on groundwater.

Under the No-Action Alternative, the current surface water features and drainage would remain unchanged and the cesspool used at the existing MSO facility would continue to be used. Thus, under the No-Action Alternative, minor, adverse, and long-term impacts on groundwater quality would be anticipated. No mitigation would be necessary and no indirect impacts are anticipated. Temporary, localized, minor impacts are anticipated during construction and standard BMPs would be implemented to minimize impacts to water resources during construction.

4.8 Hazardous Materials and Solid Waste

The ROI for hazardous materials (HAZMAT) and solid waste includes HO, the Park road corridor, and the portion of **State Highway 378, which ends at the entrance to HALE.**

4.8.1 Methodology of Impact Assessment

Impacts related to **hazardous materials and** solid wastes were evaluated by comparing proposed volumes and types of proposed waste generation with current generation at the HO complex and the capacity of landfills treating the complex. Major **impacts** would be realized if the proposed ATST Project were to contribute an amount of waste that would substantially shorten the projected lifespan of the serving landfill. **Impacts** related to hazardous **materials** would be considered major if a new hazardous material were introduced to the HO complex that would put the health of workers or the environment at risk through its use, handling, transport, or disposal.

Impacts related to on-site contamination were evaluated based on the location of existing contamination, compared to the areas proposed for earth-moving activities. Major, adverse **impacts** would be realized if earth-moving activities could expose workers to HAZMAT in a contaminated site.

Therefore, the methods used to determine whether the proposed ATST Project would have a major **impact** on the use of HAZMAT and solid waste are as follows:

- 1. Review and evaluate existing and past actions with respect to production and management of solid and hazardous waste to identify the action's potential **impact** on the use and disposal of HAZMAT and solid waste.
- 2. Review and evaluate each alternative to identify the risks to health and safety from proposed practices and procedures for producing and managing solid and hazardous waste, using Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and EPA standards to assess **impacts** to the ecosystem and its component parts within and adjacent to HO, along the Park road corridor, and State **Highway 378, which ends at the entrance to HALE**, including damage from HAZMAT or waste.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations and in particular, CERCLA, RCRA, and EPA relating to storage, transport, handling and disposal of wastes.

The thresholds of change for the intensity of HAZMAT and solid waste impacts are defined as follows:

Impact Intensity	Intensity Description		
Negligible	The use of HAZMAT and disposal of hazardous or solid waste associated with implementation of the alternative would either not impact health and safety or waste streams, or the impacts would be at the lowest levels of detection and would not have an appreciable impact on health and safety or waste management.		
Minor	The use of HAZMAT and disposal of hazardous or solid waste associated with implementation of the alternative would have a detectable, but not appreciable, impact on health and safety or waste streams. Existing landfills would have sufficient capacity for the additional waste stream.		
Moderate	The use of HAZMAT and disposal of hazardous or solid waste associated with implementation of the alternative would result in substantial, noticeable impacts on health and safety on a local scale. Existing landfills would have sufficient capacity for the additional waste stream. Mitigation measures would probably be necessary to offset adverse impacts and would likely be successful.		
Major	The use of HAZMAT and disposal of hazardous or solid waste associated with implementation of the alternative would result in substantial, noticeable impacts to health and safety or waste streams on a regional scale. Existing landfills would NOT have sufficient capacity for the additional waste stream. Extensive mitigation measures would be needed, and success would not be guaranteed.		
Duration: Short-term – occurs only during the ATST Project construction period. Long-term – continue after the ATST Project construction period.			

4.8.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Mees Site

Solid Waste

Construction of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, and short-term direct impacts on solid waste management during project construction. No mitigation would be necessary and no indirect impacts are anticipated. During demolition and construction activities at the Mees site, solid waste requiring disposal would be generated. Construction waste and debris would be secured, particularly during non-working hours, to minimize windblown materials and would be transported to the Maui Demolition and Construction Landfill in Ma'alaea. The amount of demolition and construction debris generated under the proposed ATST Project at the Preferred Mees site is expected to be minimal with no appreciable impact on waste streams.

In accordance with the LRDP requirements, construction contractors would remove construction trash frequently, particularly food sources that could increase the population of mice and rats that prey on native species. Most construction waste would be removed in roll-off trash receptacles that would be covered before transport.

During demolition and construction activities at the **Preferred** Mees site, solid waste requiring disposal would be generated. Construction waste and debris would be secured, particularly during non-working

hours, to minimize windblown materials and would be transported to the Maui Demolition and Construction Landfill in Ma'alaea. The amount of demolition and construction debris generated under the **Preferred** Mees site is expected to be minimal with no appreciable **impact** on waste streams; therefore, negligible, adverse, and short-term **impacts** on the solid waste management would be expected from construction-related activities and would not interfere with HO or Park operations.

Hazardous Materials, Waste, and Site Contamination

Construction of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, short-term direct impacts on health and safety relating to the use of HAZMAT. The construction would not interfere with HO or Park operations. No mitigation would be necessary and no indirect impacts are anticipated. Hazardous materials may be used during the construction of the proposed ATST Project at the Mees site, however the use would be temporary and applicable BMPs would be implemented to protect the health and safety of the workers.

Site development activities, such as welding and metalworking, could generate minor quantities of hazardous waste and air pollutants. Other HAZMAT or substances that may be used in the construction phase would include fuels, oils, and lubricants in the machinery operations and paints on building structures. Petroleum products are CERCLA-defined HAZMAT and would be monitored, handled, and reported through the RCRA, if necessary. No other HAZMAT or substances would be used in construction. Under the LRDP-imposed construction constraints, no oil or chemical **treatments** may be used at the site for dust control.

The construction contractor would comply with the requirements from the LRDP related to hazardous waste during construction:

- 1. No hazardous waste is to be released at the site. Surplus or used paint, oil, solvents, and cleaning chemicals must be removed from the area and disposed of by a U.S. Environmental Protection Agency (EPA)-approved transport storage disposal facility.
- 2. Accidental spills of any hazardous material during the execution of a contractor's project at the site must be reported immediately to the on-site IfA supervisor. Spill containment would be supervised by IfA personnel at the site. Spill remediation methods must be approved by the UH's Environmental Health and Safety Office prior to clean up, and all costs incurred for cleanup would be assigned to the contractor. In the event of a reportable release, the construction contractor would be liable for any Federal or State imposed noncompliance penalties (UH IfA, 2005b).
- 3. Washing and curing water used for aggregate processing, concrete curing, and cleanup cannot be released into the soil at the site. A recovery process is required by the contractor to recapture wastewaters (UH IfA, 2005b).

Operations-Related Impacts at the Preferred Mees Site

Solid Waste

Operation of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, and long-term direct impacts on solid waste management. No mitigation would be necessary. The operations of the proposed ATST at the Mees site would have no appreciable impact on waste streams. Solid waste generated on-site would be carried out of the building by facility workers and kept in covered refuse containers. Non-hazardous trash and recyclable material would be disposed of off-site at Maui's licensed landfill. There would be no change in the long-term solid waste

disposal practices from the Mees site, although solid waste generation could triple. At present, approximately four to five bags are being disposed of weekly from the Mees facility and other facilities under HO jurisdiction.

After completion of the proposed construction, the facility would be operational. Thus, solid waste generated on-site would be carried out of the building by facility workers and kept in covered refuse containers. Non-hazardous trash and recyclable material would be disposed of off-site at Maui's licensed landfill.

Hazardous Materials, Waste, and Site Contamination

Operation of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, and long-term direct impacts on health and safety relating to the use of HAZMAT. No mitigation would be necessary and no indirect impacts are anticipated. Once the proposed ATST Project is operational, hazardous wastes and petroleum product wastes would be segregated at a generation point and handled separately as directed by the ATST Hazardous Materials and Hazardous Waste Management Program (Vol. II, Appendix D). While the operation of the proposed ATST Project would result in an increase in HAZMAT and waste; no appreciable impact on health and safety and waste management is expected.

All personnel would be required to follow all Occupational Safety and Health Administration (OSHA) worker safety requirements. Negligible, adverse, and long-term impacts on worker health and safety from exposure to HAZMAT contained in on-site soils are expected.

The ATST HazMat Plan would be followed for the handling and storage of hazardous materials at the proposed facility. In the event of a non-minor spill of a hazardous material, ATST staff would contact the Fire Department (911), other local authorities, and the AURA Risk Management Specialist for advisement. In the event of a minor spill, ATST staff would handle the spill per the ATST Hazardous Materials Management Plan and contact the AURA Risk Management Specialist to determine whether there would be any Federal or State reporting requirements. Accidental spills of any hazardous material during operations at the site would also be reported immediately to the on-site IfA supervisor and the Park would be notified, as appropriate.

Table 4-5 is a list of hazardous substances that may be present or used under the proposed ATST Project, whether located at either the Mees site or Reber Circle site.

Items 1 through 6 of Table 4-5 would be used for mirror stripping and cleaning. They would be stored in the manufacturer's containers and kept in a secure area off-site. These chemicals would be brought to the proposed ATST Project facility when the primary mirror is to be stripped and recoated, approximately every two years. The stripping and cleaning process results in a series of effluents with varying disposal requirements. All effluents would be captured in a sink and trench system built into the floor of the coating area. From there, the liquid would flow through a double-containment pipe system to a set of underground polypropylene tanks. The water and light detergent (Orvis soap or equal) collected in the tanks from the initial pre-wash would be tested to ensure compliance with non-hazardous standards and then would be pumped to the seepage pit(s) of the domestic water treatment system. The effluent from the remainder of the stripping and cleaning process would be tested on-site for pH and other hazardous criteria, would be pumped into appropriate transportation containers, and would be disposed of off-site by a licensed HAZMAT disposal contractor. The total effluent quantity generated each time the primary mirror is stripped and cleaned is expected to be less than 1,000 gallons (generated at coating/cleaning events - every two years). The licensed contractor also would dispose of the solid waste material from the process, approximately three five-gallon buckets of chemical soaked laboratory tissue paper sheets.

disposal of all materials would comply with all applicable requirements of the EPA and the State of Hawai'i Hazardous Waste Branch.

Hazardous			Amount		
	Substance	Purpose/Use	Stored/Used	Storage Method	Schedule of Replacement
1	Hydrochloric acid			Stored in secured manufacturer's containers off-site.	Mirror recoating every two years; materials brought on-site.
2	Cupric sulfate				
3	Potassium hydroxide	Mirror stripping and			
4	Nitric acid	cleaning			
5	Calcium carbonate				
6	Ethyl alcohol				
7	Aluminum			Stored in a secure on-	Additional material brought
8	Silver	Minnen necesting	Small quantity	site location.	on-site approximately every two years when recoating is
9	Silver nitride	Mirror recoating	Sman quantity		required.
10	Nickel chromium				
11	Propylene glycol heat-transfer fluid	Used in the cooling fluid for the enclosure and other systems.	10 gallons of concentrate; 1200 gallons of 30% solution	Stored in utility building and used in a closed-loop system.	Replenished as required, never normally replaced.
12	Refrigerant (R134a, R404a, R410a, or possibly R22)	Used in the cooling system.	Enough to allow for a fully charged coolant system.	None stored outside the fully charged system.	Outside contractors brought in to charge the system when needed.
13	Synthetic hydrocarbon-based hydraulic oil	Used as hydraulic fluid for telescope bearings.	1,400 gallons	In storage tank in base level of the S&O Building.	Replenished as required, never normally replaced.
14	Compressed (liquid and gaseous) helium and nitrogen	Super-cooling instrumentation	Less than 100 gallons	In manufacturer's cylinders and within piping and compressor	Replenished as required, never normally replaced.
15	Liquid nitrogen	Cooling instruments and for mirror vacuum tank	1,000 gallons	In manufacturer supplied exterior tank and in piping and dewars	Supply replenished as needed. 1000-gallon tank refilled approximately twice per year.
16	Diesel fuel	Fuel for generator at Mees Site	200 gallons	Stored in approved aboveground fuel tank.	Supply replenished as needed. 200-gallon tank refilled about twice a year.

Table 4-5. Proposed ATST Project Hazardous Substance Uses.

Items 7 through 10 would be used for mirror recoating approximately every two years. The small quantities of these very pure solid materials would be stored in a secure location. They present no hazards in handling and require no special containers. The coating process itself would take place within a sealed chamber and would result in no hazardous waste or discharge to the environment.

Item 11 would be used to produce cooling fluid. Approximately 10 gallons of an additive concentrate for producing the cooling fluid for the enclosure and other systems would be kept in the Utility Building. The specific liquid concentrate would be propylene glycol — such as DowFrost (an ionic brine),or Dynalene

HC-20, or other non-hazardous heat-transfer additive. This concentrate would be connected to the hydronic piping through an automatic feed device. Most of the cooling fluid (approximately 1,200 gallons of water mixed with heat-transfer fluid in the proper proportion) would flow through the piping and platecoil units on the enclosure. Any heat-transfer fluid utilized would be a non-toxic, but because it would a foreign material in a sensitive environment, measures would be implemented to prevent its accidental release. The enclosure cooling system would be equipped with leak detection and automatic shutoff devices. The concrete apron around the base of the dome would also serve as a secondary containment basin for the enclosure cooling fluid in the event of a leak. The cooling fluid would be contained within a closed loop system and is not drained or discharged to the environment.

Item 12 would be used as a refrigerant. The air-cooled scroll compressor chiller would contain about 200 pounds of refrigerant. The refrigerant has not yet been selected; it may be R22, but is more likely to be R134a, R404a, or R410a. No supply of additional refrigerant (beyond the charge of the system) would be maintained on-site. System recharge, when necessary, would be done by licensed outside contractors and would comply with all USEPA- and State-mandated regulations for containing and handling the specific refrigerant used. The chiller would also use about 10 gallons of a refined mineral refrigeration oil, such as SUNISO 4GS.

Item 13 is hydraulic fuel. The storage tank for hydrostatic oil would be located in the base level of the S&O Building. The tank would be specifically designed for this application and would comply with all applicable USEPA and State requirements. The interior location of the tank would minimize the potential for any leakage to the environment. An inspection and maintenance regime for the bearings, piping, and all system components would be implemented during the entire operational life of the proposed ATST Project.

Items 14 and 15 would be used to super-cooling instruments, detectors, and other components. The quantities and methods for on-site storage of nitrogen and helium would be as described in Table 4-5. These natural atmospheric elements present no potential for environmental damage if accidentally released. They would be used for super-cooling instruments, detectors, and other components.

Item 16 is diesel fuel for the generator. There is an above-ground storage tank in the exterior area immediately west of the MSO facility that is used for storing diesel fuel. This same tank would be used to supply commercial Grade-1 diesel fuel to the proposed backup generator for the proposed ATST Project facility at the Mees site. This tank is a fully approved recent installation, and no upgrades are anticipated to be necessary. During ATST operation, all applicable inspection, maintenance, and safety regulations related to the fuel tank and generator would be enforced.

In the event of a non-minor spill of a hazardous material, ATST staff would contact the Fire Department (911), other local authorities, and the AURA Risk Management Specialist for advisement. In the event of a minor spill, ATST staff would handle the spill per the ATST Hazardous Materials Management Plan and contact the AURA Risk Management Specialist to determine whether there would be any Federal or State reporting requirements. Accidental spills of any hazardous material during operations at the site would also be reported immediately to the on-site IfA supervisor and the Park would be notified, as appropriate. There would be no change in the long-term hazardous substances to the environment, therefore there would be negligible, adverse, and long-term **impacts** associated with hazardous waste releases.

There have been no known spills of HAZMAT at the MSO facility. Construction crews would be required to follow all Occupational Safety and Health Administration (OSHA) worker safety requirements. Negligible, adverse, and long-term **impacts** on worker health and safety from exposure to HAZMAT contained in on-site soils would be expected.

4.8.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Solid Waste

Solid waste disposal and its **impacts** would be identical to those described for the Mees site. There would be negligible, adverse, and short-term **impacts** on solid waste management from construction-related activities and negligible, adverse, and long-term **impacts** on solid waste management from the operations of the ATST at the Reber Circle site and therefore would be not **impact** Park operations.

Hazardous Materials, Waste, and Site Contamination

Hazardous materials storage and handling at the Reber Circle site would be identical to that for the Mees site, with the exception of diesel fuel. For the Reber Circle site, a new aboveground fuel tank would be installed, which would comply with all USEPA and State requirements. During ATST operation all applicable inspection, maintenance, and safety regulations related to the fuel tank and generator would be enforced.

In the event of a major or minor spill of a hazardous material, the identical procedures would be implemented as those described for the Mees site.

Operating the diesel fuel tank at the Reber Circle site would have a negligible, adverse, and long-term **impact** resulting from the increased potential for contamination of on-site soils when handling and storing diesel fuel.

Hazardous waste disposal and its **impacts** would be identical to those described for the Mees site.

There have been no known spills of HAZMAT at the Reber Circle site. Construction workers would follow all OSHA worker safety requirements. Negligible, adverse, and long-term **impacts** on worker health and safety would result from exposure to HAZMAT contained in on-site soils. There would be negligible adverse, and both short- and long-term **impacts** on the Park road corridor resulting from the use or handling of HAZMAT and the Park resources would not be altered.

4.8.4 No-Action Alternative

Solid Waste

There would be no change from the current management of solid waste. Facilities would continue to be responsible for their waste. Negligible, adverse **impacts** on solid waste management would be experienced.

Hazardous Materials and Site Contamination

Under the No-Action Alternative, the proposed ATST Project would not be constructed thereby omitting any short-term use of materials. Existing facilities would continue to use materials for mirror coating and cleaning, lubrications, refrigerants, etc. Therefore, the potential for a release would still exist. Negligible, adverse **impacts** are expected as a result of the No-Action Alternative.

4.8.5 Summary of Impacts from Hazardous Materials and Solid Waste

The construction and operation of the proposed ATST Project at either the Preferred Mees site or the alternative Reber Circle site would have negligible, adverse, long-term direct impacts on hazardous materials and solid waste management. Management plans have been prepared for the proposed ATST Project, containment features have been designed, and on-site training would be required for personnel. There would be no change from the current management of solid waste. Facilities would continue to be responsible for their waste.

There would be no change from the current management of solid waste under the No-Action Alternative. Facilities would continue to be responsible for their waste. Negligible adverse impacts on solid waste management would be experienced. Under the No-Action Alternative, the proposed ATST Project would not be constructed; thereby omitting any short-term use of materials. Existing facilities would continue to use materials for mirror coating and cleaning, lubrications, refrigerants, etc. Therefore, the potential for a release would still exist. Negligible adverse impacts are expected as a result of the No-Action Alternative.

4.9 Infrastructure and Utilities

The ROI for infrastructure is HO, the adjacent FAA facilities, and the Park road corridor. The ROI for utilities is focused on HO, which is separately served by Maui Electric Co., Inc. (MECO) and Hawaiian Telcom and the Park road leading up to HO.

4.9.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on infrastructure and utilities are as follows:

- 1. Review and evaluate the infrastructure of existing and past actions with respect to their **impacts** on wastewater, stormwater, drainage, electrical systems, communications, and roadways and traffic to identify the action's potential **impact** on infrastructure and utilities.
- 2. Review and evaluate each alternative to identify its potential to adversely affect the infrastructure or utilities within and outside of HO, including pollution, erosion, damage to the existing infrastructure, capacity overload, or long-term degradation. The methods used include:
 - a) evaluation of wastewater management through an Individual Wastewater System,
 - b) extrapolation of stormwater data for HO to include potential contribution from the proposed ATST Project,
 - c) calculation of addition of runoff to existing drainage capacity,
 - d) consultations with MECO on electrical requirements,
 - e) consultations with Hawaiian Telcom and FAA to address impacts on communications; and,
 - f) consultations and study results from FHWA survey of Park road corridor.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations in particular, permitting for transportation of wide and heavy loads and pollutant discharge.

The thresholds of change for the intensity of **impacts** on infrastructure and utilities are defined as follows:

Impact Intensity	Intensity Description				
Negligible	The alternative would either not result in a change to existing infrastructure and utilities or the change would be so small that it would not be of any measurable or perceptible consequence.				
Minor	The alternative would require or result in a change to existing infrastructure and utilities, but the change would be small and localized and of little consequence.				

Impact Intensity	Intensity Description			
Moderate	The alternative would require or result in a measurable and consequential change to existing infrastructure and utilities. Mitigation measures would be necessary to offset adverse impacts and likely be successful.			
Major	The alternative that would require or result in a substantial change to existing infrastructure and utilities; the change would be measurable and result in a severely adverse or beneficial impact. Extensive mitigation measures to offset adverse impacts would be needed and their success could not be guaranteed.			
Duration: Short-term – occurs only during the ATST Project construction period. Long-term – continue after the ATST Project construction period.				

2009 FHWA HALE Road Report

To obtain objective professional guidance on **impacts** assessment (as outlined in the tasks above) with regard to the road through the Park, HALE initially requested and the NSF subsequently supported a field investigation and preparation of a formal report by the FHWA. Their initial investigation, completed in May 2007, was inconclusive as to the extent of **impact** to the Park road from traffic related to the proposed ATST Project and recommended follow-up testing and further study. That additional work was later completed and the results of all the investigative efforts by the FHWA are described in their final report issued in March 2009 (Vol. II, Appendix P–FHWA HALE Road Report). This report addresses the current condition of the Park road, as well as the drainage structures along its route, consisting of one bridge and multiple culverts. The FHWA report also includes recommended mitigation measures to reduce the potential for any **impacts** to the historic road, bridge and culverts that might occur as a result of traffic related to the construction and operation of the proposed ATST Project.

The report goes on to describe the methods and results of the road condition investigation, which involved extensive visual inspection and physical testing. Visual inspection by the FHWA resulted in characterization of the road in four different sections based on current condition. These sections are identified by milepost and labeled numerically from the base of the road at the Park entrance up to the summit where it enters HO. Sections 1, 3, and 4 (totaling of 7.9 miles) are generally described as being in good condition with little to no signs of pavement distress. Section 2, a 3.6-mile stretch of the road that receives much more rainfall, is described as being in much worse condition, having significant cracking and distress from the presence of water and inadequate drainage. Physical testing as part of the FHWA investigation included borings to determine pavement thickness and underlying soil conditions, as well as Falling-weight Deflectometer analysis to determine structural characteristics of the pavement. The physical testing campaign corroborated the conclusions of the visual inspection and provided detailed empirical data to serve as the basis for recommended repairs and mitigations. Section 2 was characterized as having less thickness, weaker bearing strength of pavement and substrate, and significantly lower structural capacity than the other parts of the roadway. Section 2 was found to be at the end of its service life, while the other parts of the road were reported to have at least 8 years of service life remaining.

The FHWA HALE Road Report also provides an inventory and conditional assessment of the drainage structures along the Park road corridor. Field inspection for structural condition and dimensional adequacy were conducted on 77 metal pipe culverts, 11 concrete box culverts, and the bridge. Some minimal damage was noted at several of the pipe culverts and two were noted to potentially have insufficient cover between the top of the pipe and the road surface. Some of the box culverts were noted to have loose stones and eroded mortar in their masonry headwalls, but otherwise were found to be undamaged and in serviceable condition. No special conditional issues or damages were noted regarding

the bridge, as the FHWA relies primarily on the regular program of bridge inspections, most recently in 2005 for this structure, to determine its condition and load rating.

Existing traffic on the Park road, primarily passenger cars and tourist buses, is quantified in Table 9 of the FHWA HALE Road Report based on statistics provided by HALE. The level and type of potential increased traffic for construction of the proposed ATST Project is based on the schedule and projections provided by the ATST engineering team (Section 2.4.3-Construction Activities, and FHWA HALE Road Report, Table 11). The FHWA requested from the ATST Project team an estimate of the approximate extent and duration of the required use of the road for construction and operation of proposed ATST Project. For both the existing traffic and potential ATST construction traffic, the FHWA report converts the number and type of vehicle trips into equivalent single axle loads (ESALS) (FHWA HALE Road Report, Tables 10 and 12). The number of current annual ESALS on the Park road is 11,021 and the total from projected construction traffic of the proposed ATST Project is 1,397 over the 7-year construction, integration, and commissioning period. This amounts to approximately 2 percent more ESALS over that 7-year period, which the FHWA characterizes as a relatively small increase.

In summary, the FHWA HALE Road Report (p. 32) states: "When compared to normal daily traffic using Haleakala Highway (passenger and bus traffic), the low stress/volume of traffic, 1,397 ESALs, related to the ATST project is expected to have little **impact** on the roadway sections from mile post (MP) 10.3 to 11.2 and 14.8 to 21.2 assuming the traffic axle loadings are legal and the volume of traffic as estimated by the ATST staff is correct. From MP 11.2 to 14.8, the deterioration of this section would continue at relatively rapid pace with or without ATST traffic."

4.9.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Wastewater

The existing cesspool at the MSO facility would be removed and an advanced aerobic IWS would be installed to treat sanitary wastewater. In order to receive a permit, the IWS must meet Hawai'i Department of Health requirements. Effluent from the IWS would be discharged to the subsurface as in a septic tank leach field, except that the effluent from the proposed system would be of much higher quality. The effluent would percolate downward through permeable deposits and fractured basalts until it encounters obstacles to its flow, such as dikes that have intruded the joints and fractures. The exact path of the percolating water cannot be predicted. The proposed IWS would not increase the amount of effluent, but it would increase the effluent quality relative to current conditions. **Replacement of the existing cesspool would improve effluent quality and would therefore have a minor, beneficial, long-term direct impact on groundwater (discussed further in Section 4.7–Water Resources).**

Stormwater and Drainage System

A majority of the HO site is served by a stormwater collection system of paved channels designed to convey runoff from impervious areas to a central infiltration basin. The proposed ATST Project facility would be designed so that most of the on-site stormwater would be captured for reuse in the existing MSO cistern reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through onsite French drains where water would percolate to the natural subsurface environment. No stormwater flow from the Mees site would flow toward the HO infiltration basin or contribute to the HO drainage system (discussed further in Section 4.7–Water Resources). A NPDES permit would be obtained from the State of Hawai'i Department of Health for stormwater runoff during construction and a second permit would be obtained for permanent operations.

The proposed ATST Project **located at the Preferred Mees site** would have negligible, adverse, and long-term environmental **impacts** on surface water; **no mitigation would be necessary to reduce this impact.** The proposed ATST Project **at the Preferred Mees site** would implement the guidance of the SWMP for HO (Vol. II, Appendix L) prepared according to the recommendations stated in the Stormwater Erosion Report (UH IfA, 2005a). This report states that runoff from the impervious surfaces associated with the HO and adjacent roads may not increase the total volume of stormwater flow entering the natural drainages but may only affect the way it is transported there (UH IfA, 2005a). Changes to runoff are not expected to increase as a result of the proposed ATST Project and no measurable or perceptible consequences on the existing stormwater management system or drainage patterns would result. Capturing surface water and stormwater and implementing the guidance of the SWMP for HO would reduce the potential for increased runoff entering the stormwater management system. Therefore, negligible, adverse, and long-term **impacts** on surface water and drainage patterns **from implementation of the proposed ATST Project at the Preferred Mees site** would be expected.

Electrical Systems

The estimated total electric service for the proposed ATST Project is 960 kilovolt-ampere (kVA). The entirety of that load would not be concurrent. Applying a diversity factor of 70 percent the maximum anticipated new electrical demand would be approximately 670 kVA. The reserve capacity in the existing MECO substation at HO is estimated by MECO engineers to be adequate for the existing connected loads and **the only** currently identified future **loads from the SLR 2000, and** the proposed ATST Project (Kauhi).

Although the existing HO substation has adequate capacity, the equipment is considered obsolete. MECO is planning to upgrade it to a new 2500 kVA substation with improved efficiency and safer reserve capacity (Kauhi, 2005). Representatives from the proposed ATST Project and the **currently existing** HO power customers have been in contact with MECO engineers to ensure that the full potential, future electrical power demand for the proposed ATST Project is considered in the design of that upgrade. With this upgrade, there should be sufficient capacity to handle activities at the Mees site.

A Request for Electric Service has been officially submitted to MECO on behalf of the proposed ATST Project to allow incorporation of the anticipated ATST electrical power requirements into their planning and capital budgeting process. A MECO-funded study (AMEL, 2005) has also been completed that identified ways to reduce the peak electrical load of the proposed ATST Project through specification of more efficient equipment and shifting cooling loads to off-peak times. These identified strategies have been incorporated into the planning for the proposed ATST Project. All connections would be through below ground electrical lines. The MECO upgrade would change the existing electrical system by improving efficiency and providing a safer reserve capacity, resulting in moderate, beneficial, long-term **impacts** on the electrical system at HO **if the proposed ATST Project at the Preferred Mees site were implemented.**

Communications Systems

The proposed ATST Project **at the Preferred Mees site** would require data connectivity of approximately 1 Gigabit per second to the base facility; however, the location of the Maui base facility and ATST data repository has not been determined. Connectivity from the site to the base headquarters would use existing dark optical fiber from the proposed ATST Project. Arrangements would be made with the commercial provider to lease the necessary capacity. The hardware to implement the connection and the service agreement with the commercial provider would be supplemental to the existing communications connections in the ROI. These required changes to the existing communication system would have no perceptible consequence; therefore, negligible, adverse, and long-term **impacts** on the communication systems would be expected. Communication connections to serve the proposed ATST

Project would be through existing reserve lines or new lines that would follow the path of existing lines. Any required new lines would be placed during site excavation.

The FAA RCAG system on Pu⁴u Kolekole maintains two sets of frequencies for contact with interisland air traffic down to 8,000 feet. As a result of the potential addition of the proposed ATST Project at the Mees site, physical obstruction to the geometric line-of-sight for signals from RCAG could occur. These frequencies could experience attenuation, which would be defined as signal loss in a narrow swath of 7 degrees originating at the RCAG antennas and intersecting the width of the proposed ATST Project structure about 800 feet away. As such, the ATST Project has the potential to have a major, adverse, long-term impact on this facility. This impact, however, could be mitigated down to a negligible, adverse, and long-term intensity level with implementation of MIT-2:

MIT-2. In accordance with 14 CFR Part 77.35, FAA specialists working with NSF have addressed any potential issue involving a degradation of signal as a result of the proposed ATST Project. Given the potential for degradation of signal, the FAA has determined that the degradation of signal can be mitigated by replacing the existing antennas with high gain antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas. The FAA has stated that further modification of the site and relocations of the antennas may be needed, but environmental impacts from such a potential modification and relocation would not be anticipated to rise to a level of significance. In addition, NSF will work with the FAA to obtain adequate funding for implementation of the resolution. This mitigation measure is anticipated to reduce the impacts to negligible, adverse, and long-term.

Construction-Related Impacts on Roadways and Traffic

As previously identified, the ROI for roadways and traffic includes both the roads within the HO property and the Park road corridor leading to HO. The different areas of roadway are subject to different levels of traffic, are managed by different agencies, and require varying levels of maintenance. They are treated separately in this analysis to allow for appropriate assessment of the **impact** of the construction of the proposed ATST Project.

Roadways at HO. During the construction phase of the proposed ATST Project **at the Preferred Mees site**, the roads at HO would continue to be used for ongoing observatory operations. Any necessary barricading would be temporary and would be prearranged with other road users. Some roads within the HO complex may be temporarily widened to allow through-traffic during construction.

The access road that leads from north of the MSO facility down to the main staging area would be reopened for use during construction. This would require removing rock and soil that have been placed at the entrance to the road as a surface water diverter. The rock and soil diverter would be reconstructed after **completion of** the proposed ATST Project. All of these activities would be done in accordance with and to a level not to interrupt the effective use of the HO stormwater management, discussed in Section 3.7.1-Surface Water.

The roads within HO are maintained by IfA, with contributions from all users of roads and easements. Vehicular traffic is normally slow-speed and low in volume and would not be substantially affected by the cyclic integration of construction vehicles and equipment related to the proposed ATST Project. Currently, most roadways within HO require very little maintenance and have considerable longevity. These observatory roads were not designed, however, to support unusually heavy loads, such as large trucks and construction vehicles. Construction of the proposed ATST Project **at the Preferred Mees site**

would inevitably result in moderate, adverse, and short-term **impacts** to the condition of the roads within HO.

MIT-11. To mitigate this impact, contractors would be made aware of the potential for road damage and would be required to take measures to minimize the damage. Any damage to HO roadways that does result from ATST construction traffic would be repaired so as to, at a minimum, restore those roadways back its condition before construction of the proposed ATST Project. These mitigation measures, to be negotiated between the affected parties, would reduce the overall impact on HO roadways and traffic down to minor, adverse, and short-term impacts.

Roadways Leading to HO. The roadways leading to the construction site for the proposed ATST Project include a series of State-maintained highways up until the Park entrance and the Park road itself, which is managed and maintained by HALE. Traffic along these routes would primarily be affected by heavy equipment, delivery of concrete and materials, and miscellaneous service trips as characterized in Section 2.4.3-Construction Activities. The specific **impact** to the Park road is described in the FHWA HALE Road Report summarized above (Vol. II, Appendix P). The following discussion deals first with **impacts** that are common to all these highways – both State- and Park-managed – and then addresses the issues that are particular to each

Large trucks, delivery vehicles, van shuttles and passenger vehicles would all travel the State and Park highways leading to HO during construction of the proposed ATST Project (see Table 2-4 for details on the types and duration of roadway uses during the construction period). Construction vehicles would include heavy vehicles, such as dump trucks, flatbeds, water trucks and vehicles to transport large construction equipment such as bulldozers, backhoes, trenchers, a truck-mounted auger, and a large crane. The most intensive period of construction-related traffic would be during the first year of the project when heavy earth-moving equipment and most of the concrete for foundations and the telescope pier would be transported to the project site. The heavy equipment would remain at the site for as long as practicable to minimize conveyance over the roads. During the entirety of the construction period all large-vehicle traffic would be coordinated around heavier traffic periods and neighboring activities to minimize adverse impacts. Furthermore, to minimize highway traffic and the need for on-site vehicle parking, construction workers would be required to carpool.

Even with these mitigation **measures**, traffic on the State and Park roadways leading to the site would be affected by the construction traffic for the proposed ATST Project. The **impacts** from construction-related traffic would be most evident on the mountain highways – State Route 378 and the Park road, which together form the only access route leading to the summit and into HO. The majority of this route is a two-lane highway with steep inclines and numerous switchback curves. This is a speed-limiting factor for large trucks causing inevitable queuing of vehicles behind the trucks. Considering the characteristics of the road, coupled with the normal tourist traffic, moderate, adverse, and short-term **impacts** to traffic on the State highways and the roadway through the Park are expected during periods of heavy equipment use and material deliveries to the proposed ATST Project site. **MIT-11 would reduce this impact to minor, adverse, and short-term.**

State Road. Since the issuance of the DEIS, concerns were raised about potential **impacts** to State Road 378. In response to the DEIS, the State of Hawai'i Department of Transportation (DOT), the agency having jurisdiction over this portion of the road, identified no special concerns regarding road conditions or traffic related to the proposed ATST Project. They did, however point out that "...any heavy or wide truck transportation of project equipment on our State highways would require that your project staff and/or construction contractor contact our Highways Maui District Office for the appropriate truck permit and traffic route coordination." The ATST Project engineering team has researched the applicable

statutes regarding standard authorized dimensions and weights of loads on State Highways, as well as the permitting requirements for loads that exceed these limits (HRS 291-34 to 36). The Project would fully comply with these requirements. It is anticipated that there would not be more than minor, adverse, and short-term **impacts** associated with construction-related traffic on this roadway, as the vehicle load widths and weight would not exceed thresholds permitted by the Hawai'i DOT.

On Route 378, the State-maintained portion of the Haleakalā access road, the most recent traffic count conducted on September 19 and 20, 2007 by the DOT reported total, two-way, 24-hour traffic of 1,439 vehicles (September 19, 2007) and 1,562 vehicles (September 20, 2007). On State Route 377, which leads to Route 378, the total, two-way, 24-hour traffic was reported to be 3,323 vehicles (September 19, 2007) and 3,265 vehicles (September 20, 2007). (DOT, 2007). The traffic required for construction of the proposed ATST Project, as described in Section 2.4.3-Construction Activities, would be an average of about 10 vehicle round-trips per day, with a maximum of 20 round-trips depending on the activities in progress. Based on the DOT statistics and proposed ATST Project predictions the maximum traffic increase would be about 1.2 percent (40/3265 x 100) on Route 377 and 2.8 percent (40/1439 x 100) on State Route 378.

It is anticipated that there would be minor **impacts** associated with construction-related traffic on the State roadways. As described above, the vehicle load widths and weight would not exceed thresholds permitted by the **DOT**, and the increase in traffic volume for the proposed ATST Project would not be a significant increase over existing traffic levels. No mitigation would be necessary to reduce this impact.

Park Road Corridor. Large trucks carrying heavy and wide loads and other construction-related traffic as defined in Section 2.4.3-Construction Activities would utilize the Park road corridor leading up to HO during construction of the proposed ATST Project **at the Preferred Mees site.**

The requirement for passage of wide truck loads required for construction of the proposed ATST Project past the restricted roadway at the entrance station to HALE would require a widened, drivable shoulder. This work, as described in Section 2.4.3 (Construction Activities, HALE Entrance Station Clearance), would be undertaken by the ATST Project **team** and coordinated with HALE staff. Following the construction phase, when this wide-load access is no longer required, the condition of the roadway and the shoulder would be rehabilitated and restored to the previously existing condition. The **impact** of this requirement of the proposed ATST Project would be minor, **adverse and short term**.

The FHWA report (Vol. II, Appendix P-FHWA HALE Road Report) makes a comparison of the current existing traffic on the Park road, to the proposed ATST construction traffic, as quantified in Table 2-4. The comparison is made in terms of equivalent single-axle loads (ESALS). One ESAL is the equivalent of 2,549 single passenger cars. The total number of ESALS attributable to the proposed ATST Project over the 7-year construction, integration, and commissioning period is calculated to be 1,397 (Vol. II, Appendix P-FHWA HALE Road Report, Table 12). The volume of average daily traffic on the Park road over the last five years is 443 passenger cars and 30 buses, which calculates to a total of 11,021 ESALS per year (Vol. II, Appendix P, Table 10). The FHWA report states: "Note that a comparison of visitor traffic ESAL loading, Table 10, and ATST project construction traffic over the 5-year period, (Vol. II, Appendix P, Table 12), would result in an increase of about 2 percent additional ESAL loading on this route, $1,397/(11,021 \times 7) = 1.8$ percent. It should also be pointed out that the increased ATST construction ESALs of 1,397 are equivalent to approximately 47 days or $1 \frac{1}{2}$ months of normal tour bus traffic on this route. This amount of traffic is considered relatively small."

The FHWA HALE Road Report notes the generally sound condition of the bridge, based on inspection reports; however, they recommend specific measures and precautions to protect its structural integrity:

"Although constructed in 1934 the bridge has a favorable load rating as was noted in the 2005 inspection report. Nevertheless, it would be prudent to require written notification within 30 days of each anticipated occurrence of vehicle loadings above legal limits crossing the structure. Diagrams showing vehicle configuration (axle spacing and width), weight per axle, and overall vehicle widths and lengths should be presented to the NPS for verification by the Federal Lands Highway Bridge Office for conformance with current load rated capacity. With the anticipated heavy and wide loads that will be necessary for the construction, the probability of accidental damage to the bridge will also proportionally increase. It is recommended that prior to the construction notice to proceed that the bridge be photographed, inspected and documented as to existing condition. Periodic monitoring during the construction project may be employed if actual construction traffic deviates from [that estimated by ATST engineers]...to verify that the bridge is not being impacted due to construction activities resulting from the project."

The impacts to the resources within the Park road corridor are anticipated to be minor, adverse, and long-term. Implementation of MIT-12 would help ensure that the impacts would not exceed that intensity level.

MIT-12. All construction-related traffic within the Park road corridor would be coordinated with HALE and conducted in compliance with an SUP issued by HALE, so as to avoid or minimize: damage to the road pavement, potential damage to historic structures along the park road corridor, traffic congestion, and other potential adverse impacts on Park resources and the visitor use and experience. SUP provisions issued by HALE would include mitigation measures to address traffic issues, potentially including those recommended in the FHWA HALE Road Report. The provision of wide-load truck access at the HALE entrance station would require special mitigation measures related to that proposed ATST Project, as described in Section 2.4.3-Construction Activities, Construction Traffic. This would include:

- 1. Assurance that the septic system is adequately protected. Mitigation may include placement of metal plate covers, grade beams, other protective structures, or relocation of utilities as a last resort.
- 2. Protection of existing utility man-hole covers. Specifically, the Project would:
 - a. avoid direct axle loading on the covers,
 - b. replace the existing covers with heavier gage steel; or,
 - c. reinforce the existing covers with additional steel bracing.
- 3. Provision of a barricade system, such as a gate, removable bollards or similar devices on the widened shoulder to deter Park visitors and staff from driving on it.
- 4. To minimize potential impact to the nēnē habitat in this area, the access widening project would be completed outside the nēnē nesting season, which is November through March.
- 5. Native plants in the area of the access widening project would be protected when possible and HALE staff would work with the Project on this mitigation.
- 6. When the widened access is no longer needed for the proposed ATST Project, the area would be fully restored and rehabilitated to its pre-existing condition.

Even with these provisions, based on the conclusions of the FHWA Road Report, the use of the Park road by these vehicles would have a minor, adverse, and long-term **impact** on the longevity of the pavement.

The contribution of the proposed ATST Project to a future road repair project to compensate for this **impact** would be subject to the provisions of the SUP.

The increase in total traffic volume on the Park road required for construction of the proposed ATST Project would be the same as described above for the Route 378. The counts of total, two-way, 24-hour traffic 1,439 vehicles (September 19, 2007) and 1,562 vehicles (September 20, 2007), can conservatively be assumed to also represent the total traffic that continues into the Park, as this roadway does not have any other major destinations. The same calculated maximum total traffic increase of approximately 2.8 percent would apply to the Park road. Apart from the road wear **impact** described above due to the large construction vehicles, this amount of traffic **impact** is considered to be minor, **adverse, and short-term.**

Operations-Related Impacts on Roadways and Traffic

The operational phase of the proposed ATST Project **at the Preferred Mees site** would, if approved, begin in **2017**. An estimated on-site staff of six would operate the facility, with others staffing remote locations on Maui or off-island. Four to seven round trips per day are estimated during the preliminary operational phase, which accounts for three shifts for observing, maintenance, and engineering staff. The estimated round-trips per day includes three carpooling van trips to accommodate the three shifts and one to four additional cars. After the initial operational phase, the **number of** round-trips per day are expected to decrease to about one to five.

Roadways at HO. Once construction is complete, there should be no further need for barricading of roadways for normal operational access to the proposed ATST Project. All truck and passenger vehicle parking is expected to be accommodated within the ATST service yard. During operation of the proposed ATST Project, the **direct and indirect impacts** to roadways within HO are anticipated to be negligible, **adverse, and long-term. No mitigation would be necessary to reduce this impact**.

State Road. The State roadways in the Upcountry area, including State Routes 377 and 378, would continue to be utilized for access to the proposed ATST Project during its full operational lifetime. On State Route 377 the most recent traffic count conducted by the DOT reported total, two-way, 24-hour traffic of 3,323 vehicles (September 19, 2007) and 3,265 vehicles (September 20, 2007). On Route 378 the total, two-way, 24-hour traffic was reported to be 1,439 vehicles (September 19, 2007) and 1,562 vehicles (September 20, 2007) (DOT, 2007). The traffic required for operation of the Proposed ATST Project, as described in section 2.4.4-Telescope Operation Activities, would be an average of about 7 vehicle round-trips per day, with a maximum 10. Based on these statistics and predictions the maximum traffic increase would be about 0.6 percent (20/3265 x 100) on Route 377 and 1.4 percent (20/1439 x 100) on Route 378. Given that the additional ATST-related traffic would be minimal in comparison to normal traffic, there would be negligible, adverse, and long-term **direct and indirect impacts** on these State roadways from operation of the proposed ATST Project. **No mitigation would be necessary to reduce this impact.**

Park Road. The Park road corridor would continue to be utilized for access to the proposed ATST Project during its full operational lifetime. Any necessary mitigation measures related to this use, such as continued carpooling by ATST staff, advance notification and approval of occasional large or heavy loads, compliance with established procedures for transportation of HAZMAT, etc. would be arranged with HALE pursuant to the SUP. Given these measures, and the fact that additional ATST-related traffic would be minimal in comparison with normal Park traffic as documented in the FHWA Road Report and as calculated above (maximum of 1.4 percent increase on State Route 378 and continuing into the Park), there would be negligible, adverse, and long-term direct **and indirect impacts** on the Park road from operation of the proposed ATST Project. **No mitigation would be necessary to reduce this impact.**

4.9.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Wastewater

The same environmental conditions as those for the **Preferred** Mees site are anticipated for wastewater if the proposed ATST Project were implemented at the Reber Circle site, given that the same IWS would be installed. The existing MSO cesspool would remain, however, and effluent would continue to be untreated. This could have a minor, adverse, long-term and direct impact on groundwater (discussed further in Section 4.7 – Water Resources). No indirect impacts are anticipated.

Stormwater and Drainage System

The same environmental conditions as those for the **Preferred** Mees site are anticipated for surface water if the proposed ATST Project were implemented at the Reber Circle site. Capturing stormwater on-site and following the SWMP for HO (Vol. II, Appendix L) would reduce the potential for increased runoff entering the stormwater management system. Therefore, negligible, adverse, and **long-term direct impacts** of the Reber Circle site on surface water and drainage patterns would result. No indirect **impacts are anticipated.**

Electrical Systems

There would be no difference in the electrical system plans for the Reber Circle site as compared to the Mees site. With the projected upgrade of the MECO substation adjacent to HO, there should be sufficient capacity to handle activities for the Reber Circle site.

Communications Systems

There would be no difference in the requirements for communication systems for the Reber Circle site as compared to the Mees site. There would be major, adverse, and long-term **direct impacts** on the FAA communication systems for the Reber Circle site. FAA specialists working with NSF have addressed the issue of interference, which would be resolved through the use of high-gain antennas and modifications to the current RCAG towers. Therefore, MIT-2 would reduce this impact to negligible, adverse, and long-term.

Roadways and Traffic

Impacts to roadways and traffic during both construction and operational phases at the Reber Circle site would be identical to those identified for the **Preferred** Mees site. ATST-related commutes and deliveries would be coordinated around high volume traffic periods and activities on the mountain to the level possible. Carpooling would be enforced for construction workers and operational staff to reduce traffic and parking issues. Material and equipment staging would be coordinated based on immediacy of need. **As discussed for the Mees site, MIT-11 and MIT-12 would reduce these impacts to minor, adverse, and long-term.**

4.9.4 No-Action Alternative

Wastewater

The existing MSO cesspool would remain in place under the No-Action Alternative and effluent would continue to be untreated. This could have a minor, adverse, long-term impact on groundwater (discussed further in Section 4.7–Water Resources).

Stormwater and Drainage System

Although the conditions would remain unchanged under the No-Action Alternative, based on the conditions described in the Stormwater Erosion Report (UH IfA, 2005a), the SWMP for HO (Vol. II,

Appendix L) was developed both in response to ongoing baseline operations and in anticipation of planned and projected activities per the LRDP. This plan is still being implemented. Based on the results of the erosion study, culverts were cleaned out of soils that were previously interrupting the flow to the infiltration basin. This is being maintained in order to prevent unwanted erosional pathways. By continuing to follow these procedures, the impact would be negligible, adverse, and long-term.

Electrical Systems

There would be no change to the existing electrical system under the No-Action Alternative. The MECO upgrade would likely be eliminated.

Communications Systems

There would be no change to the existing electrical system under the No-Action Alternative.

Roadways and Traffic

Negligible **impacts** on roadways and traffic would be experienced as a result of the No-Action Alternative. Under this alternative, no facility would be constructed, no additional staffing would be needed, and the current work force and service-related traffic at HO would access the site at the current levels.

4.9.5 Summary of Impacts on Infrastructure and Utilities

The removal of the existing cesspool and implementation of an IWS under the proposed ATST Project, if implemented at the **Preferred** Mees site would result in a minor beneficial, long-term **direct impact** on the wastewater system. The implementation of an IWS at the Reber Circle site would have **minor**, adverse, and long-term **impacts** on the wastewater system. **No mitigation would be necessary to reduce this impact**.

Whether constructed at the Mees site or the Reber Circle site, the proposed ATST Project would capture all stormwater on site either in the existing MSO cistern or through French drains to be directly filtered to the substrate. Because the proposed ATST Project would not contribute to the HO drainage system, there would be a negligible, adverse, and long-term environmental impact on the surface water at the site. The runoff from impervious surfaces associated with the proposed ATST Project would not increase substantially due to designed capture of stormwater, although transport to the natural drainage locations may be slightly altered.

The anticipated electrical load that would be required by the proposed ATST Project would have a negligible, adverse, and long-term **impact** on the MECO service to HO. Additional loads from all anticipated needs would be served by an upgrade that has been specified by MECO and power demands could be met with improved efficiency and a safer reserve capacity, and would thus result in a moderate, beneficial, and long-term **impact** on the electrical system.

Fiber optic lines are available at HO that would be adequate for data connectivity and negligible, adverse, and long-term **impacts** are anticipated from the additional requirements of the proposed ATST Project.

Moderate, adverse, and short-term **impacts** to roadways and traffic would occur during construction of the proposed ATST Project. Traffic along State highways and Haleakalā Crater Road would be affected by heavy equipment, delivery of concrete and materials, service trips, and daily commuting of construction workers. These **impacts** would be mitigated by **MIT-11** and **MIT-12**, **including** specific mitigation measures, such as the ones described above and **some** recommended by the FHWA HALE Road Report (Vol. II, Appendix P). **These would** be included in the HALE-issued SUP and as such

would become SUP conditions for the construction and operation phases of the proposed ATST Project. Carpooling and scheduling of deliveries would further minimize conflicts with other traffic, tours, or other activities. The impact to construction-related traffic would be reduced to minor, adverse, and long-term. The operation of the proposed ATST Project would result in negligible, adverse, and long-term, direct impacts to roadways and traffic. The additional ATST-related traffic would be minimal in comparison to existing normal traffic.

There would be major, adverse, and long-term impacts on the FAA communication systems resulting from project implementation at either the Mees site or the Reber Circle site. Implementation of MIT-2 is anticipated to reduce this impact to negligible, adverse, and long-term.

4.10 Noise

Section 4.10-Noise has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The ROI for noise impacts is HO and the Park road corridor.

4.10.1 Methodology of Impact Assessment

State of Hawai'i Noise Regulations

The project area is zoned as a Class A district under these statewide community noise regulations (State of Hawai'i, HAR 11-46-4). Class A zoning districts include "all areas equivalent to lands zoned residential, conservation, preservation, public spaces, open space or similar type," and are the most restrictive of maximum allowable ambient noise levels.

The maximum allowable noise levels for non-transportation related sources within Class A zoning districts are 55 dBA during daytime and evening hours (7 a.m. to 10 p.m.) and 45 dBA during nighttime hours (10 p.m. to 7 a.m.) at the property line. These noise limits are defined as levels that can be exceeded no more than 10 percent of the time in any 20-minute period, or $L_{10 (20min)}$, and are adjusted upwards by 10 dBA for impulsive sources. Unlike many jurisdictions, Hawai'i does not provide an exemption for construction activities, but does allow for a permit to be granted for projects that are "in the public interest and which may be subject to reasonable conditions as the director may prescribe."

National Park Service Noise Abatement Policy

Management policy outlined by the National Park Service (NPS, 2001) states, "The Service will take action to prevent or minimize all noise that, through frequency, magnitude, or duration, adversely affects the natural soundscape or other park resources or values, that exceeds levels that have been identified as being acceptable to, or appropriate for, visitor uses at the sites being monitored." Noise levels above the natural soundscape can affect the way that visitors experience a National Park.

Methodology

The methods used to assess the level of potential impact that the proposed ATST Project would have on noise are as follows:

1. Review and evaluate existing and past actions with respect to noise that has resulted in impacts that could assist in identifying the proposed ATST Project's potential for adverse impacts due to noise (see Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document, March 2007, and Appendix Q-Study of Vibration Due to Construction Activities at Haleakalā, July 8, 2009).

- 2. Review and evaluate each alternative from the perspective of expected noise using industry standard methods to identify potential sound levels and the potential to adversely affect the environmental setting and its component parts within and adjacent to HO, including recreational activities and Native Hawaiian cultural practitioners. The sources for noise thresholds are from State standards.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations for noise.

The thresholds of change for the intensity of impacts on noise are defined as follows:

Impact Intensity	Intensity Description		
Negligible	The alternative would result in either no change in the noise setting or an increase of less than 3 dBA, and the resulting levels are in compliance with applicable standards. change of 3 dBA is generally considered the threshold of perceivable difference.		
Minor	The alternative would result in an increase of between 3 and 10 dBA.		
Moderate	The alternative would result in a measurable and consequential change to noise conditions. This would equate to an increase of between 10 and 15 dBA. Mitigation measures would be necessary to offset adverse impacts and would likely be successful.		
Major	The alternative would result in a substantially adverse change to noise conditions. This would be a noise increase greater than 15 dBA and would exceed the State regulations. Extensive mitigation measures to offset adverse impacts would be needed and their success would not be guaranteed.		
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the proposed ATST Project construction period.			

4.10.2 Evaluation of Potential Impacts at the Preferred Mees Site.

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Preferred Mees Site

On-Site Construction Activities. Construction at the Mees site would involve the use of standard heavy excavation machinery, including bulldozers, earth movers, backhoes, and trenchers, as well as portable petroleum-powered generators. Holes for caissons would be drilled using a truck-mounted auger or similar drilling equipment (pile driving is not anticipated), while hydraulic hammers or manually operated jackhammers would be used for breaking up large rocks. In addition, a 165-ton lattice-boom crane would be used for moving large equipment and placement of building and telescope components. These types of construction machinery and equipment typically generate reference noise levels in the following acoustical ranges, as measured at ten feet from the source of emission (CPWR, 2005):

•	Bulldozers:	93 to 96 dBA
•	Earth movers:	87 to 94 dBA
•	Backhoes:	84 to 93 dBA
•	Cranes:	90 to 96 dBA
•	Jackhammers:	102 to 111 dBA
•	Rock hammers/drills:	103 to 113 dBA

Noise emissions generated during construction are expected to be audible within the HO area, and at times may exceed the daytime standard established for Class A zoning districts (i.e., $L_{10(20min)}$ of 55 dBA). Table 4-6 and Figure 4-28 present estimated noise levels at various distances based on source levels of 96 dBA (the upper range identified for bulldozers and cranes) and 113 dBA (the upper range identified for rock hammers/drills). These estimates are based on geometric spreading from a point source (6 dBA per doubling of distance) and geometric spreading with some atmospheric absorption (7 dBA per doubling of distance).

Table 4-6. Noise	Attenuation	Over Distance.	Construction-Related Sources.
	1 ittentuation	Over Distance,	Construction Related Sources.

	6 dBA Noise Level Decrease Over Distance ¹		7 dBA No Decrease Ove	
Distance of Receptor from Noise Source (Feet)	Bulldozer or Crane Noise Level ² (dBA)	Rock Hammer/Drill Noise Level ³ (dBA)	Bulldozer or Crane Noise Level ² (dBA)	Rock Hammer/Drill Noise Level ³ (dBA)
10	96	113	96	113
20	90	107	89	106
40	84	101	82	99
80	78	95	75	92
160	72	89	68	85
320	66	83	61	78
640	60	77	54 ⁴	71
1,280	54 ⁴	71	47	64 ⁵
2,560 (0.48 miles)	48	65 ⁵	40	57
5,120 (0.97 miles)	42	59	33	50

Notes:

1. When distance is the only factor considered, sound levels from an isolated noise source generally decrease by approximately 6 dBA (independent of any atmospheric absorption) to roughly 7 dBA (accounting for some atmospheric absorption) for every doubling of distance from the noise source.

2. Non-impulse noise level applicable to bulldozers; reference level of 96 dBA represents high end of range 10 feet from source (CPWR, 2005).

3. Impulse noise level applicable to rock hammers or drills; reference level of 113 dBA represents high end of range 10 feet from source (CPWR, 2005).

4. Represents minimum approximated distance from noise source where measurable level falls below the Hawai'i non-impulse noise standard established for Class A zoning districts (i.e., L10 less than or equal to 55 dBA).

5. Represents minimum approximated distance from noise source where measurable level becomes equal to or falls below the Hawai'i impulse noise standard established for Class A zoning districts (i.e., L10 less than or equal to 65 dBA).

Given the potentially low existing levels in areas of the crater, noted as low as 10 dBA, the resulting levels summarized in Table 4-6 indicate that noise impacts from on-site construction activities may result in increases of greater than 15 dBA and may also exceed the State of Hawai'i regulations. Therefore, construction-related noise is classified as a major, adverse, short-term, direct impact.

Mitigation measures developed to address potential biological impacts (MIT-6) would limit the time frame during which noisy construction activities may occur; those mitigation measures are more fully described in Section 4.3, Biological Resources. MIT-13 would also mitigate the noise impacts:

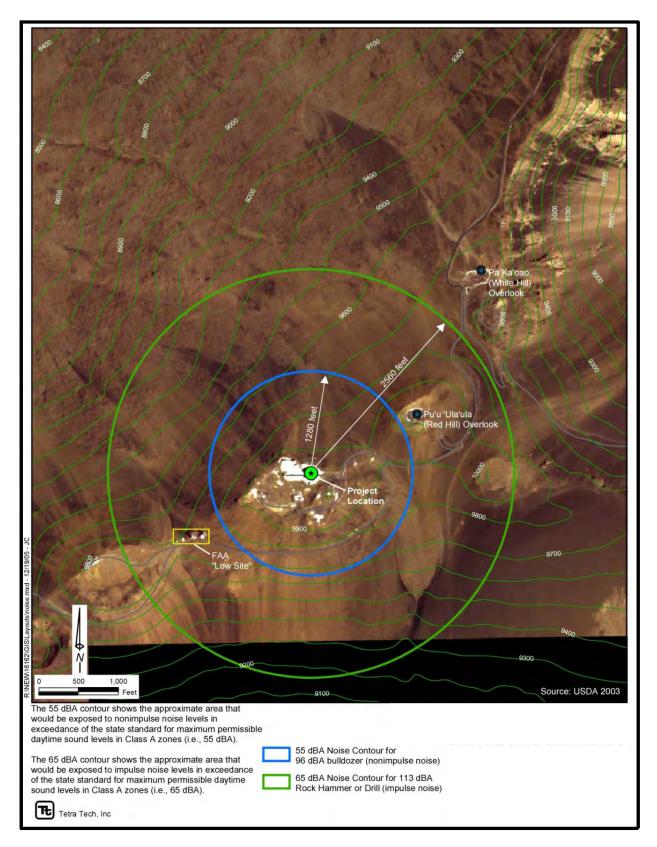


Figure 4-28. Impulse and Non-impulse Construction Noise Contours.

MIT-13. In order to minimize the amount of construction related noise, the ATST Project will incorporate the following mitigation measure:

- 1. Implement general construction noise control measures that require the contractor to ensure all equipment is in good working order, adequately muffled and maintained in accordance with the manufacturers' recommendations.
- 2. Limit noisy construction activities to the hours allowed.
- 3. Utilize appropriately sized equipment for each task. Where feasible, utilize smaller/quieter equipment.
- 4. Semi-permanent stationary equipment (generators, lights, etc) may be available in "quiet" packages and should be stationed as far from sensitive areas as possible.
- 5. Turn off or shut down equipment and machinery between active operations.
- 6. Shield noise sources where possible.

Although sound levels from a point source of noise (e.g., equipment and machinery) are expected to decrease by about 6 to 7 dBA for every doubling of distance from the source, all neighboring research facilities at HO are within a 200- to 700-foot radius from the proposed construction site. Therefore, noise attenuation from geometric spreading over these short distances would likely not reduce levels at exterior receptor locations below state standards. At receptor locations outside of HO, including those public areas closest to the site, attenuation over distance would, however, reduce generated non-impulse noise emissions resulting from construction to levels near or below state standards, even using conservative noise decay calculations (Table 4-6 and Fig. 4-28). Considering the level of noise, the distance to sensitive receptors, and the attenuation of noise to below state standards construction, the proposed ATST Project would have major, adverse, and short-term noise impacts. These changes in noise levels due to construction could have an impact on visitors using nearby recreational facilities such as Pu'u 'Ula'ula Overlook and the Sliding Sands Trail head. Detailed discussion regarding noise impacts from construction on visitor experience is located in Section 4.6-Visitor Use and Experience. Likewise, noise impacts affect persons conducting traditional cultural practices at HO and adjoining areas. These impacts are discussed in Section 4.2.2-Evaluation of Potential Impacts at the **Preferred** Mees Site.

Hydraulic hammers and jackhammers used during construction to break up rock would generate impulse noise and are also expected to elevate ambient impulse noise levels at the summit above existing levels. It is probable that some non-continuous impulsive noise levels would exceed the state standard for Class A zoning districts (i.e., L_{10} less than or equal to 65 dBA) at many of the neighboring HO facilities, even with attenuation and atmospheric absorption over distance. Ground-borne vibrations would likewise be detectable at exterior areas near the job site during hammering and drilling.

There are areas within HALE adjacent to HO close enough to visitors such that they would be able to detect noise from construction of the proposed ATST Project at the Mees site. These are the Pu'u Ula'ula Overlook and the Sliding Sands trail head, which are about 0.3 miles from the proposed ATST Project. The loudest sounds of construction, at about 113 dBA for impact noise, would be attenuated to about 65 dBA at those distances (Table 4-6 and Fig. 4-28). This would be approximately the same level as would be produced by moving passenger vehicles. It would add to the detectable ambient sound levels at those visitor locations sound levels at above 20 dBA above the 47 dBA background at those locations, and therefore the noise impacts from the loudest impact construction sounds could be considered major adverse short-term. Two mitigation measures would be employed that would reduce these impacts on HALE visitors. First, outside on-site construction noise that exceeds 83 dBA at a distance of 5 feet would be limited to between

30 minutes after sunrise and 30 minutes prior to sunset. Secondly, construction noise exceeding 83 dBA would be prohibited between April 20th and July 15th in compliance with USFWS mitigation measures for petrel incubation. During these pre-sunrise and pre-sunset periods and during April 20th and July 15th, the contribution to ambient sounds at the above visitor locations would be geometrically attenuated to about 35 dBA, or the equivalent of leaves rustling or wind blowing through grass (Resource Systems Group, Inc. 2006, p. 12). These lower than ambient sound levels would have a negligible, adverse and long-term impact during those periods.

Baseline conditions of vehicular traffic along the Park road corridor generate a noise level of approximately 47 dBA. According to the project description and mitigation measures summarized in Section 4.18 of this document, for traffic to coordinate construction-related projects and traffic with affected parties impacts from construction, vehicle noise would likely raise the baseline levels to an imperceptible level. In order for a clearly perceptible change in noise to occur, there must be an increase in decibel level of 5 to 6 dBA from the baseline conditions. In general, two noise sources producing equal dB ratings at a given location would produce a composite noise level 3 dB greater than either sound alone. Even with a considerable number of construction vehicles added to the vehicular traffic per day and per hour along the Park road corridor, the maximum decibel associated with traffic would be 50 dBA. The proposed ATST Project calls for approximately 2 construction vehicle trips per month, which would not result in a change in dBA level of even this level. The perceived change in loudness from this change (up to 3 dBA) would be a maximum of 23 percent increase in loudness. Because construction traffic is planned to be at minimum levels, it is not expected that this percent of increase in loudness would be reached. In general, most people cannot distinguish noise level changes that vary by less than 10 percent in relative loudness. With mitigation measures in place for traffic and construction related noise, there would be a minor, adverse, and short-term impact on baseline noise levels from construction traffic along the Park road corridor.

Human receptors at distances along the Park road corridor beyond 2,500 feet would experience noise levels in the range of between 45 and 65 dBA, which are considered within the range of other sources of noise along the Park road, such as traffic. Therefore, at these distances, it is considered that the impacts of construction noise would be minor, adverse, and long-term.

Off-site Construction Activities. In addition to on-site construction activities, noise would be generated by construction-related traffic on the Park road. As indicated in Chapter 2, the traffic volume is anticipated to be 25,000 trips over the anticipated 7 year construction period. Of these 25,000 trips, less than 800 are anticipated to be by large trucks. This equates to approximately 3,600 trips per year, of which less than 120 per year would be large trucks. As stated in Section 4.9, Infrastructure and Utilities, 2007 traffic volumes included 540,864 vehicular visits and approximately 9,102 buses. In 2008, there were 493,846 vehicular visits and approximately 6,416 buses (NPS stats). In order for there to be an increase greater than 3 dBA (the threshold for a perceivable difference), the traffic volumes would need to double. Construction-related traffic represents less than 10 percent of the annual Park volume and clearly does not represent a doubling of either automobile or heavy (buses or large trucks) traffic. While there may be specific hours of the day where construction traffic constitutes a higher percentage of the traffic volume, on average, the level of construction traffic related noise is expected to result in less than a 3 dBA change. Therefore, off-site construction-related traffic would result in a negligible, adverse, shortterm impact. Although the mitigation would not be necessary to offset this noise impact, MIT-11 would restrict slow-moving construction traffic from traveling along the Park road corridor during peak recreational use (11 a.m. to 2 p.m. daily). The impact level would remain negligible, adverse, and shortterm.

Operations-Related Impacts at the Preferred Mees Site

Standard operational processes for the proposed ATST Project would not emit significant nuisance noises or vibrations to the surrounding research environment. Mirror stripping and cleaning and restorative recoating of the reflective surface, which would occur approximately once every two years, would not generate appreciable noise levels outside the enclosed buildings. Exhaust fans and equipment used for cooling the telescope and enclosure would have sufficient sound attenuation to reduce their noise levels to well below the established outdoor levels for Class A zoning districts. The aperture and ventilation gates would be periodically opened and closed primarily during daylight and occasionally at night for maintenance. Rotational tracking of both the dome and entrance aperture tube atop the enclosure would produce a low frequency spectrum of mechanical noise, audible throughout the HO area. The noises would, however, be intermittent and are considered unlikely to elicit adverse responses from neighboring research facilities because operations of these types of observatories are considered normal and standard practice. In addition, the dome would be positioned before nightfall each day, so typically there would be no nighttime rotational noise and the speed of rotation required around sunrise would be reduced.

Furthermore, the change to ambient noise conditions at HO resulting from vehicle traffic would be negligible because the relative increase in daytime commuters accessing the proposed ATST Project facility would not noticeably add to the current level and pattern of vehicle use associated with existing HO operations.

Sources of operational noise associated with the proposed ATST Project at the Preferred Mees site are substantially similar to those already operating at neighboring facilities. The noise sources and levels from the proposed ATST Project are expected to be similar in characteristics and level as those already present within the HO area. Mechanical equipment includes, but is not limited to, exhaust fans and associated cooling equipment (chillers, etc), gears and motors associated with dome tracking and aperture tube functions, and an emergency generator. Given the nature of a solar observatory, primary operations would occur during the day though the facility would be staffed at night and occasional nighttime operations are expected.

Primary noise generating equipment would be located within an acoustically engineered building or enclosures to minimize transmission of sound to the exterior environment. In addition, ventilation silencers and/or acoustical louvers would be incorporated to minimize operational noise. The proposed ATST Project would be designed and operated to ensure compliance with the State of Hawai'i noise requirements. Engineering estimates, however, indicate that the resulting levels at nearby ahu or petrel burrows would generally be well below those required by the State of Hawai'i. Noise from normal operations is expected to be similar in level and character at the nearby ahu and petrel burrows to those deemed acceptable inside places of worship (churches, mosques and synagogues) (Phelps, 2005).

When expected operational noise is compared to the extremely low levels of 10 dBA measured within the crater, it could represent a major long-term impact. Such a comparison would be extremely conservative given that the proposed ATST Project is similar to other existing noise sources within the HO parcel. When two sources of similar level are added together, the resulting increase is 3 dBA (e.g., 20 dBA + 20 dBA = 23 dBA; 50 dBA + 50 dBA = 53 dBA). Because the expected levels from the proposed ATST Project are similar to those already present, a 3 dBA increase is reasonably expected. This would result in a minor, adverse, long-term noise impact. Comments have noted that operational noise from existing facilities is audible at Kahikinui. Given anticipated similarity between operational noise levels, the proposed ATST Project would also be audible in Kahikinui. It is not likely to be heard in the crater however, due to terrain shielding and the much lower elevation.

The new backup generator would replace the existing generator at the MSO facility. Operation would be limited to approximately 30 minutes per month for testing and during emergencies. The emergency generator would comply with the State of Hawai'i requirements and incorporate best available noise control technology. Given that the new generator would replace an existing generator, the overall noise level associated with the operation of the generator is expected to be unchanged. This represents a negligible, adverse, short-term (given its periodic/temporary nature) noise impact.

In addition to on-site operational activities, noise would be generated by operational related traffic on the Park road. As indicated in Chapter 2, the traffic volume is anticipated to be less than 2,500 trips per year. This is less than the level of traffic associated with construction, which was deemed to result in a negligible, adverse, short-term impact. Similarly, operational traffic is expected to result in a negligible, adverse, short-term impact.

4.10.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Reber Circle Site

Impacts on ambient noise conditions at HO from construction at the Reber Circle site would be qualitatively similar to those described for the Preferred Mees site. Because roughly twice the volume of site material would require excavation and stockpiling under the Reber Circle site (approximately 7,150 cubic yards versus 4,650 cubic yards under the Mees site), however, the duration of excavation stages of the proposed ATST Project and the number of haul trips required by heavy trucks between the job site and the soil stockpiles would be considerably greater. In addition, site development under the Reber Circle site would entail removing the remains of the concrete Reber Circle ring and the "rock building," which would requiring approximately one additional day of hammering and drilling than necessary at the Preferred Mees site. Because of the extra construction described above, noise would be greater than the levels anticipated for the Mees site. MIT-6, MIT-10, and MIT-13 would be implemented, as described for the Preferred Mees site; however, these mitigation measures would not necessarily reduce the level of impact. Therefore, construction- related noise is classified as a major, adverse, short-term, direct impact.

Operations-Related Impacts at the Reber Circle Site

Ambient noise quality and its impacts from operations at the Reber Circle site would be essentially identical to those described for the Mees site. The primary difference between the sites would be the addition of a new backup generator, which, for the Reber Circle site, would be supplemental and would not constitute a replacement of the current generator at the existing MSO facility. Because the expected levels from the proposed ATST Project are similar to those already present, a 3 dBA increase is reasonably expected. This would result in a minor, adverse, long-term noise impact.

4.10.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

There would be no change to existing conditions under the No-Action Alternative. There would be no construction introducing machinery-related noise intrusion to the area and no operational noise aside from existing sources. There would be negligible impacts to noise conditions under the No-Action Alternative.

4.10.5 Summary of Impacts on Noise

Direct impacts of noise from the construction of the proposed ATST Project at either the Preferred Mees site or the Reber Circle site are anticipated to be major, adverse, and short-term. Construction noise emissions would increase the existing ambient noise levels at the summit but would be temporary and intermittent. Trucks and mobile construction machinery would also raise ambient noise above background levels during the construction period. MIT-6 would limit construction activities to begin no earlier than 30 minutes after sunrise and end no later than 30 minutes prior to sunset and to be prohibited between April 20th and July 15th, in coordination with USFWS and NPS mitigation measures; MIT-10 would restrict slow-moving construction traffic from traveling along the Park road corridor during peak recreational use (11 a.m. to 2 p.m. daily); and MIT-13 would incorporate reasonable noise-reduction practices and abatement procedures into the construction plan to reduce noise impacts. These mitigation measures, however, would not reduce the level of impact. It is acknowledged that the resulting sound levels could affect Native Hawaiian cultural practitioners and those engaged in recreational activities, even when such levels comply with regulatory requirements. Additional analyses of noise impacts on traditional cultural practitioners can be found in Section 4.2-Cultural, Historic, and Archeological Resources, and noise impacts on visitors are discussed in Section 4.6-Visitor Use and Experience.

Because the expected levels from ATST operations would be similar to those already present, a 3 dBA increase is reasonably expected. This would result in a minor, adverse, long-term noise impact. There would be no change to existing conditions under the No-Action Alternative. There would be no construction introducing machinery-related noise intrusion to the area and no operational noise aside from existing sources. There would be negligible, adverse, long-term impacts to noise conditions under the No-Action Alternative.

4.11 Air Quality

The ROI for air quality **impacts** is HO and the Park road corridor.

4.11.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on air quality are as follows:

- 1. Review and evaluate existing and past actions with respect to their **impacts** on air quality from dust generation and emissions, in order to identify the action's potential **impact** on air quality.
- 2. Review and evaluate each alternative with respect to human health and hazardous air pollutant industrial hygiene criteria, to identify its potential to adversely affect the air quality within and adjacent to HO and along the Park road corridor.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations promulgated by or remanded to the Hawai'i Department of Health, and contained in the HAR.

The thresholds of change for the intensity of impacts on air quality are defined as follows:

Impact Intensity	Intensity Description	
Negligible	The alternative would either not result in a change to air quality or the change would be so small that it would not be of any measurable or perceptible consequence.	
Minor	The alternative would result in a detectable change to air quality, but the change would be small and localized and of little consequence.	
Moderate	The alternative would result in a measurable and consequential change to air quality. Mitigation measures would be necessary to offset adverse impacts and likely be successful.	
Major	The alternative would result in a substantial change to air quality; the change would be measurable and result in a severely adverse or major beneficial impact. The proposed ATST Project would result in a substantial change to land use or the level and types of existing activities. Extensive mitigation measures to offset adverse impacts would be needed to offset adverse impacts and their success could not be guaranteed.	
Duration: Short-term – occurs only during the ATST Project construction period. Long-term – continue after the ATST Project construction period.		

4.11.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Preferred Mees Site

Site development and construction of the proposed ATST Project at the Preferred Mees site would have negligible, adverse, and short-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated.

Excavation and grading would generate some hazardous and nuisance air emissions. Actual adverse **impacts** on air quality at HO, based on proposed operations and regional meteorological conditions, are, however, expected to be temporary, intermittent, and at levels substantially below both human health and hazardous air pollutant industrial hygiene criteria. Use of construction vehicles and heavy equipment would result in low-level, intermittent exhaust emissions. These emissions would result from on-site work involving excavators, bulldozers, backhoes, graders, compactors, and cranes, as well as from petroleum-powered generators used to power various construction-related types of equipment. Other site development activities, such as welding and metalworking, would, likewise, generate **small** quantities of hazardous air pollutants. **Small** amounts of mobile source emissions would also result from occupational vehicle traffic accessing the project site. The actual increase in daytime traffic during construction periods, as compared to baseline HO operations, would not, however, result in appreciable **impacts** on air quality. Furthermore, vehicle emissions associated with the proposed ATST Project would be reduced by establishing worker carpools and shuttles to and from the job site, while construction equipment/machinery emissions would be mitigated by using proper emission-control technologies and standard exhaust filtration devices.

As noted above, site development at the proposed Mees site, including excavating and grading approximately 4,650 cubic yards of material, would likely generate detectable amounts of fugitive dust. Earthmoving and grading would generate the greatest amount of fugitive dust during construction. No explosive blasting would be used and only small quantities of concrete would be mixed on-site. In

addition, the summit's persistent northeasterly trade winds would accelerate dispersion of emissions away from research facilities in the western portion of the HO complex.

To minimize fugitive dust emissions, contractors would be required to comply with applicable State regulations under HAR 11-60.1-33, which require the implementation of "reasonable precautions" for controlling fugitive dust (DOH, 2005). **The contractor would implement strict dust-control measures and BMPs as mandated by the LRDP.** These operational practices would limit controllable emissions from site activities that could adversely affect the local air quality. These practices would be established through an ongoing program to control fugitive dust by strictly adhering to the procedures imposed by the LRDP on construction projects at HO (UH IfA, 2005).

The following procedures and practices have been employed successfully for past projects and would be incorporated into the proposed ATST Project as mitigation measures to minimize fugitive dust, including those practices mandated by the LRDP:

- 1. Establish a written dust control plan that must be observed by all contractor personnel during the project. This plan would be implemented continuously, including during off-hours, weekends, and holidays.
- 2. Expose the smallest open excavation and stockpile areas **where** possible and halt dust-generating activities during high winds and storms. Expedited completion of the building's foundation would be encouraged.
- 3. Sprinkle or use similar water-application methods, especially to unpaved vehicle paths/roads, to keep disturbed finer material from becoming airborne.
- 4. Use catchments or filtering systems/devices when sanding, using power tools, or scraping structural surfaces to be painted.
- 5. Where practical, erect a designated on-site facility with wash racks to clean equipment and machinery before they are removed from construction zones.

Because contractors must truck in water to HO from sources below the summit, on-site application during construction would be localized and minimal. Therefore, the small volume of water applied to exposed ground surface would be allowed to infiltrate or evaporate and would likewise be carefully monitored to avoid off-site runoff. In addition, to reduce the generation of fugitive dust when hauling and stockpiling soil and fill material, contractors would cover all moving, open-bodied trucks and stockpiled materials. Traffic control measures, including vehicle speed controls, would also be imposed. Staging areas for stockpiled soil would be positioned away from active traffic routes and windblown exposure regions of the summit to minimize the potential for surface disturbances.

Since construction at the proposed Mees site would be taking place adjacent to dust-sensitive optical systems at other HO facilities, implementing the above-noted dust control measures would be a high priority. There is the potential, however, for observation activities to be temporarily disrupted at nearby observatory facilities. This potential **impact** results from the proximity of the neighboring facilities and depends largely on the extent to which observations are made during the daytime and the degree to which their observation methods are influenced by suspended particulate matter. The minimum amount of suspended particulate matter from the proposed ATST Project is not expected to affect most observation methods at the summit.

Lastly, construction of the proposed ATST Project adjacent to the **Preferred** Mees site would not involve large-scale release of volatile HAZMAT into the environment. Under LRDP-imposed construction constraints, no oil or chemical treating may be used at the site for dust control. Implementation of the

control measures and mitigation measure described above would minimize emissions from construction activities. Construction of the **proposed ATST Project** would affect the air quality; however, the changes would be small and localized resulting in **negligible**, adverse, and short-term **impacts** on air quality in HO and along the Park road corridor.

Operations-Related Impacts at the Preferred Mees Site

Operation of the proposed ATST Project at the Mees site would have negligible, adverse, shortterm and long-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated. There would be no additional **impact** on air quality from operations of the proposed ATST Project facility at the Mees site. Operations would not produce any major air emissions, and as a result, the facility would meet applicable Federal and State air quality standards. Consequently, as mandated in the LRDP for facilities with stationary sources exceeding threshold quantities of a regulated substance, an air quality risk management plan would not be required for the proposed ATST Project.

Approximately once every two years, the mirrors of the telescope would be stripped and cleaned and a restorative recoating would be applied to the reflective surface. As recorded for similar observatories at HO, non-reportable quantities of hazardous emissions could be released during mirror stripping and cleaning, based on the chemicals used (Section 3.8.2-Hazardous Materials). The levels of emissions are, however, expected to be exempt from permitting under applicable State air pollution regulations codified in HAR 11-60.1-62(d). Moreover, there are no reported emissions of hazardous air pollutants associated with the recoating process, as it would be performed within a sealed chamber. **Commercial**-size cylinders of compressed liquids and gases, particularly helium and nitrogen, would be used to reduce thermal buildup in optical equipment and instrumentation during proposed routine ATST operations. **The proposed ATST Project design incorporates proper ventilation for material storage areas.** As such, the controlled use of small amounts of helium or nitrogen gas during operations would not impact air quality. Lastly, the approximately 200 pounds of refrigerants used for the compressor chiller would be zero ozone depleting hydro fluorocarbons, or blends thereof, such as R134a, R404a, and/or R410a.

In addition, there would be no significant change to current air quality conditions at HO and along the Park road corridor from vehicle traffic because the relative increase in daytime commuters accessing the facility would not appreciably add to the current level of vehicle use associated with existing HO operations and visitor traffic (Section 3.9.5-Roadways and Traffic). Meteorological conditions at the summit would also prevent noticeable **impacts** from any small increase in the proposed ATST Project-related vehicle traffic. A backup generator powered by commercial-grade diesel fuel would be stationed on-site, **inside the Utility Building**, for use in the event of electrical outages. **This generator** would replace a smaller generator, and would be exempt from permitting **pursuant to** State regulations under HAR 11-60.1-62(d)(7). Lastly, the approximately 1,400 gallons of synthesized hydrocarbon-based hydraulic oil expected to be used in the hydrostatic bearing system would result in insignificant air emissions since this oil is categorized as a non-volatile liquid at ambient conditions.

By employing the above practices to prevent or limit controllable emissions, there would be no appreciable **impacts** on air quality. Therefore, there would be negligible, adverse, and short- or long-term **impacts** on air quality from operations at the **Preferred** Mees site.

4.11.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Construction-Related Impacts at the Reber Circle Site

Air quality and **construction** impacts at the Reber Circle site **would be** essentially identical to those described for the **Preferred** Mees site. **Site development and construction of the proposed ATST Project at the Reber Circle site would have negligible, adverse, short-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated.** Although roughly twice the volume of site material at the Reber Circle site would be excavated and stockpiled (approximately 7,150 cubic yards versus 4,650 cubic yards for the Mees site), the contractor would comply with State regulations under HAR 11-60.1-33. The contractor would implement strict dust control measures and BMPs as mandated by the LRDP, which would likely result in negligible, adverse, and short-term **impacts** on air quality at HO and no material adverse **impacts** on neighboring research facilities.

Operations-Related Impacts at the Reber Circle Site

Air quality and **impacts** from operations **of the proposed facilities** at the Reber Circle site are essentially identical to those described for the Mees site. **Operation of the proposed ATST Project at the Reber Circle site would have negligible, adverse, short-term and long-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated.** At the Reber Circle site, however, a new commercial-grade diesel generator stationed within the Utility Building would not replace the current generator at the MSO facility, resulting in a net gain of one additional generator at HO. A new above-ground fuel storage tank would be installed at the Reber Circle site to power the backup generator, this tank would contain diesel fuel, a non-volatile product at ambient conditions and would be exempt from air permitting per State regulations under HAR 11-60.1-62(d)(2). Once in operation, activities for the proposed ATST Project would have negligible and adverse **impacts** on air quality at HO and along the Park road corridor.

4.11.4 No-Action Alternative

DIRECT AND INDIRECT IMPACTS

Under the No-Action Alternative, there would be no site work or construction associated with this proposed Project, however other construction and development activities would continue as approved, resulting in similar **impacts** as discussed for the proposed ATST Project. These activities would be held to the constraints and protocol outlined in the LRDP. Likewise, because ATST would not be built, there would be no additional mirror coating activities containing that emission source. Adverse **impacts** to air quality for this alternative would **remain as a result of ongoing construction and site work**, however they would be negligible.

4.11.5 Summary of Impacts on Air Quality

Site development and construction of the proposed ATST Project would have negligible, adverse, short-term direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated. Vehicle traffic accessing the facility via the Park road corridor would temporarily increase due to the construction vehicles and crews expected during the construction period. The additional traffic, however, would not significantly

add to the current level of vehicle emissions associated with existing HO operations and visitor traffic.

Excavation and grading would generate some hazardous and nuisance air emissions. Actual adverse impacts on air quality at HO, based on proposed operations and regional meteorological conditions, are, however, expected to be temporary, intermittent, and at levels substantially below both human health and hazardous air pollutant industrial hygiene criteria. To minimize fugitive dust emissions, contractors would be required to comply with applicable State regulations under HAR 11-60.1-33, which require the implementation of "reasonable precautions" for controlling fugitive dust (DOH, 2005). The contractor would implement strict dust-control measures and BMPs as mandated by the LRDP. These operational practices would limit controllable emissions from site activities that could adversely affect the local air quality. These practices would be established through an ongoing program to control fugitive dust by strictly adhering to the procedures imposed by the LRDP on construction projects at HO (UH IfA, 2005).

Operation of the proposed ATST Project would have negligible, adverse, short-term and long-term, direct impacts to air quality at the HO and along the Park road corridor. No mitigation would be necessary and no indirect impacts are anticipated. There would be no additional impact on air quality from operations of the proposed ATST Project facility at the Mees site. Operations would not produce any major air emissions, and as a result, the facility would meet applicable Federal and State air quality standards. Consequently, as mandated in the LRDP for facilities with stationary sources exceeding threshold quantities of a regulated substance, an air quality risk management plan would not be required for the proposed ATST Project. The relative increase in vehicle traffic accessing the facility via the Park road corridor would not appreciably change. The additional traffic would not significantly add to the current level of vehicle emissions associated with existing HO operations and visitor traffic.

Ongoing construction and site work would continue on HO under the No-Action Alternative, however, these impacts would be negligible.

4.12 Socioeconomics and Environmental Justice

The ROI for determining the affected environment for socioeconomics is the island of Maui. **The ROI** for determining the affected environment for environmental justice is the summit area of Haleakalā. This section describes the contribution of the proposed ATST Project to the economy and the sociological environment of the ROI, as well as any impacts on minority or low-income communities or the health and safety of children within this region. The proposed ATST Project would be implemented on Maui, one of the four islands that make up Maui County. The socioeconomic indicators used for this study include the following:

- 1. Population and Housing,
- 2. Employment, Economy, and Income; and,
- 3. Education and Public Outreach.

Additionally, a discussion of environmental justice issues is presented in accordance with EO 12898, and a discussion relating to the protection of children from environmental health risks is presented in accordance with EO 13045.

For the purpose of this evaluation, the ROI is the geographic area selected as a basis on which social, economic, and environmental justice **impacts** of project alternatives are analyzed. Each alternative was

reviewed and evaluated to identify **impacts** (beneficial or adverse) on conditions within the **relevant** ROI. For example, the project alternatives may result in changes to the population, employment, and income. These **impacts** may result in direct or indirect **impacts** beyond the immediate project vicinity through housing for the facility personnel and their dependents, schooling for facility families, or in reverse by employing local residents on the island of Maui or in the State.

4.12.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have an **impact** on socioeconomics and environmental justice are as follows:

- 1. Review and evaluate existing and past actions with respect to their **impacts** on socioeconomics and environmental justice to assist in identifying the proposed ATST Project's potential **impact** on socioeconomics and environmental justice.
- 2. Review and evaluate available data on socioeconomic indicators from state sources and the U.S. Census for Maui and data from past and present actions that have lead to change in any social, economic, physical, environmental, or health conditions so as to disproportionately affect any particular low-income or minority group or disproportionately endanger children in areas on or near the project site or HO.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations.

In addition to Section 2.0-Proposed ATST Project and Alternatives, the following assumptions were used for the socioeconomic analysis of project **impacts**:

- 1. The proposed ATST Project, whether at the **Preferred** Mees site or Reber Circle site, would need approximately 20 people for the first year of commissioning. This number is estimated to grow between 50 and 55 by the final year of commissioning.
- 2. Approximately 35 of the newly hired personnel would work on Maui and approximately half of them would be relocated from off-island locations to live on Maui while the proposed facility becomes operational.
- 3. The remaining 20 or so personnel would work for ATST remotely from either the IfA offices on Maui, on the UH Manoa Campus on O'ahu, or from a mainland location.

Socioeconomics

The baseline year for socioeconomic data is 2006, the most recent year for which **official** data for most of the socioeconomic indicators are available. When available, more recent data are used to best characterize the current socioeconomic conditions.

The island of Maui makes up 90 percent of Maui County, which encompasses three inhabited islands (Maui, Lana'i, and Moloka'i) and one uninhabited island (Kaho'olawe). Therefore, most economic activities can be tracked at the county level because of the way data are collected and compiled. Similarly, environmental justice issues identify low-income or minority communities at a county level for demographic tracking. This section describes the socioeconomic characteristics and environmental justice issues at the island level to more accurately depict the most affected areas adjacent to the proposed ATST Project. Economic and demographic data of the State of Hawai'i was used for comparison.

As discussed in Section 1.0-Introduction, this EIS follows both Federal and State environmental review protocol. Public review periods were provided at the onset of the environmental evaluation process for

scoping and in review of the EIS Preparation Notice (EISPN), as provided through OEQC. Specific comments were received during these periods requesting the following emphasis on socioeconomic and environmental justice issues be added to the EIS:

- 1. On-site staff and support facilities that would be generated by the proposed ATST Project;
- 2. Total number of jobs generated by the proposed ATST Project and the resultant amount of money infused into the local economy; and,
- 3. The resulting non-economic advantages that the proposed ATST Project would bring to Maui and Hawai'i.

These issues are evaluated below.

In order to determine the level of **impact** that may result on any resource as a result of the proposed ATST Project or a project alternative, the **impact** is compared against specific significance criteria identified at the onset of the evaluation. For the evaluation of socioeconomic conditions, significance is determined if the action would result in any of the following:

- 1. Substantial population growth or population concentrations.
- 2. Permanent population that exceeds official regional or local population projections.
- 3. Displacement of a substantial proportion of residents in a community.
- 4. A demand for additional housing that could not be sustained within the project area.
- 5. Substantially adversely affect expenditures or income associated with the planned project within the study area.
- 6. Cause a substantial decrease in local or area employment.
- 7. Displace or substantially disrupt businesses.

Environmental Justice and Protection of Children from Environmental Health or Safety Risks

Criteria considered in determining whether an alternative would have an **impact** on environmental justice included the extent or degree to which its implementation would change any social, economic, physical, environmental, or health conditions so as to disproportionately affect any particular low-income or minority group or disproportionately endanger children in areas on or near the project site or HO.

The thresholds of change for the intensity of an **impact** for socioeconomic resources, environmental justice and protection of children are defined as follows:

Impact Intensity	Intensity Description
Negligible	The alternative would either not result in a change to socioeconomic resources, environmental justice, and protection of children or the change (beneficial or adverse) would be so small that it would not be of any measurable or perceptible consequence.
Minor	The alternative would result in a change to socioeconomic resources, environmental justice, and protection of children, but the change (beneficial or adverse) would be small and localized and of little consequence.
Moderate	The alternative would result in a measurable and consequential change to socioeconomic resources, environmental justice, and protection of children. Mitigation measures would be necessary to offset adverse impacts and likely be successful.

Impact Intensity	Intensity Description	
Major	The alternative would result in a substantial change to socioeconomic resources, environmental justice, and protection of children; the change (beneficial or adverse) would be measurable and result in a severely adverse or major beneficial impact . Extensive mitigation measures to offset adverse impacts may be needed to offset adverse impacts and their success could not be guaranteed.	
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the proposed ATST Project construction period.		

4.12.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Population and Housing

Approximately 25 to 30 people (half of the estimated personnel) proposed to work at **the proposed** ATST **Project** on Maui would be hired and brought in from off-island. This is, however, not likely to significantly increase the demand for housing. The 2006 U.S. Census shows a vacancy rate of 23.6 percent for Maui County housing, with 15,015 vacant housing units (U.S. Census Bureau, 2006a). This small and localized demand is expected to be minor compared to the annual increase in residents to the island of Maui, which has averaged approximately 2,600 **residents** per year since 1990 (County of Maui, 2006). At a 1.68 percent projected annual population growth rate, the proposed ATST Project's minor **impact** on population and housing would be short-term as the estimated number of people that would relocate to Maui is estimated to remain for only two to three years before being replaced by local employees. As many positions as possible would be filled from the growing number of available qualified Maui-based individuals. The permanent population would not exceed population projections, there would be no displacement of residents in their communities, and demand for housing can be accommodated with existing vacant housing units. Therefore, there would be a minor long-term **impact** on population and housing.

Employment, Economics, and Income

The proposed ATST Project at the Mees site would have minor, beneficial, short-term **direct and indirect impacts** on local economy and employment because it would temporarily increase employment and associated regional spending during the construction phase. The proposed ATST Project also would have a minor beneficial, long-term **impact** on employment. **If approved, the exterior construction phase of the proposed ATST Project is anticipated to last approximately five years, and wherever possible, the local Maui workforce would be employed. When the construction phase has been completed, the proposed ATST Project estimates 50 to 55 new hires by the final year of commissioning. Of the approximately 55 personnel, 35 people would be working on Maui and, therefore, would slightly increase the local spending. Half of this number would be hired locally at the onset of the operational phase. After two or three years, the other half of staffing, originally hired or relocated from off-island sources, would be replaced by local hires, resulting in a long-term beneficial impact** on local employment. **Impacts** would result in an increase in employment and spending that would be small and localized and of little consequence.

By contributing a service to the Maui-based industry without drawing on socioeconomic resources (i.e. schools or the housing demand), the 20 employees that would be working from either O'ahu or the mainland would have a negligible, beneficial, short-term **direct and indirect impacts** on the economy of the ROI. The change in demand for socioeconomic resources would be so small that it would not be of

any measurable or perceptible consequence. Development of the proposed ATST Project is anticipated to be approximately **eight years, with a preliminary associated cost of \$250M in 2009 U.S. Dollars.**

Education and Outreach

The **Preferred** Mees site would have minor beneficial, long-term **direct and indirect impacts** on the schools within the ROI. The estimated number of personnel and dependents relocating to **Maui** is expected to be relatively small and temporary.

Local universities and schools would benefit from the generated data and research conducted at the HO. Additionally, local students at the Maui Community College (MCC) would benefit from the projects that they would be offered at the HO facilities and interactions with the scientific and technical staff.

Environmental Justice

The proposed ATST Project would have no adverse impacts on environmental justice. An impact would only be possible if a minority and/or low-income population existed with the ROI, and if the minority and/or low-income population percentage of the affected area is 50 percent or more of the area's general population, in accordance with Executive Order 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations." This EO provides that "...each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations in the United States..." To establish whether the proposed ATST Project would have a disproportionate impact on an adjacent community of minorities or residents below the poverty line, as compared to other affected populations, it is noted that the Preferred Mees site is in a Conservation District where no urban or rural population or housing is allowed. There are no minority populations that reside near or adjacent to the project site. The potentially affected area is not a predominantly minority or low-income community, so none of the impacts of construction and operation of the proposed ATST Project would disproportionately affect minority or low-income groups.

Protection of Children from Environmental Health or Safety Risks

The proposed ATST Project would not have disproportionate health and safety **impacts** on children. **Impacts** would be negligible and changes would be so small that it would not be of any measurable or perceptible consequence. The proposed ATST Project would be near HALE, where children may be present. Fencing and other precautions, **however**, would prevent children from gaining access to the site during construction. Although the HO site is not fenced, it is off-limits to the public. Children that would be allowed into HO would be accompanied by adults and supervised as part of a visiting group to HO facilities.

4.12.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Population and Housing

Potential **impacts** on population and housing resulting from the Reber Circle site would be identical to those discussed under the Mees site - minor, adverse, and short-term **impacts**. No adverse **impacts** on the population and housing are anticipated. **Impacts** are expected to be small and localized and would be minor and of little consequence.

Employment, Economics, and Income

Impacts on employment, economics, and income under the Reber Circle site would be identical to that of the **Mees** site. The development duration of the proposed ATST Project and the estimated cost are the

same as those for the Mees site. Minor, beneficial, short-term **direct and indirect impacts** would be realized during the construction phase, as shown on local vendor and materials hiring and spending. Minor, beneficial, long-term **direct and indirect impacts** to employment would result from operational staffing of the proposed ATST Project facility.

Education and Outreach

There would be no difference in **impacts** between the Mees site and the Reber Circle site. No adverse **impacts** are expected on the schools and community within the ROI. It should be noted, however, that mitigation measures developed to help reduce impacts to cultural resources, such as the educational initiative at MCC designed to address the intersection between Native Hawaiian culture and science, would have a minor, beneficial, and long-term impact on education outreach.

Environmental Justice

The **impact** evaluation for environmental justice for the Reber Circle site is identical to that of the Mees site evaluation. No adverse **impacts** on low-income or minority communities are anticipated.

Protection of Children from Environmental Health or Safety Risks

The **impact** evaluation for the protection of children for the Reber Circle site is identical to that of the Mees site evaluation. No adverse **impacts** on children are anticipated.

4.12.4 No-Action Alternative

Population and Housing

Under the No-Action **Alternative**, no new personnel would be relocated to Maui. There would be no new demand on the housing market and no increase in population beyond the natural annual influx. No **change to** the local population and housing would occur under the No-Action Alternative because existing conditions and operations would not change. **Impacts** would be negligible.

Employment, Economics, and Income

Negligible adverse **impacts** on the local economy and employment would occur under the No-Action Alternative because existing conditions and operations would not change. Similarly, none of the beneficial, short-term or long-term beneficial **impacts** identified under each of the other proposed ATST Project alternatives would be realized under the No-Action Alternative.

Education and Outreach

The No-Action Alternative would **not result in a change to** the schools and community within the ROI because the existing conditions at the proposed site location would remain unchanged. Similarly, none of the beneficial short- or long-term **impacts** identified under each of the other proposed ATST Project alternatives would be realized under the No-Action Alternative. It should be noted, however, that mitigation measures developed to help reduce impacts to cultural resources, such as the educational initiative at MCC designed to address the intersection between Native Hawaiian culture and science, would have a minor, beneficial, and long-term impact on educational outreach.

Environmental Justice

The No-Action Alternative would have no adverse **impact** on low-income or minority communities in the vicinity of the ROI because the existing conditions at the proposed site would remain unchanged.

Protection of Children from Environmental Health or Safety Risks

There would be no change in precautionary protocol around HO under the No-Action Alternative that may endanger the health or safety of children. No adverse **impacts** would occur.

4.12.5 Summary of Impacts on Socioeconomics and Environmental Justice

The proposed ATST Project, whether located at the Mees site or the Reber Circle site, would need approximately 20 people for the first year of commissioning. This number is estimated to increase up to a number between 50 and 55 by the final year of commissioning. Approximately two-thirds of the newly hired personnel would work on site on Maui with the remaining personnel working for the proposed ATST Project remotely from either Maui or the UH Manoa campus on O'ahu. No adverse **impacts** on population and housing are anticipated from this addition to the work force, e.g., there would not likely be a **substantial** increase in the demand for housing. There would be a minor, adverse, and short-term **impact** on housing. The proposed ATST Project would have both short- and long-term beneficial **impacts** on the local economy and employment.

The proposed ATST Project would have negligible, adverse impacts on the schools within the ROI. Local universities and schools would experience a minor benefit from the research conducted at HO and from internships, post-doctoral fellowships and other student programs. It should be noted, however, that mitigation measures developed to help reduce impacts to cultural resources, such as the educational initiative at MCC designed to address the intersection between Native Hawaiian culture and science, would have a minor, beneficial, and long-term impact on educational outreach.

The potentially affected area is not a predominantly minority or low-income community, so none of the impacts of construction and operation of the proposed ATST Project would disproportionately affect minority or low-income groups. Thus, with regard to environmental justice, the proposed ATST Project would have negligible adverse impacts for either the Preferred Mees site or the alternative Reber Circle site.

4.13 **Public Services and Facilities**

The ROI for public services and facilities includes HO and the Park road corridor. Due to its remote location near the summit of Haleakalā, HO is 22 miles from the nearest public services and facilities. The nearest school is in Kula, approximately 27 miles from HO, as is the nearest healthcare facility. With a travel time of nearly an hour to the closest police or fire stations, the facilities at HO are unable to utilize timely services from Maui public departments. Therefore HO is considered to be independent of most public services and facilities.

4.13.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on public services and facilities are as follows:

- 1. Review and evaluate existing and past actions with respect to their **impacts** on police protection, fire protection, schools, recreational facilities, and healthcare services to identify the proposed ATST Project's potential **impact** on public services and facilities.
- 2. Review and evaluate the anticipated **impacts** on public services based on publicly available information about those services on Maui in view of the number of personnel at the proposed ATST Project and the distances to those public services, to identify each alternative's potential to involve substantial secondary **impacts**, such as **impacts** on public facilities at locations within and outside HO.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations concerning police and fire protection.

The thresholds of change for the intensity of an **impact** for public services and facilities are defined as follows:

Impact Intensity	Intensity Description	
Negligible	The alternative would either not result in a change to public services and facilities or the change would be so small that it would not be of any measurable or perceptible consequence.	
Minor	The alternative would result in a detectable change to public services and facilities, but the change would be small and localized and of little consequence.	
Moderate	The alternative would result in a measurable and consequential change to public services and facilities. Mitigation measures would be necessary to offset adverse impacts and likely be successful.	
Major	The alternative that would result in a substantial change to public services and facilities; the change would be measurable and result in a severely adverse or major beneficial impact . Extensive mitigation measures to offset adverse impacts would be needed to offset adverse impacts and their success could not be guaranteed.	
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the proposed ATST Project construction period.		

4.13.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

Police Protection

The nearest police substation is located in Kula, which is the community closest to the summit of Haleakalā but still approximately 22 miles away. **However**, HALE rangers are the designated policing authority within HALE and the Maui Police Department (MPD) has no jurisdiction over Park activities. Park rangers would be required to continue to respond to emergency needs on the Park road corridor and, as has **assisted** HO personnel with emergency needs. It is not anticipated the proposed ATST Project would affect MPD operations. Police communication facilities in the summit area would not be affected by the construction or operations of the proposed ATST Project at the Mees site. **In comparison to the approximately 1,600 vehicles that ascend the summit each day, the few additional** vehicles on the road during construction and operation of the proposed ATST Project would not increase demands on Park rangers or MPD services. Park rangers or MPD would experience negligible, adverse, and long-term **impacts** as a result of immeasurable and imperceptible changes brought on by the proposed ATST Project.

Fire Protection

The closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā. Another fire station serving the Upcountry community is located in Makawao, approximately 29 miles from the summit. These two fire stations **are beyond** fire fighting capabilities. In the event of a wildlife fire, National Park Wildlife Firefighters comprised of a militia of approximately 10 to 12 certified, wildland firefighters residing on Maui would undertake this responsibility (see Section 3.13.2-Fire Protection). Therefore, there are negligible, adverse, and long-term **impacts** anticipated from the proposed ATST Project on these services at either the Mees site. The ATST facility would be equipped with standard fire prevention and fire fighting capabilities required for the nature of its activities and type of facility. The few **additional** vehicles on the road during construction and operation of the proposed

ATST Project in comparison with the approximately 1,600 vehicles that ascend the summit each day would pose negligible, adverse, and long-term demands on fire protection services. Changes would be so small that it would not be of any measurable or perceptible consequence.

Schools

The closest schools to the proposed ATST Project are located in the Kula community (Haleakalā Waldorf School, King Kekaulike High School, Kula Elementary, the Carden Academy, and the Kamehameha Schools) and are approximately 25 to 27 miles from the summit of Haleakalā and the Park road corridor. Negligible, adverse, and long-term **impacts** are anticipated from construction or operation of the proposed ATST Project. Changes would be so small that it would not be of any measurable or perceptible consequence.

Recreational Facilities

As described in Section 3.13.4-Recreational Facilities, the Haleakalā Visitor Center of HALE is located approximately two-thirds of a mile east of HO and is one of the main points of attraction for visitors to the mountain. Besides boasting a magnificent view of the crater, the Haleakalā Visitor Center also details the geology, archeology, and ecology of the area as well as the wilderness protection programs in exhibits posted throughout the area. The proposed ATST Project would not be visible from the overlook itself, but would be visible from the parking area. The proposed ATST Project would appear amongst the other HO observatories visible from that location and at various locations along the Park **road and, as explained in Section 4.5-Visual Resources and View Planes, there would be, from some vantage points, moderate, adverse, and long-term impacts to the view plane.** Orientation panels and descriptive displays are located at Leleiwi and Kalahaku overlooks and the proposed ATST Project would not be visible from either of those vistas.

Pu'u Ula'ula Overlook, located about 0.3 mile east of HO along the Park road between the Haleakalā Visitor Center and the summit, is a major visitor attraction. From this vantage point, the proposed ATST Project would be visible from the overlook when looking to the southwest. The proposed ATST Project would appear taller than the AEOS facility at either of the sites in HO, and the telescope carousel and enclosure would be white in color. As explained in Section 4.5-Visual Resources and View Planes, there would be a moderate, adverse, and long-term impact on the viewshed from this vantage point.

The nearby Skyline Trail begins at the 9,750-foot elevation at the lowest point of the paved access road near the Saddle Area and continues for about 6.5 miles, ending at the Polipoli Spring State Recreation Area. Trails through the area are open to the public for hiking and related recreational activities, except during times of extreme fire danger. The upper carousel of the proposed ATST Project would be visible along some portions of the upper third of this trail, but not from the lower two thirds.

As discussed in Section 4.6-Visitor Use and Experience, the proposed ATST Project would have moderate, adverse, and long-term **impacts** on recreational facilities due to a change in visual resources. The change would be noticeable at various locations in HALE as described in Section 4.5. No access to any HALE or State Conservation Land facilities, including the Park road corridor, would be blocked or impeded, and no trails would be eliminated or re-routed.

The proposed ATST Project would not limit the recreational facilities and resources. The main attractions for recreation are the locations where most visitors congregate, i.e., the Pu'u Ula'ula Overlook, the Haleakalā Visitor Center, the Leleiwi Overlook, the Park Headquarters Visitor Center, and the crater trails. Access to any HALE or State Conservation Land facilities, including the Park road corridor, would, however, not be blocked or impeded, and no trails would be eliminated or re-routed. During operations of the proposed ATST Project, the recreational impact

for the Park road corridor would be minor, adverse, and long-term, mainly due to the slight increase in traffic from ATST operations.

Healthcare Services

The closest healthcare facility is the Kula Hospital and Clinic which, along with its limited acute-care services, began to provide urgent care and limited rural emergency care on a 24-hour, 7-day a week basis on October 31, 2005. Negligible, adverse, and long-term **impacts** on this facility or Maui Memorial Hospital are anticipated. There are also emergency medical service stations located in Kula and Makawao, which dispatch emergency medical care. The proposed ATST Project would not affect Healthcare services. Changes would be of immeasurable or imperceptible consequence and, therefore **impacts** on Park resources is not expected.

Federal Aviation Administration

In response to a request for concurrence to NSF's determination of negligible, adverse **impact**, the FAA issued a Notice of Presumed Hazard in October 2007, suggesting that the proposed ATST Project would result in radio frequency shadowing at the FAA RCAG facility located about 800 feet to the West of the proposed ATST Project. In accordance with 14 CFR Part 77.35, FAA specialists working with NSF **have addressed** any potential issue involving a degradation of signal as a result of the proposed ATST Project. Given the potential for degradation of signal, the FAA has determined the degradation of signal can be mitigated by replacing the existing antennas with high gain antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas. The FAA has stated that further modification of the site and relocations would not rise to a level of significance. In addition, NSF will work with the FAA to obtain adequate funding for implementation of the resolution. It is anticipated that implementation of this mitigation measure would reduce the impacts to negligible, adverse, and long-term.

4.13.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

Impacts for the Reber Circle site would be identical to those discussed for the Mees site. There would be negligible, adverse, and long-term **impacts** on most public services and facilities, such as police and fire protection, schools, **recreational facilities**, and healthcare services. The proposed ATST Project **at the Reber Circle site** would result in immeasurable and imperceptible changes.

For recreational facilities, minor, adverse, and long-term **impacts** can be expected. The proposed ATST Project would be the tallest structure in HO if placed at the Reber Circle site and would be visible from the Pu'u Ula'ula Overlook when looking to the southwest. Although there is an **impact**, it is not considered major as this viewshed has included the HO complex and facilities prior to the proposed introduction of ATST. ATST would be additive, however would not obstruct an otherwise pristine view; **nevertheless**, the **impact** would be **moderate**, adverse, and long-term.

4.13.4 No-Action Alternative

If the proposed ATST Project were not constructed, there would be negligible, adverse, and long-term **impacts** on public services and facilities. There would be no measurable or perceptible consequence as a result of the No-Action Alternative.

4.13.5 Summary of Impacts on Public Services and Facilities

With its remote location near the summit of Haleakalā, HO is 22 miles from the nearest public services and facilities. With a travel time of nearly an hour to the closest police or fire stations, the facilities at HO are unable to utilize timely services from these Maui public departments. The nearest schools are in Kula, approximately 25 to 27 miles from HO, as is the nearest healthcare facility. The proposed ATST Project would have negligible, adverse, and long-term **impacts** on these services. Changes would be so small that it would not be of any measurable or perceptible consequence. There would be a moderate, adverse, and long-term impact on recreational activities as a result of the impact on the viewshed from some vantage points within HALE. In summary, public services and facilities would have a minor, adverse, long-term impact. No mitigation would be implemented.

4.14 Natural Hazards

The ROI for natural hazards includes HO and the Park road corridor.

4.14.1 Methodology of Impact Assessment

The methods used to determine whether the proposed ATST Project would have a major **impact** on natural hazards are as follows:

- 1. Review and evaluate existing and past actions with respect to earthquakes, hurricanes and other storms, hypoxia, and extreme temperatures to identify the potential **impact** of natural hazards on the proposed ATST Project or the proposed ATST Project on environmentally-sensitive areas.
- 2. Review and evaluate each alternative with respect to available earthquake, storm, and temperature data from HO, and reports of hypoxia to identify its potential to adversely affect the nature of natural hazards within and adjacent to HO and the Park road corridor, and for natural hazards to affect the proposed ATST Project, including damage, destruction, and loss of life.
- 3. Assess the compliance of each alternative with applicable Federal, State, or County regulations for seismic design factors and the International Building Code for design and construction.

Impact Intensity	Intensity Description
Negligible	The alternative would either not be impacted by natural hazards, the proposed ATST Project would not impact the nature of natural hazards, or the impact would be so small that it would not be of any measurable or perceptible consequence.
Minor	The alternative would be impacted by natural hazards or the proposed ATST Project would impact the nature of natural hazards, but the change would be small and localized and of little consequence.
Moderate	The alternative would be impacted by natural hazards or the proposed ATST Project would impact the nature of natural hazards, the impacts would be measurable and of consequence. Mitigation measures would be necessary to offset adverse impacts and likely be successful.

The thresholds of change for the intensity of **impacts** on natural hazards are defined as follows:

Impact Intensity	Intensity Description	
Major	The alternative would be substantially impacted by natural hazards or the proposed ATST Project would substantially impact the nature of the natural hazards; the impacts would be measurable and result in a severely adverse or major beneficial impact . Extensive mitigation measures to offset adverse impacts would be needed to offset adverse impacts and their success could not be guaranteed.	
Duration: Short-term – occurs only during the proposed ATST Project construction period. Long-term – continues after the proposed ATST Project construction period.		

4.14.2 Evaluation of Potential Impacts at the Preferred Mees Site

DIRECT AND INDIRECT IMPACTS

The potential natural hazards at HO are high winds, extreme rain, ice, and snow due to storms or hurricanes; earthquakes due to Hawaii's position within a seismically active zone; and, hypoxia due to the high altitude of the site. Incidence of naturally occurring events including severe weather conditions has the potential to affect the HO site and health and safety of personnel at any time. When conditions become critical and serious to warrant protection of human life, HALE takes precautionary measures to prevent or minimize the **impacts** of natural hazards by closing HALE during severe weather events.

The potential **impacts** from seismic activity vary depending on the magnitude of an earthquake. A Preliminary Seismic Design Analysis was prepared by the ATST Project team to determine the seismic design factors to be used in the General Specification (SPEC-0070) for the **proposed** ATST Project. The 2006 edition of the International Building Code was designated as the primary reference for the preliminary seismic hazard analysis and would be the contractually enforced, life-safety code that architecture and engineering firms would be required to comply with for the entire ATST facility design (NSO, 2007). Designing and constructing the **proposed ATST Project** in accordance with the General Specifications based on seismic design analysis conducted by NSO is expected to be adequate protection from potential seismic events.

Project designs for the proposed ATST Project to reduce potential for impact on other facilities at HO and within the ROI from natural hazards would include the following:

- 1. To mitigate risk of earthquake damage, all structural elements of the proposed ATST Project would meet or exceed currently in-force building code requirements for seismic risk on the Island of Maui. The current design standard is Seismic Zone 2b as defined by the 1997 Uniform Building Code.
- 2. To minimize the potential for hypoxia, training for employees would include information on how to avoid this hazard. It would be suggested employees and visitors at the proposed ATST Project walk slowly at the high elevation and drink plenty of water throughout their working hours to avoid dehydration. The high altitude at the summit area may complicate health conditions and cause breathing difficulties. Pregnant women, young children, and those with respiratory or heart conditions should consult their doctors prior to traveling to high elevations.
- 3. When weather conditions such as hurricanes, high winds, snow, and ice become extreme, HALE closes its gates to prevent people from endangering themselves. Each facility within HO may or may not require a skeleton crew to remain on site while other employees and visitors are required to vacate. The personnel serving the proposed ATST Project would

have policies and procedures in place for minimum manning during extreme weather conditions.

NSO is developing a management plan to ensure implementation of the mitigation measures set forth above. The action alternatives would incorporate these measures by using monitoring and evaluation mechanisms to determine if the proposed ATST Project is achieving the mitigation objectives and adjust actions accordingly. This management plan would cover both phases of the proposed project, including construction and operations.

Altitude-related conditions, including hypoxia is a potential affect experienced by some personnel working at the summit. Working at high altitudes requires proper planning, specialized training and adequate equipment. As required of all personnel working at HO, employees of the proposed ATST Project, both during construction and operation, would be required to attend training prior to beginning work at the site.

The construction and operation of the proposed ATST Project would have a negligible, adverse **impact** on the safety of the public and adverse **impacts** on the environment would be negligible such as to cause damage, destruction, or loss of life. **No mitigation would be necessary to reduce this impact**.

4.14.3 Evaluation of Potential Impacts at the Reber Circle Site

DIRECT AND INDIRECT IMPACTS

The **impacts** from natural hazards at the Reber Circle site would be identical to those identified for the Mees site. There would be negligible, adverse **impacts** at **the Reber Circle site**. **No mitigation would be necessary to reduce this impact**.

4.14.4 No-Action Alternative

There would be no change from existing conditions under the No-Action Alternative and no mitigations would be necessary.

4.14.5 Summary of Impacts From Natural Hazards

The natural hazards identified **above pose** a risk to HO and may affect the proposed ATST Project and its personnel at any time. **The proposed ATST Project would have negligible, adverse impacts on the safety of the public and adverse impacts on the environment would be negligible such as to cause damage, destruction, or loss of life through incorporation of seismic design factors and compliance with the 2006 International Building Code.** All HO contractors and operations staff would be trained on the natural hazards unique to the site in order to minimize potential injuries. **No mitigation would be necessary to reduce this impact.**

4.15 Summary of Potential Impacts Resulting From the Proposed ATST Project

Section 4.15 – Summary of Potential Impacts Resulting from the Proposed ATST Project has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The evaluation of whether impacts are collectively significant begins with the characterization of the impacts from the proposed ATST Project itself. Sections 4.1 to 4.14 describe these impacts. These include

both adverse and beneficial impacts on resources within the ROI for the proposed ATST Project, whether implemented at the Mees site or the Reber Circle site. The proposed ATST Project would result in a variety of impacts, some mitigable and some not as shown in Table 4-7. Mitigations are discussed in the project analysis as each applies to the specific impact and summarized in Section 4.18.

Resource Section	Impact	Mitigation	Final Impact
	Impacts of the Preferred Mees Site Alternativ	e	
4.1-Land Use	Minor, Adverse, Long-term impact on level of use of	MIT-1	Minor,
and Existing Activities	the land and current land use designation		Adverse,
	(Conservation District, General Subzone).		Long-term
	Major, Adverse, Long-term impact on the FAA	MIT-2	Negligible,
	RCAG facility by degradation of the communication		Adverse,
	signal.		Long-term
4.2 -Cultural, Historic,	Major, adverse, long-term impact resulting from	MIT-1	Major,
and Archeological	construction and day-to-day use of the ATST project	MIT-3	Adverse, Long-
Resources	on the summit area of Haleakalā. The proposed	MIT-4	Term
	ATST Project would be seen as culturally insensitive	MIT-5	
	and disturb traditional cultural practices conducted	MIT-6	
	within the ROI. Further, noise and construction-	MIT-13	
	related disturbances would have a major adverse impact on traditional cultural practices within the	MIT-14	
	ROI. No mitigation would lessen these impacts.	MIT-16	
	Kor. No mitigation would lessen these impacts.	MIT-18	
	Moderate, Adverse, Long-term impact resulting from	MIT-6	Minor,
	the potential disturbance to historic resources along	MIT-7	Adverse,
	the Park road corridor.	MIT-12	Long-term
	Negligible, Adverse, Long-term impact on	MIT-5	Negligible,
	archeological resources during construction and	MIT-7	Adverse,
	operation.		Long-term
4.3-Biological	Major, Adverse, Short-term impact on the Hawaiian	MIT-6	Negligible,
Resources	Petrel during the egg incubation period due to noise		Adverse,
	and vibration generated by construction activities.		Short-term
	Potential major, adverse effects from construction		
	could include the disturbance of the 'ua'u habitat at		
	HO, where birds would not be willing to remain in		
	their burrows during the nesting season. Unrestrained		
	construction noise, vibration, or human proximity		
	could affect the nesting habits of the 'ua'u to the		
	extent that they may not return to, remain in, or		
	otherwise utilize the burrows that are inhabited each		
	year.		
	Major, Adverse, Short- and Long-term impact on	MIT-9	Negligible,
	botanical resources resulting from earth movement		Adverse,
	during construction and AIS introduction. Potential		Short- and Long-
	effects on 'ahinahina plants, Geranium multiflorum		term
	critical habitat, and 'ua'u burrows were found to be		
	negligible.		
4.4-Topography,	Minor, Adverse, Short-term impact resulting from	N/M	
Geology, and Soils	land clearing, demolition, grading/leveling,		
	excavation, and other construction-related		
	earthmoving activities.		

Table 4-7. Impact Summary Table.

Resource Section	Impact	Mitigation	Final Impact	
Impacts of the Preferred Mees Site Alternative				
4.5-Visual Resources and View Planes	<i>Moderate, Adverse, Short-term</i> impact during the construction period when equipment, specifically cranes, will be visible from the Pu'u Ula'ula Overlook, the western edge of the Haleakalā Visitor's Center, the summits of White Hill (Pa Ka'oao) and Magnetic Peak, and along the Park road corridor near Kalahaku Overlook. No mitigation would adequately reduce this impact.	N/M		
	<i>Moderate, Adverse, Long-term</i> impact after the ATST facility is erected and is visible from Pu'u Ula'ula Overlook, the western edge of the Haleakalā Visitor's Center, the summits of Pa Ka'oao and Magnetic Peak, and along the Park road corridor nearing HO. No mitigation would adequately reduce this impact.	N/M		
4.6-Visitor Use and Experience	<i>Major, Adverse, Long-term</i> impact resulting from visual effects on visitor expectations for summit area natural vistas	N/M		
	<i>Major, Adverse, Short-term</i> impact resulting from construction-related noise.	MIT-6	Moderate, Adverse, Short-term	
	<i>Negligible, Adverse, Long-term</i> impact resulting from construction-related traffic traversing the Park road corridor.	MIT-10	Negligible, Adverse, Long-term	
4.7-Water Resources	<i>Minor, Adverse, Short- and Long-term</i> impact on surface water and drainage at HO.	N/M	2	
	<i>Minor, Beneficial, Long-term</i> impact on groundwater sources and supplies because the existing cesspool would be replaced by an individual wastewater system to treat sanitary waste. The potential for release or failure during installation creates a negligible, adverse, short-term impact.	N/M		
4.8-Hazardous Materials and Solid Waste	<i>Negligible, Adverse, Long-term</i> impact resulting from construction debris and hazardous materials used in building construction and operation. Adherence to the LRDP would restrict hazardous material use and guide management practices. There would be no substantive change in solid waste generation or disposal practices.	N/M		

Table 4-7. Impact Summary Table (cont.).

Resource Section	Impact	Mitigation	Final Impact
	Impacts of the Preferred Mees Site Alternativ	U	
4.9 - Infrastructure and Utilities	<i>Major, Adverse, Long-term</i> impact on the FAA RCAG facility by degradation of the communication	MIT-2	Negligible, Adverse,
	signal.		Long-term
	<i>Moderate, Adverse, Short-term</i> impact during the construction period to the roadways within HO.	MIT-11	Minor, adverse, short-term
	<i>Minor, Adverse, Short- and Long-term</i> impact during the construction period on State and Park roadways. This impact would continue at a lower level during operations.	MIT-12	Minor, Adverse, Short- and Long- term
	<i>Moderate, Beneficial, Long-term</i> impact on electrical systems at HO due to the proposed MECO upgrade.	N/M	term
	<i>Negligible, Adverse, Long-term</i> impact on stormwater and communication systems.	N/M	
4.10-Noise	<i>Major, Adverse, Short-term</i> impact resulting from construction-related noise both within and outside of	MIT-6	Major, Adverse, Short-
	the project area and along the Park road corridor.	MIT-11	term
		MIT-13	
	<i>Minor, Adverse, Long-term</i> impact resulting from operations-related noise both within and outside of the project area and along the Park road corridor.	N/M	
4.11-Air Quality	<i>Negligible, Adverse, Short- and Long-term</i> impact from fugitive dust and during the construction period and during operations.	N/M	
4.12-Socioeconomics and Environmental	<i>Minor, Adverse, Long-term</i> impact on population and housing.	N/M	
Justice	<i>Minor, Beneficial, Short- and Long-term</i> impact on the local economy and employment during the construction phase of the project. Also there would be a <i>Minor, Beneficial, Long-term</i> impact on schools due to federal funding provided to schools and specifically to MCC who would receive data and projects for their studies from ATST.	N/M	
	<i>Negligible, Adverse, Long-term</i> impact on environmental justice and the protection of children	N/M	
4.13-Public Services and Facilities	<i>Negligible, Adverse, Long-term</i> impact on park, police, fire, and school personnel and healthcare services as a result of the proposed project.	N/M	
	<i>Moderate, Adverse, Long-term</i> impact on recreational facilities as a result of the change in the viewshed. No mitigation would adequately reduce this impact.	N/M	
4.14-Natural Hazards	<i>Negligible, Adverse, Long-term</i> impact on the safety of the public and health of the environment.	N/M	

Table 4-7. Impact	t Summary	Table	(cont.).
-------------------	-----------	-------	----------

Resource Section	Impact	Mitigation	Final Impact
	Impacts of the Reber Circle Site Alternati		
All impacts and	I mitigations identified under the Reber Circle Site		similar
-	l for the Preferred Mees Site Alternative with the e		
4.2- Cultural, Historic, and	Major, Adverse, Long-term impact on	MIT-8	Negligible,
Archeological Resources	Archeological Site 50-50-11-5443, the		Adverse,
Theneological Resources	remnant of a 1952 radio telescope		Long-term
	experiment.		Long term
4.4-Topography, Geology,	Minor, Adverse, Short-term impact resulting	N/M	
and Soils	from land clearing, demolition,	1 1/ 1/1	
	grading/leveling, excavation, and other		
	construction-related earthmoving activities.		
	The amount of impervious area would be		
	slightly higher than that of the Preferred		
	Mees Site since the existing MSO facility		
	would remain.		
4.5 -Visual Resources and	Moderate, Adverse, Short-term impact	N/M	
View Planes	during the construction period when	1 () 1 1	
	equipment, specifically cranes, will be		
	visible from the Pu'u Ula'ula Overlook and		
	along the Park road corridor near Kalahaku		
	Overlook and nearing HO. No mitigation		
	would adequately reduce this impact.		
	Major, Adverse, Long-term impact after the	N/M	
	ATST facility is erected that would occur at	1 () 1 1	
	Pu'u Ula'ula Overlook. There would be a		
	Moderate, Adverse, Long-term impact on		
	western edge of the Haleakalā Visitor's		
	Center, the summits of Pa Ka'oao and		
	Magnetic Peak, and along the Park road		
	corridor near Pa Ka'oao and nearing HO.		
	There would be <i>Minor</i> , <i>Adverse</i> , and Long-		
	<i>term</i> from some locations in the crater. No		
	mitigation would adequately reduce this		
	impact.		
4.7-Water Resources	Minor, Adverse, Long-term impact on	N/M	
	groundwater as the existing MSO cesspool		
	would remain and would continue to be		
	used.		
4.8 - Hazardous Materials and	d Negligible, Adverse, Long-term impact	N/M	
Solid Waste	resulting from construction debris and		
	hazardous materials used in building		
	construction and operation. Adherence to the		
	LRDP would restrict hazardous material use		
	and guide management practices. There		
	would be no substantive change in solid		
	waste generation or disposal practices. A		
	new aboveground fuel tank would be		
	installed at the Reber Circle Site, which		
	would comply with all USEPA and State		
	requirements.		

Table 4-7. Impact Summary Table (cont.).

Resource Section	Impact	Mitigation	Final Impact		
	Impacts of the Reber Circle Site Alternative				
All impacts and mitigations identified under the Reber Circle Site Alternative are similar					
to those discussed f	or the Preferred Mees Site Alternative with the	exception of the	following.		
4.10-Noise	Minor, Adverse, Long-term impact	N/M			
	resulting from the addition of a new				
	backup generator, which would be				
	supplemental as opposed to a simple				
	replacement of an existing generator at the				
	MSO site. The unit would operate 30				
	minutes per month for testing and during				
	emergencies.				
4.11-Air Quality	Negligible, Adverse, Short-term impact	N/M			
	during construction similar to the Mees				
	Site Alternative, however roughly twice				
	the volume of site material at the Reber				
	Circle site would be excavated and				
	stockpiled.				
Resource Section	Impact	Mitigation	Final Impact		
	Impacts of the No-Action Alternative	1			
All impacts under the N	No-Action Alternative would be negligible with	the exception of	the following.		
4.3-Biological Resources	Minor, Adverse, Long-term impact on the	N/M			
	ability to assess the health, numbers, and				
	behavioral characteristics of the 'ua'u				
	colony population as the monitoring				
	program would be discontinued.				
4.7-Water Resources	Minor, Adverse, Long-term impact from	N/M			
	potential discharge of wastewater from the				
	existing cesspool at MSO.				

Table 4-7. Impact Summary Table (cont.).

4.16 Other Required Analyses

Section 4.16 – Other Required Analyses has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

In addition to the analyses discussed in Sections 3.0-Description of Affected Environment and 4.0-Environmental Consequences, Cumulative **Impacts**, and Mitigation, NEPA requires additional evaluation of the proposed ATST Project's **impacts** with regard to the following:

- 1. The relationship between local short-term uses of the environment and long-term productivity;,
- 2. Any irreversible or irretrievable commitment of resources; and,
- 3. Unavoidable adverse impacts.

4.16.1 Relationship Between Local Short-Term Uses of the Environment and Long-Term Productivity

Short-term uses of the environment for implementation of the proposed ATST Project at either the Preferred Mees site or the Reber Circle site would be limited. **The proposed ATST Project would take whatever actions are reasonable and practicable to preserve and protect the natural environment and cultural. In parallel with protective measures,** the long-term productivity of either of the proposed ATST Project alternatives is **founded** on **one of** NSF's missions, **supporting the scientific community's** objectives to **achieve unprecedented** progress in solar observation. Any measurement of long-term productivity in this context must include the overriding importance of advancing knowledge of the Sun, both as an astronomical object and as the dominant external influence on Earth, by providing forefront observational opportunities to the research community. **Considering** the objectives discussed in Section 1.0-Introduction, with **NSF support**, **the astronomy community has the opportunity** to make significant advances in what is known about solar history, developments, and functions.

4.16.2 Irreversible and Irretrievable Commitments of Resources

There is a NEPA requirement for analysis of the extent to which the proposed project's primary and secondary **impacts** would commit non-renewable resources to uses that would be irreversible or irretrievable to future generations. A commitment would be irreversible when primary or secondary **impacts** limit the future options for a resource. An irretrievable commitment refers to these or consumption of resources neither renewable nor recoverable for future use.

Construction of the proposed ATST Project would consume energy and building materials. Petroleum, oils, and fuels would be used by construction vehicles and equipment and by staff vehicles during operation. Furthermore, equipment used in the facility would require lubricants, oils, and solvents. Construction material such as steel, cement and aggregate would be expended. There would be increases in water, power, and other resources necessary to maintain and operate new facilities and machinery. Finally, there would be a slight increase in **demand on** local resources required to support the additional staff and their families. These physical resources are generally in sufficient supply and their commitment to the proposed ATST Project would not have an adverse **impact** on their availability. In some cases, certain material resources such as concrete, steel, or water could be reclaimed, recycled, and reused.

In terms of human resources, trade and non-skilled laborers would be used during the development, construction, and operations of the proposed ATST Project. Labor is generally not considered to be a resource in short supply and the proposed ATST Project would not have an adverse **impact** on the continued availability of these resources.

4.16.3 Unavoidable Adverse Impacts

Adverse impacts are divided into short- and long-term impacts. Short-term impacts are generally associated with construction and last only during the construction period. Long-term impacts generally follow completion of the improvements and are permanent.

4.16.3.1 Unavoidable Adverse Short-Term Impacts

At the Preferred Mees site, there would be a moderate, adverse, and short-term impact on visual resources during the construction period when equipment, specifically cranes, would be visible from the Pu'u Ula'ula Overlook, the Haleakalā Visitor's Center, the summits of Pa Ka'oao, and Magnetic Peak, and along the Park road corridor near Kalahaku Overlook. These impacts would

occur over the course of the construction period and no mitigation would adequately reduce this impact.

At the Reber Circle site, there would be a moderate, adverse, and short-term impact on visual resources during the construction period when equipment, specifically cranes, would be visible from the Pu'u Ula'ula Overlook and along the Park road corridor near Kalahaku Overlook and nearing HO. These impacts would occur over the course of the construction period and no mitigation would adequately reduce this impact.

Construction-related noise at either the Mees site or the Reber Circle site would result in major, adverse, short-term impacts on the noise setting and, thus, the visitor use and experience -- specifically in regions of HALE along the Park road corridor. While mitigation measures would be in place to limit the sources and timing of these noise impacts, these mitigation measures would not adequately reduce these short-term adverse impacts.

4.16.3.2 Unavoidable Adverse Long-Term Impacts

There would be a major, adverse, and long-term impact on traditional cultural resources resulting from construction and operation of the proposed ATST Project on the summit area of Haleakalā. The proposed project would be considered by some to be an intrusion on a sacred site. It would disturb traditional cultural practices conducted within the ROI. No mitigation would lessen these permanent impacts.

Additional personnel associated with the construction and operation would, by accessing and working at the site, potentially disturb traditional cultural resources and practices which would result in a major, adverse, long-term impact. Although mitigation measures would be implemented to avoid impacts, the potential for major adverse impact would remain.

At the Preferred Mees site, there would be a major, adverse, long-term impact on visual resources as applied to HALE visitor use and experience if the proposed ATST facility were erected. The fully constructed facility would be visible from Pu'u Ula'ula Overlook, the western edge of the Haleakalā Visitor's Center, the summits of Pa Ka'oao and Magnetic Peak, and along the Park road corridor nearing HO. These impacts would last for the life of the ATST facility, would continue to affect visitor expectations of the summit natural vistas, and no mitigation would adequately reduce this impact.

At the Reber Circle site, there would be a major, adverse, long-term impact on visual resources, as applied to HALE visitor use and experience if the proposed ATST facility were erected. The fully constructed facility would be visible from Pu'u Ula'ula Overlook. Furthermore, there would be a moderate, adverse, and long-term impact as the facility would be visible from the center point of the Haleakalā Visitor's Center, the summits of Pa Ka'oao and Magnetic Peak, and along the Park road corridor near Pa Ka'oao and nearing HO. These impacts would last for the life of the ATST facility and no mitigation would adequately reduce this impact.

4.17 Cumulative Impacts to the Affected Environment

The impacts of the proposed ATST Project were examined together with the impacts from past, present, and reasonably foreseeable activities within the ROI for each resource. An introduction to the regulatory guidance used to identify temporal and geographic boundaries for cumulative **impacts** is presented; those boundaries are listed, as are the agencies contacted to identify future activities within the ROI for each resource. To assist in determining the scope of cumulative **impacts**, a brief summary of past, present, and

reasonably foreseeable future actions within the relevant ROI is presented in Sections 4.17.1 to 4.17.3, respectively. Detailed discussion of the cumulative **impacts** resulting from the proposed ATST Project is presented in Sections 4.17.4 to 4.17.17.

The CEQ NEPA-implementing regulations define cumulative **impacts** as the incremental environmental **impacts** of the proposed ATST Project when added to other "past, present, and reasonably foreseeable future actions, regardless of what agency (Federal or non-Federal) or person undertakes such other actions." Cumulative **impacts** can result from individually minor, but collectively significant, actions taking place over time. Although all cumulative impacts were analyzed in this FEIS, during the scoping process, NSF consulted with interested agencies and the public, who identified the following cumulative **impact** concerns associated with the proposed ATST Project: the 'ua'u and its habitat on Haleakalā, the central role of Haleakalā in the cultural and spiritual life of Native Hawaiians, the visual **impact** of the proposed ATST Project on the viewshed from Haleakalā National Park (HALE) and from lower elevations on Maui, the use of electrical power; and, increased traffic to and from the summit.

Guidance for implementing NEPA recommends that Federal agencies identify the temporal and geographic boundaries of the potential cumulative **impacts** of the proposed ATST Project (CEQ, 1997). For the purposes of this evaluation, the temporal boundary of analysis extends from 1964, when the Mees Solar Observatory (MSO) facility was constructed at HO, until such time when it is anticipated that a lease agreement between the University of Hawai'i (UH) and the National Solar Observatory (NSO) would end, if the proposed ATST Project is constructed and becomes operational. The geographic boundaries of analysis vary depending on the relevant ROI for each resource. For most resources, the analysis area is the same as introduced in the resource-specific affected environment sections, primarily characterized by the boundaries of the Haleakalā High Altitude Observatory (HO) complex and the Park road corridor. Reasonable geographic boundaries for each ROI are specified for each of the potentially affected resources of the proposed ATST Project, as follows:

- 1. Land Use: HO and the Park road corridor.
- 2. Cultural, Historic and Archeological Resources: HO, summit area within HALE, and the Park road corridor.
- 3. Biological Resources: HO and the Park road corridor.
- 4. Topography, Geology, and Soils: HO and the Park road corridor.
- 5. Visual Resources and View Planes: Portions of the Maui landmass, HO, the Park road corridor, and other areas within HALE from which structures within HO are visible.
- 6. Visitor Use and Experience: The Park road corridor and areas within HALE from which structures within HO are visible and from which noise generated by activities related to the proposed ATST Project could be heard.
- 7. Water: HO and the Park road corridor, which are both within the Waiakoa and Manawainui Gulch watersheds and Kahikinui Aquifer system.
- 8. Hazardous Materials and Solid Waste: HO, the Park road corridor, and a portion of the State highway leading up to the Park road corridor.
- 9. Infrastructure and Utilities: HO, the Park road corridor, **and State Highway 378**. The ROI for utilities is focused on HO, which is separately served by Maui Electrical Company and Hawaiian Telecon.
- 10. Noise: HO and the Park road corridor.

- 11. Air Quality: HO, areas within HALE from which noise generated by the proposed ATST Project could be heard, and the Park road corridor.
- 12. Socioeconomics and Environmental Justice: (Socioeconomics) Island of Maui; and (Environmental Justice) Haleakalā.
- 13. Public Services and Facilities: HO and the Park road corridor.
- 14. Natural Hazards: HO and the Park road corridor.

Proposed projects identified in the Institute for Astronomy's (IfA) Long Range Development Plan (LRDP) and information from HALE was used to identify other actions for consideration in this cumulative **impacts** analysis. In November 2005, and again in February of 2009, agencies known to have facilities and operations within the ROI for the resource-specific affected environments were contacted with a request to provide information on current and planned activities that could occur within the reasonably known future and contribute to cumulative **impacts** when considered with the proposed ATST Project at HO (KCE, 2005 and 2009). The agencies were:

- 1. County of Maui Police Department, Telecommunications
- 2. Department of Energy
- 3. Federal Aviation Administration
- 4. Federal Bureau of Investigation
- 5. Haleakalā National Park
- 6. Hawaiian Telcom
- 7. State of Hawai'i Department of Accounting and General Services Public Works, Information and Communications Services Division
- 8. Maui Electric Company
- 9. DLNR Maui Na Ala Hele
- 10. National Weather Service/National Oceanic & Atmospheric Administration (NOAA)
- 11. Raycom Media, Inc.
- 12. Sandia Laboratories
- 13. U.S. Coast Guard, Civil Engineering Unit
- 14. U.S. Air Force Research Laboratory

4.17.1 Past Actions at HO and Adjacent Neighbors

Within the ROI, the past history and important events at HO and those of its adjacent neighbors are described in Table 1-2 and an aggregate view of those facilities is shown in Figure 1-5. The past history of facilities along the Park road corridor and important events is described in detail in the National Park Service Cultural Landscapes Inventory 2008 (CLI, 2008). Past, present, and reasonably foreseeable future actions with **impacts** associated with the proposed ATST Project considered are described in Table 4-8.

The history of HO is considered to have begun with Grote Reber, one of the pioneers of radio astronomy, when he experimented with radio interferometry using a large, steel and wood truss antenna at what is now called Reber Circle. The site was abandoned approximately one year later. In 1961, Governor Quinn

set aside 18.1 acres of land on the summit to establish the HO site, in a place known as Kolekole to be under the control and management of the IfA for scientific purposes.

Facility	Status	Reasonably Foreseeable Future Actions
Mees Solar Observatory	1966, currently used	Remain as-is, or be replaced by the proposed ATST Project
Atmospheric Airglow	1961, currently used	Remain as-is, or be replaced by Pan-STARRS or the proposed ATST Project
Zodiacal Light	1961, currently used	Remain as-is
Cosmic Ray Neutron Monitor Station	1961, currently inactive	To Be Determined
Baker-Nunn Site	1957, currently used	Remain as-is
Faulkes Telescope Facility	2003, currently used	Remain as-is
Pan-STARRS, PS-1 South	June 2007, currently used	Remain as-is (was formerly Lunar Ranging Experiment facility)
PS-2 North, 2 nd Facility	2009, currently used	Remain as-is
Maui Space Surveillance Complex	Construction occurred over several years since 1963, currently used	Remain as-is
SLR 2000	Proposed	Reuse of site behind Mees facility for Laser Ranging
Haleakalā Visitor Center Comfort Station	Renovations in 2002	Upgrades to water and wastewater treatment system
HALE road cattle guards	Built 2006	HALE project. Edge of HALE road. Installed cattle guard to prevent feral goats from entering Park summit area from State land
FAA site adjacent to HO, Homeland Security tower	Constructed in 2006	Remain as-is
Maui Electric Co., Inc.	Proposed upgrades	Replace transformers, voltage regulators, upgrade and relocate substation for proposed ATST Project. Combined with the proposed ATST Project for impacts .
Hawaiian Telcom	2007	Repair to damaged/exposed conduits
(Roadway)	Early 2009	Repair to 0.3 miles of Saddle access road
HALE road cattle guard	Early 2009	Installed cattle guard to prevent feral goats from entering Park summit area from State land.
HALE road chip sealing	January 2009	HALE road surfacing on upper two miles, canceled due to potential adverse impact on 'ua'u burrows.
HALE road slurry sealing	2011	Hale road surfacing on upper two miles.
Hale road rehabilitation	Within the next 5 years	Rehabilitation of road segment in FHWA study reaching end-of-life cycle.

Table 4-8. Past, Present, and Reasonably Foreseeable Future Actions Associated With HO and Adjacent Neighbors.

Observatories were constructed at HO beginning in 1957, with the establishment of a Baker-Nunn camera to obtain satellite tracking information. Over the next 50 years, a number of facilities were constructed for various astronomical and space surveillance activities. The first of these was the MSSC, which was built in 1963 as the Advanced Research Projects Agency (ARPA) Maui Optical Station (AMOS), The second facility built in 1964 was the MSO, named after Dr. C. Kenneth Mees of Eastman Kodak. About the same time, IfA was created as a separate entity within UH. Subsequently, the Airglow and Zodiacal Light programs were established in the facilities left behind by Dr. Reber, and a new Airglow facility was constructed in 1972.

Deep Space Surveillance (GEODSS) facility, and the Advanced Electro-Optical System (AEOS) facility in 1994.

Finally, in 1998 the University of Tokyo installed a 2-meter telescope in the north dome of the LURE complex, followed in 2004 by the Faulkes Telescope Facility (FTF) for educational outreach, and the two Panoramic-Survey Telescope and Rapid Response Systems (Pan-STARRS), designated PS-1 and PS-2, for the study of a wide range of astronomy and astrophysical problems in the Solar System, the Galaxy, and the Universe.

The following is a list of past construction of facilities and events in the past that **occurred near, but not** within HO. These are:

- 1. The recently built Coast Guard tower on adjacent Federal Aviation Administration (FAA) property.
- 2. The RCAG facility, also on FAA property.
- 3. Road repairs in 2009 to the 0.3 mile section of the "Saddle" road to TV, microwave, and FAA facilities.
- 4. The MECO substation for electrical distribution on Kolekole.
- 5. Repairs to exposed cables on Kolekole by Hawaiian Telecom.

Mees Solar Observatory was followed by the Lunar and Satellite Ranging Observatory (LURE), and the Cosmic Ray Neutron Monitor in 1974 and 1991 respectively. The AMOS facility was extensively modified and expanded between 1982 and 1995, with the addition of the Ground Based Electro-Optical System (AEOS) facility in 1994.

Finally, in 1998 the University of Tokyo installed a 2-meter telescope in the north dome of the LURE complex, followed in 2004 by the Faulkes Telescope Facility (FTF) for educational outreach, and the two Panoramic-Survey Telescope and Rapid Response Systems (Pan-STARRS), designated PS-1 and PS-2, for the study of a wide range of astronomy and astrophysical problems in the Solar System, the Galaxy, and the Universe.

The following is a list of past construction of facilities and events in the past that occurred near, but not within HO. These are:

- 1. The recently built Coast Guard tower on adjacent Federal Aviation Administration (FAA) property.
- 2. The RCAG facility, also on FAA property.

- 3. Road repairs in 2009 to the 0.3 mile section of the "Saddle" road to TV, microwave, and FAA facilities.
- 4. The MECO substation for electrical distribution on Kolekole.
- 5. Repairs to exposed cables on Kolekole by Hawaiian Telecom.

HALE, Park Road Corridor

For the purpose of this description and analysis, the Park road corridor consists of the Park road plus the area measuring out to 50 feet from each side of the road, including the historic bridge and multiple culverts. The physical history of the Park road corridor is described in the Cultural Landscape Inventory completed in 2008 (CLI, 2008) and detailed in Section 3.0.

In the 1960's, HALE was the beneficiary of the Mission 66 Program, which was a high profile, ten-year nationwide initiative aimed at modernizing the Park Service and accommodating changing visitation patterns. The program was so-named because it would conclude in 1966 and commemorate the Service's 50^{th} anniversary year. The years of neglect brought about by the economic climate of the war years left many of the Park Service facilities in substandard condition. (Jackson).

The most notable additions to the Park road corridor during that period were the Leleiwi Overlook, which is another location from which visitors can view the crater, the Kalahaku Overlook structure and rock wall along the Haleakalā silversword ('ahinahina) enclosure, Pu'u 'Ula'ula Summit Observatory, where an observation structure was placed at the top of the summit that provided spectacular views into the crater, as well as the 180-degree view of the island and ocean below and Hosmer Grove Area, a pine tree campsite near the entry to HALE.

More recently, Haleakalā Park road was a narrow, one-and-a-half lane road as late as the 1970s. The road was entirely resurfaced in a three-phase project that began in 1976 and was completed in the early 1980s. There **has been a** large increase in traffic, especially buses, since the 1976 to 1980 time-frame. The Haleakalā Park road was resurfaced in October 1999. This project added a pullout just before the Halemau'u Trailhead and used the excavated materials to stabilize portions of the shoulder that were badly eroded. The excavated material also allowed the Park Service to enlarge a pullout near the turn at the 8,500-foot elevation.

Another notable action during the recent history of the Park road corridor was the upgrade to the restroom facilities at the Haleakalā Visitor Center, which were rebuilt to take advantage of surface water capture on the Park road and surrounding impervious surfaces. According to the excavation contractor, photographs show the excavation for this upgrade project at the eastern end of the Haleakalā Visitor Center parking area was **25** feet deep and more than 100 feet wide (B. Simison, personal communication).

4.17.2 Present Actions at HO and Adjacent Neighbors

HO and Adjacent Neighbor Activities

The present actions of HO are described in Table 1-3. The U.S. Air Force Maui Space Surveillance Complex (MSSC) occupies 4.5 acres of the HO complex. MSSC conducts optical space surveillance and sensor research for the Department of Defense. Attached to MSSC is the Ground Based Electro-Optical Deep Space Surveillance Complex (GEODSS) which conducts space surveillance operations focusing on the deep space regime.

Within the remaining approximately 13.5 acres, the Mees Solar Observatory of the Institute for Astronomy conducts investigations of the solar corona and chromospheres. The Zodiacal Observatory houses the test-bed Scatter-free Observatory for Limb Active Regions and Coronae (SOLAR-C) Telescope Facility. The two Pan-STARRS telescopes house a 1.8-meter wide-field optical imaging system equipped with a 1.44-billion pixel charge-coupled device camera. This unique combination of sensitivity and field-of-view address a wide range of time-domain astronomy and astrophysical problems.

Since 2004, the Faulkes Telescope Facility has been the largest educational outreach optical telescope in the world in support of astronomy research and education for grades Kindergarten through college in Hawai'i and the United Kingdom.

The Federal Aviation Administration operates and maintains a rectangular 2.96-acre property along the southwest boundary of HO, which is referred to as the Haleakalā Peripheral High Site. The site is dedicated to remote air/ground interisland and trans-Pacific communications to and from aircraft. A small support building on the rectangular site contains transmitter and electronic equipment, in support of multiple dipole antennas on two towers to the east of the support building. In addition to the FAA towers, the U.S. Coast Guard maintains a 100-foot lattice tower structure that is approximately 12-feet wide at its base. The tower houses various antennas that are used for government services, such as Homeland Security. Another neighboring facility is a MECO substation for distribution of electrical power to facilities on Kolekole.

HALE, Park Road Corridor

The corridor along the Park road is currently owned and managed by the NPS. It begins at the HALE entrance boundary at the northwestern corner of the Park and ascends the northwest slopes of the Haleakalā Crater with a series of switchbacks. Hosmer Grove, Park Headquarters Visitor Center, Halemau'u Trailhead, Leleiwi Overlook, Kalahaku Overlook, Haleakalā Visitor Center (or Pa Ka'oao Observation Station), and Pu'u' Ula'ula Overlook are all accessed from the road. Significant vehicular and bus traffic traverse the Park road each year. In 2007, there were 248,224 vehicular visits and approximately 3,650 buses that traversed the Park road; in 2008, there were 205,977 vehicular visits and approximately 6,570 buses (FHWA, 2008).

4.17.3 Reasonably Foreseeable Future Actions at HO and Adjacent Neighbors

HO and Adjacent Neighbor

Currently there is only one planned action within the foreseeable future at HO. The SLR 2000, is to be installed on the southwestern side of the MSO, is an autonomous and eye-safe photon-counting Satellite Laser Ranging station.

HALE, Park Road Corridor

Two planned projects for HALE are to slurry seal the upper two miles of the Park road in 2011 and to rehabilitate the Park road between MP 11.2 to MP 14.8 within the next five years.

Actions Within Greater Maui

It would be difficult to predict which commercial and residential project would be proposed and/or permitted during the seven-year period when the proposed ATST would be under construction. The County of Maui, Maui Island Plan for development (County of Maui, 2009) would, however, be the framework that provides a guide for the future growth of the island to the year 2030. When finalized, the Maui Island Plan will establish a vision and a set of long-range guiding principles, goals, objectives, policies and maps to guide the growth and development of the island. The guidelines in the Maui Island Plan specify where growth would be concentrated on the island. The draft plan would guide future development of commercial and residential projects within individual areas of Maui as shown below. The

plan calls for a total of approximately 25,850 acres of planned urban expansion, new towns or high-density in-fill between now and 2030.

West Maui	<u>Central Maui</u>
Pulelehua—New town	Waiale—New town
Villages of Leiali'i—Develop Hawaiian Homelands	Waikapu—Expansion below Honoapiilani Highway
Weinberg Development—new housing	Kahului-New housing and redevelopment
Wainee—Expansion above Honoapiilani Highway	
Kuia—Expansion above Wainee	
<u>Kihei</u>	<u>Pukalani</u>
Expansion above Piilani Highway	Expand town upslope
<u>Paia</u>	
Expand toward Makawao	

4.17.4 Land Use and Existing Activities

For the purpose of evaluating the cumulative **impacts** of the proposed ATST Project on Land Use and Existing Activities, the ROI is HO and the Park road corridor and the temporal extent is in 1961 when HO was an identified land user. **Land use on** Conservation Land, for purposes of this analysis, is defined in the same way that it is in HAR 13-5 as:

- 1. The placement or erection of any solid material on land if that material remains on the land more than fourteen days, or which causes a permanent change in the land area on which it occurs;
- 2. The grading, removing, harvesting, dredging, mining or extraction of any material or natural resource on land;
- 3. The subdivision of land; or,
- 4. The construction, reconstruction, demolition, or alteration of any structure, building, or facility on land.

Impacts of Past, Present and Reasonably Foreseeable Future Actions

There are intended uses within the various protective subzones of the Conservation District, such as open lands, watersheds, timberlands, etc, and there are uses that are permitted through OCCL within the protective rules, such as aquaculture, astronomy facilities, and commercial forestry. In the case of HO, these 18.1 acres within a conservation district have been set aside for astronomy-related uses and development under the management of UH. The subzones and permitting are discussed in detail in Section 3.1. HAR 13-5 are designed to regulate land use within the Conservation District for the purpose of conserving, protecting, and preserving the natural resources of the State through appropriate management and use to promote their long term sustainability and the public health, safety, and welfare (HAR 13-5-1).

All new facilities within HO that involve conservation land use (excluding interior renovation and reuse of lands) since the rules were issued in 1994 have required **applications for and receipt of CDUPs**. Conservation District Use Application (CDUA) requires detailed **impacts** analysis. In general, the permits are temporally limited (although often renewable), because the intent of the OCCL administering CDUPs is to return the land to its undeveloped conservation use when the permitted activity is completed.

The CDUPs for facilities at HO typically have attached terms and conditions requiring environmental and cultural/historic monitoring and mitigation measures, where required. For example, the CDUP for the

FTF at HO requires maintenance of a buffer zone between FTF activities and nearby archeological resources. Facilities built before the rules are similar in land use characteristics, e.g., grading, permanent changes, etc. Therefore, by virtue of the variances granted to these non-conservation uses within the Conservation District, past and present facilities at HO may be considered to have at least, minor, adverse, and long-term **impacts** on intended land use and existing activities.

The Coast Guard Tower and RCAG are permitted uses within the Conservation District under P-6 of HAR 13-5 for Public Purpose Uses by government, their land use is minimal (incidental ground disturbance) and, therefore, would have negligible, adverse, and long-term **impacts** on land use and existing activities. Road repairs had virtually no affect on land use, but did permit easier access to facilities within the ROI (i.e., HO and the Park road corridor), and is, therefore, considered to have a minor, beneficial, long-term **impact** on existing activities within the ROI.

The reasonably known future project at HO is the construction of the minor SLR 2000 facility located behind the southwest side of MSO. This project would be located on a small site less than 900 square feet, and would not alter to land use or existing activities. The slurry seal the upper two miles of the Park road and the road rehabilitation between MPs 11.2 and 14.8 would not result in additional impacts on land use and existing activities.

Overall, the combined **impacts** of all past, present, and reasonably foreseeable future actions, **without consideration of the ATST Project**, would be minor, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

The **impacts** of the Proposed ATST Project when added to the **combined impacts** from past, existing, and reasonably foreseeable future actions within the ROI would not result in increased cumulative impacts on land use within HO or the Park road corridor. The Proposed Action's impacts would be similar to those resulting from existing and planned land uses within the Conservation District. The Proposed ATST Project would be consistent with the goals and objectives of the LRDP, and it would be similar to previous facilities with respect to requiring a CDUP with resultant minor, adverse, and long-term **impacts** on land use and existing activities. The MECO upgrade would not change land use or existing activities, and, therefore, would have only a negligible **contribution**. Finally, the proposed ATST Project would be an incremental addition of approximately 4 percent to the use of Conservation District lands within HO and only a fraction of a percent of the total resource zone. In consideration of these factors, if constructed at the Mees site, the proposed ATST Project is anticipated to result in only a minor, adverse, and long-term cumulative **impact**.

The major, adverse, long-term impact affecting FAA RCAG signal interference would only occur as a result of the ATST project due to the size of the proposed structure and its proximity to the FAA antenna tower. Implementation of MIT-2, however, would reduce this impact to negligible, adverse, and long-term and, thus, the cumulative impact on land use and existing activities would not be increased.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

Cumulative impacts of the Reber Circle Site Alternative would be largely the same as those discussed under the Mees Site Alternative.

No-Action Alternative

There would be no change to the existing land use under the No-Action Alternative and, therefore, no contributing impact to the otherwise minor, adverse, long-term combined impact generated by other past, present, and reasonably foreseeable future activities within the ROI. As such, the cumulative impact would be negligible.

4.17.5 Cultural, Historic, and Archeological Resources

Section 4.17.5 – Cultural, Historic, and Archeological Resources has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

EFFECTS OF PAST AND PRESENT AND FUTURE ACTIONS ON CULTURAL, HISTORIC AND ARCHEOLOGICAL RESOURCES

Cultural, historic, and archeological resources were evaluated within the ROI, which include HO, the summit area within HALE, and the Park road corridor. The reasonably foreseeable future actions within the ROI, excluding the proposed ATST Project, are the installation of SLR 2000 at HO, the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8. These activities would be of little consequence to cultural, historic, and archeological resources within the ROI. Based on the discussions above, the following is an evaluation of the cumulative effects of the proposed ATST Project.

Cumulative Effects of the Proposed ATST Project at the Preferred Mees Site on Cultural Resources

The effects on traditional cultural resources resulting from past and present actions are major, adverse, direct long-term. The construction and operation of the proposed ATST Project within the ROI for traditional cultural resources at the Preferred Mees site would continue to, cumulatively, have major, adverse, long-term, direct effects. The proposed ATST Project would have a major impact on Native Hawaiians from conducting their traditional cultural practices, in particular, because of the size and color of the proposed ATST. Also, conducting traditional cultural practices often requires an uninterrupted view of the summit area is often cited as necessary to make an emotional and physical connection to a place of importance (Vol. II, Appendix F(2)-SCIA). Therefore, because of the past construction of manmade structures on the summit and the current view, which is already interrupted, the addition of the proposed ATST Project would be incremental in the degradation of the summit as a traditional cultural property.

In 1996, near completion of the Air Force AEOS construction, material remaining from cut and fill activities was incorrectly removed from the summit area, and was later returned to HALE for use in the Park. Subsequently, cultural monitoring of all projects was implemented, along with "Sense of Place" training for all those employed at HO, including construction workers, to prevent adverse impacts on traditional cultural resources from any future development activities at the site.

Requiring "Sense of Place" training for all workers before construction begins will ensure that workers understand the cultural significance of the site. The training, in addition to the cultural monitor, will help to protect the existing traditional cultural resources from unnecessary adverse impacts due to ignorance.

The reasonably known future project at HO is the construction of the minor SLR 2000 facility located behind the southwest side of MSO. This project would be located on a small site less than 900 square feet. While not a large project, the impact on traditional cultural resources would be major, adverse, long-term, and direct.

While there is no way to quantify the cumulative effects of the incremental addition on traditional cultural practices and spiritual values, in consideration of the past and present actions, the addition of the proposed ATST Project and foreseeable future actions would result in readily detectable, localized effects, with consequences at the regional level to traditional cultural practitioners within greater Hawai`i. Therefore, the cumulative effects on traditional cultural resources of the proposed ATST Project combined with past and present and foreseeable future actions would be major, adverse, long-term, and direct, Mitigation

measures for traditional cultural resources that would meet criteria of NEPA CEQ 1508.20 for rectifying, reducing, and compensating impacts include MIT-1, MIT-3, MIT-4, MIT-5, MIT-6, MIT-13, MIT-14, MIT-16, and MIT-18. Implementation of these mitigation measures would be helpful, but they would not reduce the intensity of the impacts to a lower threshold.

Cumulative Effects of the Proposed ATST Project at the Preferred Mees Site on Historic and Archeological Resources

With respect to historic resources, the Reber Circle site is the only historic resource within HO, and it will not be affected by construction of the proposed ATST Project at the Preferred Mees site. Past and present actions have resulted in negligible, adverse, long-term direct impacts on historic resources. Future actions include construction of the SLR 2000 facility which would result in no adverse impacts to historic resources. Cumulative impacts of past, present and foreseeable actions would result in negligible, adverse, long-term, direct impacts to historic resources.

The LRDP ensures that any activity at HO is required to follow procedures and practices that would avoid major adverse, long-term, direct effects on archeological resources. This effort has been successful in that passive preservation has worked well to avoid adverse effects to those resources. The LRDP also has detailed procedures for preservation of these resources during construction or operations, through training, monitoring, and reporting for those resources. Cumulative impacts of past, present and foreseeable actions would result in negligible, adverse, long-term, direct impacts to archeological resources.

Construction of the proposed ATST Project would result in moderate, adverse, short-term, direct impacts to the Park road corridor due to the potential impacts to the historic bridges and culverts associated with wide loads and load weights. Implementation of measures defined in the MIT-6, MIT-7, and MIT-12 would reduce the impacts associated with construction to minor, adverse, long-term and direct.

Past and present actions have had negligible, adverse, long-term, direct cumulative effects to the Park road corridor. Construction and operation of the future project, the SLR 2000 facility, would result in negligible, adverse, long-term, direct impacts.

Therefore, it is anticipated that negligible, adverse, long-term, direct cumulative effects on the historic and archeological resources at HO and within the Park road corridor would occur from construction of the proposed ATST Project at the Preferred Mees site.

Cumulative Effects of the Proposed ATST Project at the Reber Circle Site on Cultural Resources

The effects on traditional cultural resources resulting from past and present actions would be similar to cumulative impacts associated with the Preferred Mees site; impacts would be major, adverse, long-term, and direct. Known reasonably foreseeable future actions include construction and operation of the proposed ATST Project within the ROI and construction and operation of the SLR 2000. Impacts to traditional cultural resources for these resources at the Reber Circle site would result in major, adverse, long-term, direct effects. Because of its location within HO, the proposed ATST Project at the Reber Circle site would appear to be more prominent at the HO site from locations within the upper HALE road corridor and from some populated areas of Maui (Section 4.5-Visual Resources and View Planes).

Cumulative impacts to traditional cultural resources for past, present and future actions would be major, adverse, long-term and direct. Implementation of the same mitigation measures that would be implemented at the Preferred Mees site would not reduce the impacts below major, adverse, long-term, and direct.

Cumulative Effects of the Proposed ATST Project at the Reber Circle Site on Historic and Archeological Resources

Cumulative impacts associated with construction of past and present actions, including the proposed ATST Project would have major, adverse, long-term, direct effects on historic resources at the Reber Circle site. Implementation of MIT-8 for Site 5443 would reduce the impacts to negligible and long-term. The reasonable foreseeable project, construction and operation of the SLR 2000, would not impact the Reber Circle site.

The LRDP ensures that any activity at HO is required to follow procedures and practices that would avoid adverse, long-term direct effects on archeological sites. The LRDP has detailed procedures for preservation of historic and archeological resources during construction or operations, through training, monitoring, and reporting for those resources.

Construction of the ATST Project at the Reber Circle site would result in moderate, adverse, direct shortterm impacts due to wide loads and load weights to the Park road's historic resources. Implementation of mitigation measures MIT-6, MIT-7 and MIT-12 would reduce the impacts associated with construction to minor, adverse, long-term, and direct. Known reasonably foreseeable future actions include construction and operation of the SLR 2000 would result in moderate, adverse, direct, short-term impacts. Mitigation measures would be similar to those for construction of the ATST Project which would reduce impacts to the Park road corridor to minor, adverse, long-term, and direct.

Therefore, it is anticipated that minor, adverse, and long-term direct cumulative effects on the historic and archeological resources at HO and within the Park road corridor would occur from the proposed ATST Project.

No-Action Alternative

The No-Action Alternative would not contribute to changes in traditional cultural, historic, or archeological resources within HO or along the Park road corridor that constitute the ROI. For those who believe that any man-made development in the summit area constitutes a form of desecration would continue to find that such development results in major, adverse, long-term, direct effects to traditional cultural resources. Therefore, the cumulative impacts on traditional cultural resources relevant to the No-Action Alternative would remain major, adverse, long-term, and direct. Because there are minor, adverse, and long-term impacts resulting from past, present, and reasonably foreseeable actions within the ROI for historic and archeological resources, the cumulative effects from the No-Action Alternative would remain at minor, adverse, and long-term.

4.17.6 Biological Resources

While biological resources may be found in abundance elsewhere in HALE or elsewhere on Maui, the scope of **impacts** on those resources was analyzed within the HO and the Park road corridor.

Impacts on the biological resources within the ROI since the inception of HO are difficult to assess due to the limited amount of published data on the health and welfare of those resources within HALE and only intermittent, species-specific data from the last decade from within HO. Staff interest at HALE has been dedicated and devoted to protecting and preserving those resources and much of the assessment is based on consultations and personal communications with those individuals.

IMPACTS OF PAST AND PRESENT ACTIONS ON BIOLOGICAL RESOURCES

Impacts on Native and Non-Native Botanical Resources Including Alien Invasive Species

HO and the Park Road corridor contain biological ecosystems that are both unique and fragile. In assessing the **impacts** of past and present actions within the ROI, it is important to note that prior to the late 1980's, these ecosystems were not well protected from feral goats and pigs and were subject to unrecognized AIS, such as *Miconia calvescens* DC (Melastomataceae) in HALE and at least two pine trees at HO (Section 3.3.1-Botanical Resources). However, considerable efforts have been expended in recent years to keep feral animals off the upper slopes of HALE (a feral animal control fence encloses Haleakalā Crater and much of Manawainui), and there are extensive HALE staff and volunteer efforts to check the spread of AIS. Within HO, surveys were conducted at various times to assess its botanical habitats (Section 3.3.1). These surveys were done as part of earlier HO development actions, the LRDP for HO, and more recently as part of the EIS assessment of the affected environment for the proposed ATST Project. Even so, the brief, approximately ten-year span of available data cannot identify all the **impacts** of past and present actions at HO. Within the ROI, however, past and present actions have resulted in a number of identifiable **impacts** on those resources, which are described in the following paragraphs.

Within HO, undisturbed land is interspersed amid land that has been disturbed by construction. Areas of HO where construction has occurred generally support fewer native species and more weeds. Undisturbed sites are inhabited by predominately native shrubs, herbs, and, grasses. Three species of native ferns are found tucked into rock crevices and overhangs and on the steep slopes of the southeast part of the property. During an earlier botanical survey at HO (UH IfA, 2005), 32 plant species were observed, 11 of which were native and 21 were non-native. Three years later, in a survey conducted for the proposed ATST Project at the Mees and Reber Circle sites, 25 plant species were observed, 11 of which were native and 14 were non-native. Since many plant species are wind dispersed, the number of species would vary from year to year and additional surveys would be undertaken as part of the programmatic monitoring plan **included in MIT-9 (Section 4.3.2)**.

According to the botanical survey of HO conducted in 2005, there were more non-native plants on the HO site relative to similar adjacent "pristine" areas of HALE, Kahikinui Forest Reserve, and Kula Forest Reserve. The report cited a number of reasons. To some extent, development seems to promote plant growth, both native and non-native. This is likely due to disturbance to the soil from construction, additional water sources from discharge pipes and gutters, and protection from the elements by objects such as building foundations and sidewalk. Both native and non-native plants are able to find refuge in otherwise inhospitable locations. Intentional plantings were another way non-native plants have been introduced to the site. Aerial photographs from 1975 confirm rows of plants, presumably grasses, being cultivated near the center of the site (Starr and Starr, 2002). The large number of alien grasses at the HO site, compared to similar areas nearby may be attributable in part to these experimental plantings. The report also pointed out that weed control is an effective way of minimizing impacts on native species and this is actively practiced at the MSSC site. Considering the impacts from past and present actions, such as construction and operation of facilities at HO, the impact on botanical resources has been detectable, but since native species still flourish at HO and since small incidental benefits such as protection from the elements do occur at HO, the overall impacts on botanical resources at HO is minor, adverse, and longterm.

Botanical resources along the Park road corridor can be grouped into the alpine and subalpine shrubland habitat zones, depending upon elevation. The upper, alpine zone largely contains the botanical diversity described above for HO. The lower elevations, below about 8,500 feet, are within the subalpine shrubland habitats, which contain common species such as the coriaceous, small-leaved shrub pukiawe (*Styphelia tameiameiae*). The tallest tree-shrub of subalpine shrublands is mamane (*Sophora chrysophylla*) whose

golden yellow flowers in the spring provide food for native honeycreepers that seasonally travel from nearby rain forests. 'Ohelo and kiipaoa are common components of the subalpine zone; historically, both have been suppressed by feral goats and are recovering well in their absence. Other common and characteristic native subalpine species include the shrubs pilo (*Coprosma montana*), kukaenene (*Coprosma ernodeoides*), and hinahina (*Geranium cuneatum tridens*), and ('a'ali'i *Dodonaea viscosa*), and the herbs *Carex wahuensis*, *Deschampsia* nubigena and 'uki (*Gahnia gahniiformis*). Non-native grasses, especially velvet grass are common and persistent between native shrubs (Medeiros, et al, 1998).

Throughout the history of HALE, there has been encroachment by non-native botanical species. For example, pine seedlings that constantly are dispersed from the large pine plantings of the early to mid-20th century and encroach into native shrubland, especially around Hosmer Grove and the Park entry. Volunteer programs are offered by the organization Friends of Haleakalā National Park (http://www.fhnp.org/) and other organizations to remove Rabbit's foot clover and other weeds on a regular basis from the crater area. Other invasive species such as Clidemia (soapbush), Christmas berry, and strawberry guava are found within HALE and require active control to keep them from jeopardizing native species (A. Medeiros, personal communication 2005). Some of these threats gain entry through the Park road corridor as seed or pod hitchhikers on vehicles and people, some of which may be attributable to past and present actions at HO, since vehicles and personnel travel the Park road corridor every day. The overall **impacts** of past and present activities on botanical resources within the Park road corridor are considered negligible, adverse, and long-term.

Impacts on Endangered, Threatened, Proposed, and Candidate Plant Species

The 'ahinahina, or Haleakalā silversword, is Federally-listed as a "threatened" species, meaning they may become endangered throughout all or a significant portion of their range if no protective measures are taken. In 2002, nine live 'ahinahina and three dead 'ahinahina flower stalks were located within the HO property. None of the live plants were located on or around the proposed ATST Project areas. These plants, however, can proliferate rapidly. During a July 2008 refurbishment of the Air Force GEODSS facility, KCE cataloged all 'ahinahina located near the MSSC. A total of more than 40 young Silverswords were counted and photographed (KCE, unpublished data, 2008). These newer plants may be related in some way to nearby construction in 2006 to 2007, which occurred near the few extant 'ahinahina at that time on HO property. By virtue of the substantial increase in these plants, the **impacts** from past and present actions at HO would be considered minor, beneficial, and long-term. There are no other endangered, listed, or proposed plant species within HO.

There are a large number of 'ahinahina in HALE, 382 hectares (944 acres), of designated 'ahinahina critical habitat. Approximately seven miles of the Park road corridor traverse through Designated Critical Habitat for the 'ahinahina. Beacham's Guide to Endangered Species of North America reported in 2000 that "The Haleakalā Silversword represents one of the most dramatic conservation success stories of the Hawaiian Islands. As a result of management within Haleakalā National Park, human vandalism and feral ungulate browsing — formerly the most serious threats to the Haleakalā silversword — have been virtually eliminated. Almost all subpopulations of this species are within Haleakalā National Park, a successful protector of the plant since the 1930s, and only a few individuals survive just outside the boundaries of the park." Since a portion of the "success story" can be attributed to activities at HO, the **impact** on this biological resource would be minor, beneficial, and long-term.

The only other listed plant of concern is the **many-flower geranium** *portion* of the critical habitat which is within the Park road corridor. The USFWS does not have information that would indicate that the **many-flower geranium** critical habitat within the ROI would be affected by the proposed ATST Project (Vol. II, Appendix M-USFWS **Section 7** Informal Consultation **Document**), and, therefore, the **impact** on this biological resource would be negligible, adverse, and long-term.

Impacts on Endangered, Threatened, Proposed, and Candidate Avifaunal Species

The 'ua'u, a Federal- and State-listed endangered bird species, is present at HO. About 30 known burrows are along the southeastern perimeter of HO and several burrows are northwest of HO, as shown in Figure 3-6. The burrows constitute a colony of 'ua'u that return to the same burrows year after year. These burrows have been monitored at HO with unobtrusive day/night infrared cameras outside of most and inside of some burrows since 2006. HALE personnel also have monitored the burrows during nesting season to observe which burrows are in use. In response to comments on the draft SDEIS, HALE resource staff have said that the colony at HO is growing and could expand into areas closer to the proposed ATST Project. Video monitoring data from the last three years does not indicate any decline in burrow population during nesting seasons from 2006-2009 (KCE, unpublished, 2009). No 'ua'u mortalities have been attributed to any activity at HO, although the proximity to the burrow colony and thus to noise and vibration from nearby vehicles, telescopes, generators, etc. may have some **impact** on the outcome of fledgling success each year in the colony. The **impacts** on this resource from activities at HO can be said to be minor, adverse, and long-term.

There are about 229 burrows along the Park road corridor and outside the crater rim (HALE unpublished data). As shown in Figure 3-6, many of these burrows are within the Park road corridor that constitutes part of the ROI for the proposed ATST Project. The 'ua'u at HALE is the only population of seabirds in Hawaii's national parks that is intensively monitored and managed. Monitoring for 'ua'u distribution and breeding success at HALE occurs annually as part of regular resource management activities, and has since 1980.

With 'ua'u burrows along the Park road corridor, past road construction appears to have adversely affected the fledgling success of these birds. In 2001, road resurfacing in areas of the road (not connected with HO activities) with active nests resulted in fewer birds successfully fledging along the road during the heavy vibration and noise associated with road work (NPS, Nagata, 2001). The adverse **impact** was said to be substantial by the NPS and required mitigation measures. These would be moderate, adverse, **cumulative impacts** in the **long-term**. The overall health of the 'ua'u colonies within the ROI appears to be stable. Overall, the **impacts** of past and present actions at HO on 'ua'u along the Pak road corridor is minor.

<u>Nēnē</u>. No nēnē are reported to reside at HO. However, they have been seen as high as the summit area. The most likely **impacts** that past and present actions have had on nēnē are mortalities due to vehicular strikes on the Park road by HO-bound or departing vehicles. It is reported that an average of one nēnē is killed each year by automobiles, or about one nēnē for every 224,454 round-trips taken by vehicles through the Park. Almost 206,000 vehicular visits and approximately 6,570 buses comprise most of that traffic and HO accounts for only a small fraction, based on the road survey (Vol. II, Appendix P-FHWA HALE Road Report, Table 3-10). Based on these statistics, HO would only contribute to a small fraction of one petrel killed each year by vehicles. However, HALE personnel are aware of at least one nēnē killed by a vehicle originating at HO (Natividad Bailey, personal communication, 2009). Since 1961, however, the overall **impact** of past and present actions on nēnē is negligible, adverse, and long-term.

<u>'Ope'ape'a.</u> The 'ope'ape'a is a Federal-listed endangered species that resides on the lower slopes of Haleakalā, but has been detected near HO, although it is unlikely that the bat is a resident of the area, due to the relatively cold summit temperatures and the lack of flying insects in the area, which is the preferred food source (AFRL, 2005). 'Ope'ape'a have been detected near Park Headquarters Visitor Center and Hosmer Grove (Frasher, et al); HALE personnel have not made a determination as to whether bats occur along the Park road corridor. Since the 'ope'ape'a is not a resident at HO, it is unlikely that past and present actions at HO have had more than a negligible, adverse, and long-term **impact** on that species within the Park road corridor. And, there is no information that indicates that any activities at HALE have resulted in adverse **impacts** to this species within the Park road corridor.

Other Native and Introduced Fauna. Occasionally, feral goats, roof rats, cats, and mice have been seen or captured at HO, but not many other fauna have been present. The Park road corridor below the summit area has a much more abundant diversity of species that are not listed as Federal- or State- threatened or endangered species. Avian species are particularly abundant and those which are likely to be found along the Park road corridor include, but are not limited to, quails, francolins, pheasants, chukars, plovers, sandpipers, doves, pigeons, short-eared owls, northern mockingbird, common myna, house finch, common Amakihi, Iiwi, (Conant and Stemmermann Kjargaard, 1984). Introduced fauna that could be observed closer to the summit area and along the upper Park road corridor include the chukar, the feral goat, the Polynesian rat, and the roof rat (AFRL, 2005). The Indian mongoose is occasionally observed on the summit. Cats and mice are also found along the Park road, with cats occasionally seen crossing the Park road (HALE, unpublished data). Other than the likelihood that some lapses in refuse handling may have promoted rat and mice populations (HO employs vector control) the impacts of past and present actions at HO on these native and introduced fauna does not appear to have been adverse. The location of HO is at an elevation high enough to be outside the range of many of these species and ,as is true for the endangered 'ua'u, HO traffic is not frequent enough to jeopardize bird habitats or other fauna in the Park road corridor and the **impacts** on those resources would be negligible, adverse, and long-term. Similarly, there are no past or present activities within HALE that appear to have had adverse impacts on those resources.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON BIOLOGICAL RESOURCES

The construction of SLR 2000 within the ROI poses some risk to the threatened and endangered species, but not to botanical resources or other native and introduced faunal. The construction of SLR 2000 behind the Mees Observatory would be a small scale modular facility on a pre-existing concrete pad. The pad is within 50 feet of the nearest burrow at Kolekole. Only minimal use of motorized equipment would, however, be necessary to assemble the building, and even though the project would only take a few days, it would be done during the non-nesting season to limit the potential for **impacts** to minor, adverse, and short-term.

The slurry sealing of the upper two miles of the HALE Park road in 2011 would pose some risk to threatened and endangered species. The roadwork would be done in an area with numerous petrel burrows and within the nēnē habitat. The work would be done, however, during non-nesting season for the petrels and since such work does not involve high-impact vibration, it is unlikely to collapse burrows near the roadway. Therefore, the potential impacts would be limited to minor, adverse, and short-term.

The rehabilitation of about three miles of HALE road would occur along the road in a nēnē nesting area and in an area containing petrel burrows. This activity would involve high impact vibration and higher noise levels. Depending upon when road rehabilitation is done and what mitigation measures are employed, the potential for impacts would range from minor, adverse, and short-term, in which there is some risk to biological resources to major, adverse, and short-term, in which there could be incidental take of endangered species.

Cumulative Impacts including Construction and Operation of Proposed ATST Project at the Preferred Mees Site

Botanical Resources. The **impacts** on native and non-native botanical resources including AIS from the proposed ATST Project at the **Preferred** Mees site would be clearly evident during construction. Construction at the **Preferred** Mees site would necessarily destroy hundreds of native and non-native

plants and some AIS as well. None are endangered, threatened, proposed, or candidate species. Some would be able to re-colonize at undeveloped portions of the **Preferred** Mees site, but most would be displaced. There would be no irrevocable loss of these resources, despite destruction of individuals and the area affected at completion of construction would be less than an acre or about 5 percent of the total HO property.

Introduction or proliferation of AIS has been identified as a potential threat for most special status species located in the ATST ROI. The introduction of AIS from the proposed ATST Project originates from the same two major sources as elsewhere on Haleakalā. Equipment, supplies, and containers with construction materials that originate from elsewhere, such as the other islands or the mainland, could be infested by unwanted species when they arrive in Kahului. Secondly, vehicular traffic for the Mees site would increase during construction and operation of the proposed ATST Project, thereby increasing potential for the introduction of AIS, even though this increase in traffic is not expected to be major. These unwanted introductions are not anticipated to be a serious problem, given the mitigation measures described in **MIT-9**. In addition, provisions to control the introduction of AIS would be included in the SUP issued by HALE for Project-related traffic along the Park road corridor. Therefore, when combined with past, present and reasonably foreseeable future actions in the ROI the **impacts** on botanical resources would be minor, adverse, and short-term.

As described above, to some extent, development at HO seems to promote plant growth, both native and non-native. Given that the proposed ATST Project would disturb the soil from construction, result in additional water sources from impervious sources, and provide protection from the structural elements, both native and non-native plants would be able to find refuge in otherwise inhospitable locations (Vol. II, Appendix E-Botanical Survey). It is assumed this trend would continue if the proposed ATST Project were to become operational that botanical resources would only be slightly affected. When combined with the impacts of past, present, and reasonably foreseeable future actions described above, the cumulative impact would, however, likely be higher in intensity, due to a wider loss of native habitat. It would be considered minor, adverse, and longterm.

Introduction or proliferation of AIS would continue to be a risk during operations at the Preferred Mees site. There would always be equipment and supplies that originate from elsewhere, such as the other islands or the mainland. There is always the possibility that these could be infested by unwanted species when they arrive in Kahului. Secondly, vehicular traffic for the Preferred Mees site would increase during operation of the facility, thereby increasing potential for the introduction of AIS, even though this increase in traffic is not expected to be substantial. Provisions to control the introduction of AIS would be included in the SUP issued by HALE for Project-related traffic along the Park road corridor. Therefore, when combined with past, present, and reasonably foreseeable future actions in the ROI, the impact on botanical resources would be minor, adverse, and short-term.

Endangered, Threatened, Proposed, and Candidate Plant Species. It would be unlikely that the construction of the proposed ATST Project would affect endangered, threatened, proposed, or candidate plant species, specifically 'ahinahina. At present no 'ahinahina are within the Preferred Mees site for the proposed ATST Project. Prior to construction, monitoring for plant species would be accomplished as part of the programmatic monitoring measures described in Table 4-12, such that the risk of any 'ahinahina being damaged or destroyed during construction would be minimal. Also, the proposed ATST Project would have no **impact** on the on **many-flower geranium** critical habitat.

The requirements of the LRDP and construction directives for the proposed ATST Project would provide for vehicle steam cleaning, invasive species inspections, and rapid response to on-site discoveries of introduced species. The proposed ATST Project would provide the best available level of protection against habitat-modifying invasive plants. Therefore, in combination with past, present and reasonably foreseeable future actions at HO and within the Park road corridor, the **impacts** of the proposed ATST Project at the Preferred Mees site on these plant species would be negligible, adverse, and long-term.

The potential for the appearance of 'ahinahina at undeveloped portions of the proposed ATST Project would exist once the proposed ATST Project becomes operational. These would not be removed or interfered with in any way. This species could potentially benefit from the additional sources of water around impervious surfaces (as has the 'ahinahina around the Air Force facilities) and find refuge in the lee of the structures. In combination with the past, present, and reasonably foreseeable future actions in the ROI, the cumulative impacts on these species would be negligible, adverse, and long-term.

Endangered, Threatened, Proposed, and Candidate Avifaunal Species. These species would be affected by construction of the proposed ATST Project at the **Preferred** Mees site. Construction activities that could induce ground vibration (i.e., heavy equipment grading, excavating, drilling, and compacting) or loud noise, e.g., diesel engines, could disrupt 'ua'u at HO, adversely affecting 'ua'u nesting and fledging success. 'Ua'u mortality could result from birds abandoning nests or failing to feed fledglings. Construction noise, vibration, or human proximity could affect the nesting habits of the 'ua'u to the extent that they may not return to, remain in, or otherwise utilize the burrows that are inhabited each year. Construction activity also has the potential of causing burrow collapse directly related to excavation, vibration, or other human activities. Collapse of a burrow could result in 'ua'u mortality.

During the heavy construction phase for the proposed ATST Project, nine average round trips per day by construction-related vehicles are estimated. This is a temporary increase in traffic that would end when construction is completed. Based on the estimate of 11,544 round- trips through the Park road corridor over the entire duration of construction, the risk to nēnē along the Park road corridor is only a fraction of 1 percent during that period. In fact, USFWS calculated that the risk of collision is 0.3 nene during the life of the proposed ATST Project. Since the 'ua'u are nocturnal, however, large construction loads that must be moved at night could encounter 'ua'u outside of burrows. Therefore, in accordance with USFWS mitigation measures for the proposed ATST Project, large nighttime loads would not be permitted between April 20th and July 15th during petrel incubation periods. To even further reduce the chance of a collision with a nēnē, all drivers accessing the site during the life of the proposed ATST Project would receive a briefing on these endangered, threatened, proposed, or candidate species from IfA. Drivers would receive a refresher briefing regarding the nene at the beginning of breeding season, approximately November 1 of each year. The USFWS mitigation measures (Appendix M) further states that no construction sounds greater than 83 dBA (measured 5 feet from the source) shall be generated at the construction site between April 20th and July 15th when a burrow is occupied within 80 meters of the site. This does not replace MIT-6, but rather places further restriction on construction activities when an occupied burrow is in closer proximity. As such, cumulative noise levels of 83 **dBA** would not be exceeded. These measures would further reduce the probability of affecting this endangered species within the ROI.

During Informal Consultation with the USFWS, it was determined that construction of the proposed ATST Project is not likely to adversely affect 'ua'u or nēnē with the implementation of **MIT-9**. Formal consultation would take place in the event that Incidental Take were to occur in the future, which would include killing, injury, capture, or relocation that are incidental to the construction activities. The findings of the Informal Consultation that specify how the efforts agreed to for the proposed ATST Project have reduced potentially adverse **impacts** for the 'ua'u and nēnē to a level of discountable **impacts** for these species. In combination with past, present and reasonably foreseeable future actions within the summit area, this would be considered a minor, adverse, and long-term **impact**.

The operations of the proposed ATST Project would be close to the current configuration of burrows in the Kolekole 'ua'u colony. Once construction would be completed, however, the risk to this species would diminish from "a level of discountable effects" (Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document) would remain the same. With noise and vibration levels not substantially higher than at present, there would be a low risk to nesting birds. There is no published evidence of differences in 'ua'u burrow activity and nesting success between sites near HO and those away from HO, e.g., burrows along the HALE road corridor. This suggests that observatory-type operations have negligible, adverse impacts on nesting 'ua'u (UH IfA, 2005). The normal operations of the proposed ATST Project would result in no adverse impacts on the 'ua'u along the Park road corridor, since vehicle use would be the same as for other visitors to HALE, and the petrels along the Park road corridor do not seem to demonstrate distress from nearby traffic, perhaps due to habituation to noise (Vol. II, Appendix M-USFWS Informal Consultation Document, 2007). Therefore, in combination with past, present, and reasonably foreseeable future actions, the impacts would be negligible, adverse, and long-term.

'Ope'ape'a. The 'ope'ape'a have been detected at HO, but has not been known to reside at those higher elevations. There is a risk during construction of an 'ope'ape'a striking the building structure or a crane, but since these creatures are well equipped to detect obstructions, it is unlikely that they would be victimized by an obstruction. No 'ope'ape'a carcass has ever been found near the other structures at HO. Construction at the **Preferred** Mees site would not result in changes to the ecosystem for this biological resource Bats have been detected near the Park Headquarters Visitor Center and Hosmer Grove (Frasher et al. 2007, HALE unpublished data), but according to HALE specialists (HALE, 2009) there has been no effort made to determine if bats occur along the Park road corridor. It is assumed that because their range of habitat is from sea level to 13,000 feet, that they would occur along the Park road corridor, but since they are evening foragers (Fullard, 1989) it is unlikely they would encounter routine construction traffic from the proposed ATST Project. Slow moving large or wide-load vehicles during nighttime hours would not pose a risk to these rapid flying vesper bats; therefore, the combined cumulative **impacts** of the proposed ATST Project with past, present, and reasonably foreseeable future actions would be negligible, adverse, and long-term.

This species has been detected at HO and would likely appear near the proposed ATST Project at some time during the operational lifetime of the proposed ATST Project. There is a risk of an 'ope'ape'a striking the building structure when flying through the area, but none have been reported to have been killed by building collision during the nearly 50 years that HO has had structures taller than 30 feet. When combined with past, present, and reasonably foreseeable future actions, the risk of collision is small. Since operations of the proposed ATST Project would be largely daytime, and vehicle use would be limited to only a few cars per day, it is unlikely that 'ope'ape'a would be affected by operations. Therefore, the cumulative impacts are also anticipated to be negligible, adverse, and long-term.

Other Native and Introduced Fauna. These fauna would be only slightly affected by construction of the proposed ATST Project at the **Preferred** Mees site. Avifaunal resources could be diverted in flyovers as the structure is built, if they were to be flying close to the ground. The diverse fauna along the Park road corridor could be discouraged from populating the area due to slow-moving, noisy construction traffic. For example, mongoose, and myna birds are commonly discouraged from remaining on roadways by traffic. In combination, however, with past, present and reasonably foreseeable future actions, the **impacts** on these fauna would be negligible, adverse, and long-term.

These fauna would be only slightly affected by operations of the proposed ATST Project at the Preferred Mees site. Avifaunal resources could be diverted in flyovers of the site, if they were to be flying below 143 feet. The presence of towers and other tall structures within HO and adjacent

properties is not resulting in collision mortalities. With proper trash procedures in place, occasional visiting of goats, cats, rats, and mice are not likely to be encouraged or deterred by the operations of the proposed ATST Project. It is likely that the proposed ATST Project, in combination with past, present, and reasonably foreseeable future actions would result in negligible, adverse, and long-term impacts.

Cumulative Impacts of Proposed ATST Project at the Reber Circle Site

Only minor differences in construction **impacts** exist between the **Preferred** Mees site and the Reber Circle site; therefore, the cumulative **impacts** for all the resources above would be the same for the construction and operation of the proposed ATST Project at the Reber Circle site, with the exception of the 'ua'u. The Reber Circle site is a greater distance from 'ua'u burrows in the Kolekole colony and is on previously developed land. The likelihood of adverse **impacts** on the 'ua'u colony would be even less than for the Preferred Mees site, and with the nesting period limitations on heavy construction, along with noise and vibration restrictions during construction, the Reber Circle site would be even less likely to result in adverse **impacts** on the 'ua'u at HO. The potential **impacts** on 'ua'u along the Park road corridor during construction at Reber Circle site would be the same as for the Preferred Mees site, which is minor, adverse, and long-term. Therefore, when combined with the **impacts** from past, present, and reasonably foreseeable future actions at HO, the **impacts** on 'ua'u within the ROI are anticipated to be negligible, adverse, and long-term.

No-Action Alternative

Under the No-Action Alternative, no construction would take place and operations would continue as at present. Therefore, the proposed ATST Project would result in no additional **impacts** to those described above for past and present activities at HO, which would continue to occur.

For the No-Action Alternative, the 'ua'u monitoring program would be discontinued. This would have a minor, adverse, and long-term **impact** on the ability to assess the health, numbers, and behavioral characteristics of the colony population. This alternative would not result in the risks to biological ecosystems that have been identified in connection with the proposed ATST Project. The same risk of AIS introduction would be present from current HO traffic and materiel delivery. The botanical diversity and population would likely continue to exist as it is, and the endangered 'ahinahina would likely continue to occur as windborne dispersal dictates. The same minor adverse **impacts** from HO operations would continue at the Kolekole 'ua'u colony. The risk of 'ope'ape'a mortality due to building collision would also be the same as it is at present. Overall, the cumulative **impacts** of the No-Action Alternative would be minor, adverse, and long-term.

4.17.7 Topography, Geology, and Soils

The ROI for topography, geology, and soils is HO and the Park road corridor. Temporal consideration for the HO portion of the ROI extends from 1961 when HO was identified as a land user and in 1935 for the Park road corridor when construction was completed.

IMPACTS OF PAST AND PRESENT ACTIONS ON TOPOGRAPHY, GEOLOGY, AND SOILS

In 1963, the University of Michigan team chosen to operate a space surveillance research facility on Haleakalā filmed the groundbreaking and excavation activities for the AMOS Observatory at HO. The 16 mm film (Jensen) shows a large area on the north side of HO being graded by bulldozers, even though only a small portion on the northern rim of Kolekole was to be occupied by the AMOS facility. Ground disturbance for construction of the Mees Solar Observatory on the southern side of HO followed the next year, and ultimately a substantial portion of HO underwent grading, excavation and reshaping for new facilities and modifications. More recently, topographic changes were accomplished at HO to better

manage stormwater runoff at the site. The underlying geologic structures at HO are unchanged, with pyroclastic debris and ankaramitic lavas constituting the bulk of the subsurface structure (Section 3.4.2-Geology). Soils range from cinder sands to gravel (Vol. II, Appendix K-Soils Investigation Report) and have not been affected by past or present actions at HO.

The topography of the Park road corridor is discussed extensively in the NPS Cultural Landscapes Inventory (CLI, 2008), in which it is defined as topography that has been manipulated by human activity. The CLI discusses the extensive changes to the natural landscape that were associated with the building of the roadway. Because the slopes of Haleakalā are cut by deep gullies, lava dykes, and spurs, engineering techniques were required to create a pleasant, scenic road for Park visitors. The Park road required grading and rock cuts and cut and fill sections were required to negotiate the rough, sloping terrain. Subsequently, many of the rock cuts along the road were altered for safety concerns. Park workers frequently blasted and removed rocks from the upper banks along the road after they had been undermined by the weather. The CLI reports that even 18 years after construction, rockslides continued to be a problem and retaining walls were constructed to prevent the road from sliding. Today, rock falls can be seen during and after storms.

The CLI also reports that in 1959 crews blasted and widened cuts in the upper three miles of the Park road. Surplus material was used to reinforce fills and build up narrow shoulders. Despite these alterations, naturalistic rock cuts still characterize the Haleakalā Highway today. They continue to appear as natural lava rock outcroppings and rock walls along the road's edge. Although, they may have been somewhat altered to improve safety conditions, their appearance and locations remain.

The topography along the Park road corridor also has cuts and fills in which a typical cross section of the road features a cut-side travel lane carved into the adjacent slope. Where the excavation of large rock cuts resulted in an excess of fill material, the surplus was often piled to create berms on the fill side of the road on dangerous curves or where fill slopes were likely to erode during storm events. The geology of the Park road corridor is within a multi-faceted geological domain that constitutes the upper slopes of Haleakalā volcano. The road passes along or through volcanic rocks ranging in age from 900 to more than a million years of age (Sinton, 2003). No alteration of the geologic regime has occurred form past or present actions.

Soils along the Park road corridor vary between the upper and lower portions of the road, where the latter contains more organic content. The most common soils along the Park road corridor, however, are characterized as tephra (air-fall material produced by a volcanic eruption), containing feldspar, glass, pyroxene and olivine, with weathered alteration products including Fe oxides, phyllosilicates and sulfates (Bishop, et al). These have not been affected by past or present actions along the Park road corridor. Overall, the impacts of past and present actions have resulted in major, adverse, and long-term impacts on topography, geology, and soils.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON TOPOGRAPHY, GEOLOGY, AND SOILS

The reasonably foreseeable future actions within the ROI, excluding the proposed ATST Project, includes the slurry sealing of the upper two miles of the HALE Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8. The SLR 2000 project would likely result in additional minor, adverse impacts to the topography, but negligible, adverse impacts on soils and geology. The road projects would likely result in negligible, adverse impacts on soils and geology. Overall, the cumulative impacts on these resources would be minor, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

Grading would be required for the proposed ATST Project and would alter the topography. A grade cut at the Mees site would be at approximately the 9,980-foot contour elevation. This would be done using a bulldozer, backhoe, jackhammer, dump truck, and other standard heavy equipment. An estimated 2,500 cubic yards of soil and rock would be removed for leveling in order to prepare the site for construction. The grading would level about ten feet of existing topography, but within the context of HO that would not substantially alter the appearance of the Kolekole cinder cone land form in which HO resides. No additional soil would be brought into the site. The removed material would be distributed within HO and would not substantially alter the topographic profile of the area. Finally, the proposed ATST Project and associated MECO upgrade would add slightly to the runoff and infiltration at HO (Vol. II, Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure). No substantial changes to the soil or underlying geology would be required for the proposed ATST Project. During construction and operations of the proposed ATST Project, the Park road corridor would not experience any change to its topography, soils, or geology.

Overall, the cumulative **impacts** on those resources, when combined with **the major impacts** from past, present, and reasonably foreseeable activities within the ROI, would be considered **major**, adverse, and long-term. **No mitigation would be adequate to reducing this impact.**

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

Construction at the Reber Circle site would have somewhat different consequences for the topography, soils, and geology in the ROI. The critical nature of the structural bearing condition requires that the level area immediately around the telescope be achieved primarily by cutting rather than by a cut and fill approach. At the Reber Circle site, the proposed grade cut would be down to approximately the 9,996-foot contour elevation; and therefore, approximately 5,000 cubic yards of soil and rock would be displaced during the leveling phase in order to prepare the site for construction. This would be twice as much material as at the **Preferred** Mees site and approximately 250 truck-trips would be necessary to relocate excess rock and soil. Although excavation techniques would be approximately the same as those for the **Preferred** Mees site structures, there could be more use of hydraulic hammers and jackhammers than at the **Preferred** Mees site because preliminary geotechnical investigations indicate that there is more subsurface rock at this site.

Approximately 7,150 cubic yards of soil and rock would be excavated from the Reber Circle site during construction. The amount of material removed for leveling would be approximately twice what would be required at the **Preferred** Mees site. This is primarily because no level area currently exists at the Reber Circle site for the Utility Building and service yard, as is the case at the **Preferred** Mees site. Since all of this material would still be accommodated at HO, the overall **impact** on the topography, geology, and soils would not result in more than minor, adverse, and long-term **impact**. There would be no additional **impacts** on these resources from operations of the facility once construction was completed.

During construction and operations of the proposed ATST Project at the Reber Circle site, the Park road corridor would not experience any change to its topography, geology, and soils.

Overall, the cumulative **impacts** on those resources when adding the **minor impacts** of the proposed ATST Project to the **major impacts** of past, present, and reasonably foreseeable actions within the ROI, would be considered **major**, adverse, and long-term. **No mitigation would be adequate to reducing this impact.**

No-Action Alternative

Topography. Under the No-Action Alternative, the proposed ATST Project would not be constructed and, therefore, the topography would remain the same. Therefore, the cumulative **impacts** of the No-

Action Alternative when added to the **impacts** from past, present, and reasonably known future actions within the ROI would remain **major**, adverse, and long-term.

<u>Geology and Soils</u>. Under the No-Action Alternative, the proposed ATST Project would not be constructed and geology and soils would not be disturbed. Therefore, the cumulative **impacts** of the No-Action Alternative when added to the **impacts** from past, present, and reasonably foreseeable future actions within the ROI would remain negligible, adverse, and long-term.

4.17.8 Visual Resources and View Planes

Section 4.17.8 – Visual Resources and View Planes has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The ROI for visual resources is portions of the Maui landmass, HO, the Park road corridor, and other areas within HALE from which structures within HO are visible. The temporal extent under consideration is from 1961 when HO was identified as a separate land user.

EFFECTS OF PAST AND PRESENT ACTIONS ON VISUAL RESOURCES AND VIEW PLANES

Visual resources within the ROI are discussed in Section 3.5-Visual Resources and View Planes. In this discussion, past and present actions are limited to the structures that comprise HO, which have had varied effects on the visual resources and view planes within the larger ROI. The first HO facility constructed was the Baker Nunn camera site in 1957. The location of this facility behind and below higher terrain at HO renders it invisible in views from outside of HO. Depending upon their position within HO - as well as their size, color, and shape - subsequently built facilities are visible from varying areas within HALE. They are also visible from portions of the larger Maui landmass as far away as the Central Valley, South Maui, or windward shoreline. Meteorology and time of day play an important role in their visibility, as well. For the purpose of this evaluation, HO will be treated as a whole and it will be assumed that all or part of HO is visible at least some of the time, and that it would be visible in direct lines-of-sight, i.e., disregarding clouds, humidity, dust, and conditions of daylight. Effects on visual resources from these past and present actions are described in terms of general visibility, space occupied by HO facilities within existing views, and the degree to which past and present actions affect visual character and quality in these views.

As was concluded for visual effects in Section 4.5, the intensity of these effects is described as being major, moderate, minor, or negligible. Views used to assess past and present actions at HO are those from within the same locations used in Section 4.5-Visual Resources and View Planes to describe visual effects from the proposed ATST Project. These are:

- 1. Pu'u Ula'ula Overlook,
- 2. The areas of HALE adjacent to HO, but not on Pu'u Ula'ula, including Magnetic Peak,
- 3. The upper Park roadway, including the Haleakalā Visitor Center,
- 4. The crater,
- 5. The lower Park roadway, including Hosmer Grove; and,
- 6. Populated areas of Maui, including windward, Upcountry, Central Valley, and South Maui locations.

Pu'u Ula'ula Overlook

HO is clearly visible from the Pu'u Ula'ula Overlook including the walkway outside the overlook (see Fig. 4-4a in Section 4.5). HO facilities dominate direct views from the overlook and define the visual character of the space they occupy as being developed with scientific and industrial-appearing structures. These structures are not consistent in terms of character and, compared with how the area would appear in its natural state, constitute a moderate, adverse, and long-term impact to visual resources.

The Areas of HALE Adjacent to HO, But Not on Pu'u Ula'ula, Including Magnetic Peak

In current views to the south toward Magnetic Peak from the Park road, the HO facilities are prominently visible. While they do not obstruct views of any specific visual resources of any significance, they encroach upon the horizon and substantially alter the skyline in views from the upper Park road to the south, toward Magnetic Peak (see Fig. 4-8a in Section 4.5). Views toward HO from within this area are characterized by the downward slope of the terrain to the west from Magnetic Peak. The HO facilities do not substantially disrupt the landform, but are inconsistent with what the visual character of the view would be without their presence. As such, past and present HO activities at this location constitute moderate, adverse, and long-term impacts to visual resources.

The Upper Park Road Corridor, Including the Haleakalā Visitor Center

HO occupies a smaller portion of views from points further away on the upper two miles of the Park road. Visibility ranges from moderate prominence (see Fig. 4-10a in Section 4.5) to only slightly visible along the ridgeline in views from certain areas (see Fig. 4-11a in Section 4.5). HO facilities are generally subordinate to natural landforms in views form this area and do not substantially alter the character of views. Because they are discernable as man-made features in these views, however, the visual quality of views is different from what it would be with no development of the HO area. Therefore, the presence of these structures is considered a moderate, adverse, and long-term impact to visual resources in views from the upper Park corridor.

Lower Park Road Corridor, Including Hosmer Grove

From the lower Park road, from the entry station to just above the Park Headquarters Visitor Center, the facilities at HO are not all visible due to terrain and building shielding. Therefore, the combined effect of all past and present actions at HO is considered to be negligible, adverse, and long-term.

The Crater

From the crater, the past and present actions at HO are not visible and therefore would contribute negligible, adverse, and long-term effects.

Populated Areas of Maui, Including Windward, Upcountry, Central Valley, and South Maui Locations HO is visible in distant ridgeline views from some of the populated areas of Maui, and not visible from other areas (see Figs. 4-15 through 4-27 in Section 4.5). Where visible, the facilities are identifiable as structures, but are difficult to distinguish from one another and, in certain locations, are partially obscured by terrain and each other. The structures are noticeable but not dominant, and they have no substantial effect on visual quality of the views. As such, past and present structures, where visible from populated areas of Maui, result in negligible, adverse, and long-term impacts to visual resources.

EFFECTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON VISUAL RESOURCES AND VIEW PLANES

The reasonably foreseeable future actions to consider for effects on visual resources are the construction of SLR 2000, the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8. These actions would constitute a negligible, adverse, and short-term effect on the visual resources within the ROI.

Cumulative Effects of the Proposed ATST Project at the Preferred Mees Site

The effects on visual resources and viewshed from the proposed ATST Project at the Preferred Mees Site are discussed in detail in Section 4.5-Visual Resources and View Planes. For this discussion, the same six areas within the ROI as in the previous paragraphs above are considered.

From Section 4.5, the effect on visual resources at the Pu'u Ula'ula Overlook from the construction and operation of the proposed ATST Project at the Preferred Mees site is considered to be major, adverse, and both short- and long-term because of its prominence in relatively close-up views. The location relative to other HO structures would result in the appearance of an increase in the total horizontal space occupied by the HO footprint (see Fig. 4-4b in Section 4.5). Though it would appear taller than any other structure in the view, it would not appear out of scale or character compared with the existing view toward the HO from the overlook. Considering the major, adverse, and long-term effects from past, present, and reasonably foreseeable future actions at HO, the cumulative effects resulting from the proposed ATST Project would not exceed major, adverse, and long-term impact to visual resources.

From areas in HALE adjacent to HO, the proposed ATST Project at the Preferred Mees site would appear in views to increase the total amount of horizontal space occupied by the HO. The proposed ATST Project would also appear as the tallest man-made structure in views where the HO is visible, through it would be subordinate to Magnetic Peak in terms of visual dominance (see Fig. 4-8b in Section 4.5). The visual character of views toward HO in adjacent areas in HALE remains defined by topography and the general downward slope to the west from Magnetic Peak. While the initial introduction of HO facilities into this landscape is considered a major, adverse, long-term impact, the addition of the ATST Project would, considering the past, present, and reasonably foreseeable future actions, constitute a cumulatively major, adverse, and long-term impact.

From within the upper two miles of Park roadway, the Proposed ATST Project at the Preferred Mees site would occupy varying portions of the existing landscape. In closer views, the new structure would occupy greater space than in views from further away (see Figs. 4-10b and 4-11b in Section 4.5); however, the proposed ATST Project would appear in all such views to increase the horizontal footprint of the HO. As with other views, however, the new structure would appear consistent with the existing visual character of its immediate surroundings at HO. The visual effect of adding the proposed structure would be to intensify the appearance of the developed area in closer views. In views from further away in the area, such visual effects would not be as noticeable. As such the cumulative effects of the proposed ATST Project and past, present and future projects would result in moderate, adverse, and long-term impacts to visual resources.

The proposed ATST Project at the Preferred Mees site would be intermittently visible in views from the lower Park roadway, including the area from the entry station to just above Park Headquarters Visitor Center (see Fig. 4-12b in Section 4.5). In these views, the proposed ATST Project would be barely discernable alongside other existing structures at HO, and the footprint of the area would appear to increase slightly. The new structure would not substantially affect the visual quality of such views. Reasonably foreseeable future actions would not contribute to a loss of visual resources, and the cumulative impact to visual resources in this area would be negligible, adverse, and long-term.

From the crater, the upper part of the 250-foot crane that would be used during construction of the proposed ATST Project at the Preferred Mees site would be visible from trails and camping areas within the crater, during such times when the crane is extended. No other past or present actions at HO are visible within the crater, and the crane would not be distinguishable as other than a faint, short segment above the rim. Where visible, it would appear small relative to the 3,000-foot crater walls. To the extent that it could be visible, however, such an object would potentially affect the visual quality of views from within the crater, which consists of mainly undeveloped backcountry. The cumulative impact to visual resources resulting from construction activities at the Mees site would be minor, adverse, and short term.

Where visible in more distant views from populated areas of Maui, the proposed ATST Project would appear as part of the cluster of structures at HO along the ridgeline (see Figs. 4-15 through 4-27 in Section 4.5). While a slight increase in the amount of overall space occupied by HO along the ridgeline would be visible from some locations, from others, the new structure would not be distinguishable from other, existing structures. The new building would not appear to substantially increase the size of the developed ridgeline, nor would it substantially alter the existing visual quality of views toward the ATST Project site. Past, present, and reasonably foreseeable future actions would not contribute to loss of visual resources from these locations, and the anticipated visual effects from the proposed ATST Project at the Mees site would not contribute to any further loss of visual resources. Therefore, in views from the populated areas of Maui, the proposed ATST Project would result in cumulatively negligible, adverse, and long-term impacts to visual resources.

Cumulative Effects of the Proposed ATST Project at the Reber Circle Site

When added to past and present actions at HO, as well as reasonably foreseeable future actions, the cumulative effects on visual resources for the proposed ATST Project at the Reber Circle site would be similar for each of the areas described above, except for in locations where the different location of the new structure would be readily noticeable, as described below.

In views from the Pu'u Ula'ula Overlook, the proposed ATST Project at the Reber Circle site would not appear partially blocked by the rim of Kolekole. It would appear unobstructed in views, and would be approximately 250 feet closer to the Pu'u Ula'ula Overlook (see Fig. 4-5b in Section 4.5) Though it would be taller than any other facility at HO, the new structure would not appear substantially out of scale relative to the immediate surroundings. Taking into consideration existing facilities at HO and reasonably foreseeable future actions, impacts to visual resources in close-in views would be major, adverse, and long-term.

During construction at the Reber Circle site, the 250-foot construction crane would appear larger and closer than at the Preferred Mees site. The resulting cumulative effect on visual resources would be major, adverse, and both short- and long-term.

From areas within HALE adjacent to HO, the same cumulative effects would be incurred by the proposed ATST Project at the Reber Circle site as those incurred for the Pu'u Ula'ula Overlook. Because of its location within HO, views of the proposed ATST Project would be unobstructed by nearby terrain and it would appear as the most prominent man-made feature in the area (see Fig. 4-9b in Section 4.5). It would also appear, however, within the visible footprint of the HO and would not result in the appearance of any increase in horizontal space occupied by the cluster of structures. The combined cumulative effects on visual resources from the proposed ATST Project, and the past, current, and reasonably foreseeable future actions would be considered major, adverse, and both short- and long-term.

No-Action Alternative

The No-Action Alternative would not contribute to changes in visual resources within HO or the adjoining properties that constitute the ROI, and therefore, the proposed ATST Project would not result in any additional effects on those resources.

4.17.9 Visitor Use and Experience

Section 4.17.9 – Visitor Use and Experience has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

The visitor use and experience would be defined as that which has affected visitors to Maui, beneficially or adversely, including those who visit and experience HALE. The impacts on visitor use and experience from past and present actions within the ROI are directly related to: 1) the visitor's location on Maui, 2) disturbance of the visitor's experience through diminution of visual appearance, noise, or traffic, and 3) disruption of a visitor's enjoyment, e.g., traffic delays. To help quantify the cumulative impacts of past, present, reasonably foreseeable future actions with the addition of the proposed ATST Project, the visitor use and experience in this section is divided into those that have taken place or are taking place within certain locations in HALE, including the Park road corridor, and those that have taken place or are taking place outside HALE, in what can be referred to as other landmass areas of Maui.

IMPACTS OF PAST AND PRESENT ACTIONS ON VISITOR USE AND EXPERIENCE

Impacts of Past and Present Actions on HALE Visitor Use and Experience

Within the summit area of HALE, there are two visitor facilities. One, the Haleakalā Visitor Center, which includes the cinder cone known as Pa Ka'oao (White Hill), located on the rim of the crater. The other is an overlook building located at the highest point at Pu'u Ula'ula, which is also one of the main attractions for visitors to the summit. The activities at the Haleakalā Visitor Center include viewing the crater and educational exhibits. Visitors to this location do not have any visual, audible, or interpretative interaction with HO.

Outside of these two locations, but still within the summit area, there are trails around and into the crater, as well as the upper Park road corridor, all of which permit visitors to explore the summit area while incidentally viewing HO activities visible from locations described in Section 3.5- Visual Resources and View Planes. Visitors in these areas are still within sight of road signs, vehicular traffic, and associated noise within HALE.

As such, these areas do not qualify as Wilderness, as defined in Section 2 (c) of the Wilderness Act (16 U.S.C. 1131-1136, 78 Stat. 890). HO activities are visually but not audibly detectable by visitors in these locations.

The Park road corridor has two portions from which the past and present actions at HO have been and are currently visible. These are approximately the upper two miles, from Leleiwi Overlook to just south of the Haleakalā Visitor Center parking lot, and within the lower Park road corridor from the entry station to just above the Park Headquarters Visitor Center. In addition, the Park road corridor is used for HO access and for services in support of activities at the site. Depending on location along the upper Park road corridor, the activities at HO may be visible but only slightly discernable at longer ranges or they may be clearly visible at closer ranges. Visitors along the Park road corridor have been able to visually (but not audibly) experience the activities at HO, since the MSSS facilities were built in 1963, because those were the first that were visible outside of HO in the direction toward HALE. Visitors along the Park road corridor cannot stop and get out of their vehicles at most locations along the Park road corridor and HO activities are then only viewed from within those vehicles.

Since about 1961, the traffic along the Park road corridor has included personnel and service vehicles in support of HO activities. Occasionally, these vehicles have included slow moving construction or service vehicles that have caused visitor traffic to be delayed on the way to the summit area. These delays have ranged from very infrequent (once or twice a month) to very frequent short-term delays, e.g., during concrete pier construction of AEOS in 1993. Overall however, the past and present actions have resulted in detectable but not consequential impacts on visitor use and experience along the Park road corridor.

The Wilderness Area of the Park is located over the majority of the eastern side of HALE. With respect to the ROI for visitor use and experience, these areas include the crater and its access from the "Summit

Area" at Keonehe'ehe'e Trails, also called Sliding Sands and from Halemau'u at the 8,000-foot elevation along the crater road. No past or present actions at HO are visible or audible from these trails leading into the crater. Visitors to the crater are unaware of activities at HO from the time they begin descending Sliding Sands trail or from Halemau'u parking area and trailhead. The impacts on visitor use and experience from past and present activities are readily apparently and long-term. Other areas in the Park remain available for similar visitor use and experience without degradation of Park resources and values, but visitor satisfaction may be measurably affected by these activities. Therefore, the impacts on visitor use and experience from these locations are considered negligible, adverse, and long-term.

Visitors to Other Landmass Areas of Maui

Approximately two million visitors arrived on Maui last year (DBEDT, Visitor Report). Visitors come to Maui for various experiences, including honeymoons, conventions, business, schooling, meetings, military and other purposes. For those whose purposes include sightseeing and wilderness adventures, i.e., "ziplining", hiking, camping, etc., the lower slopes of Haleakalā outside of HALE and recreational sea level areas are frequent destinations. From those locations, HO activities may be visible within the areas shown in Figure 4-1. These Maui visitors may or may not be aware of the activities at HO. There are no formal surveys as to which projects or activities on Maui result in adverse impacts on visitors, including HO. A search of Maui visitor comments available on the Internet suggests (at least anecdotally), that of those visitors who become aware of HO during their visits, the most common knowledge or reaction concerning HO is that it is not open to the public.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON VISITOR USE AND EXPERIENCE

The reasonably foreseeable future action within HO is the installation of SLR 2000; and within HALE, the slurry sealing of the upper two miles of Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8. The impacts on the first activity on visitor use and experience would be limited to HO. The installation of SLR 2000 would be a modular, small-scale project that would affect traffic for no more than one or two days during construction, and therefore, along with past and present actions at HO, would have a minor, adverse, and short-term impact on visitor use and experience at HALE.

The slurry sealing of the Park road would temporarily delay traffic in both directions during periods of roadwork, and would therefore have a minor, adverse, and short-term impact on visitor experience during the drive to and from the summit area. The rehabilitation of the Park road between MPs 11.2 and 14.8 would have a similar minor, adverse, and short-term impact on visitor experience in that delays would occur. If it were necessary to close the road to traffic entirely during some part of the rehabilitation work, the impacts on visitor experience could be major, adverse, and short-term, in that access to the summit area would be unavailable to those using the Park road.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

Some of the most important aspects of the visitor use and experience at HALE are enjoying the view from the Pu'u 'Ula'ula Overlook and hiking along the Sliding Sands hiking trail for views of the crater. The Pu'u 'Ula'ula Overlook is located approximately 0.3 miles from the HO, and as described in Section 4.5-Visual Resources and View Planes, the proposed ATST Project at the Mees site would intensify the developed appearance of the HO. This intensification would be visible to viewers at the Pu'u 'Ula'ula Overlook, most of who are visitors. The visual quality of the view towards the HO facilities from the overlook and various points along the Sliding Sands hiking trail and into the crater would also be affected during the period of construction (roughly from 2010 through 2014). Construction activities at the Mees Site would involve land clearing, demolition, grading/leveling, excavation, soil retention and placement, facility construction, remodeling of current facilities, and paving, and landscaping. Temporary changes to visual resources would occur during the time of construction. As described in Section 4.6.2, visitors may

be able to view the 250-foot crane that would be used during construction, which would have a minor, adverse and short-term impact on visitor use and experience. When combined with the major, adverse, long-term visual impacts of past and present actions at HO, construction of the ATST Project would have a major, adverse, and short-term cumulative impact on visitor use and experience at HALE. No mitigation would adequately reduce this cumulative impact.

Visitors would see the completed ATST Project from the access road and its contribution to the slight increase in space occupied in views by the cluster of HO facilities. When combined with the negligible, adverse, long-term impacts of past and present actions at HO, the overall cumulative impact on visitor use and experience resulting from the operations of the proposed ATST Project would be minor, adverse, and long-term.

Certain construction activities associated with the proposed ATST Project at the Preferred Mees site, such as caisson driving, would create more man-made noise than others, e.g., actual renovations and building of the new facilities. As noted in Section 4.10-Noise, noise attenuation from the construction site would decrease at approximately 6 to 7 dBA as distance is doubled. For the loudest construction impact sounds, at about 113 dBA, this would result in approximately 65 dBA heard at Pu'u Ula'ula Overlook and near the crater, e.g., Sliding Sands trailhead. The ambient sound level at these locations is about 47 dBA, and therefore would be considered a major, adverse, and long-term impact on the visitors' ability to enjoy ambient sound levels. The mitigation measures (MIT-6) described in Section 4.6-Visitor Use and Experience and 4.10-Noise would reduce the impacts of construction noise before sunrise and after sunset and between April 20th and July 15th. Considering noise, when combined with past and present actions at HO, construction of the proposed ATST Project would result in moderate, adverse, and short-term impacts on the experience of visitors to the Pu'u 'Ula'ula Overlook, Sliding Sands trailhead and HALE areas adjacent to HO.

For the upper Park road corridor, construction equipment and activity would be heard on the road and at the Preferred Mees site, e.g., be readily detectable by visitors along the Park road corridor. Traffic levels during construction are expected to increase by about 15 trips per day. This is only a small increase of vehicular traffic entering and leaving HALE compared to the approximately 1.7 million annual visitors to HALE (HALE, 2006). This small increase would have a negligible impact on travel time and visitor use and experience s, except during transport of slower moving wide/heavy loads, as explained in Section 2.4.3-Construction Activities. The added traffic would also increase the noise level by approximately up to 3 dBA during construction. This increase would be barely perceptible to users and would have a minor, short-term impact on the visitor use and experience. During operations, the added traffic would be even less and the increase of noise would not be noticeable (less than 1 dBA) and would have a negligible, long-term impact on the visitor use and experience. Additionally, slow moving vehicles and/or vehicles that are class 5 or larger would not be allowed to travel through the Park between approximately 11:00 a.m. and 2:00 p.m., which are peak visitation hours (MIT-10). When combined with the minor, adverse, and long-term past, present, and reasonably foreseeable actions at HO, these adverse impacts on visual resources, noise, and traffic, would result in a cumulative moderate, adverse, but short-term impact on visitor use and experience, except when the slurry sealing of the upper two miles of Park road would be underway in 2011, during which time the cumulative impacts on visitor experience would be major, adverse, and short-term. Operations of the proposed ATST Project combined with past, present, and reasonably foreseeable actions at HO would still result in moderate, adverse, and long-term impacts on visitor use and experience.

For the lower Park road corridor, construction equipment and activity would be seen and heard on the road, e.g., be readily detectable by visitors along the Park road corridor, but would not be visible or audible at the Mees construction site. When combined with the minor, adverse, and long-term past, present, and reasonably foreseeable actions at HO, these adverse impacts on visual resources, noise, and

traffic, would result in a cumulative minor, adverse, but short-term affect on visitors, except during the period when road rehabilitation is taking place between MPs 11.2 and 14.8, which would result in cumulative major, adverse, and short-term impacts on visitor experience. Operations of the proposed ATST Project combined with past, present, and reasonably foreseeable actions at HO would still result in cumulative minor, adverse, and long-term impacts on visitor use and experience along the lower roadway.

Within the wilderness areas of HALE, including the crater, the only aspect of the proposed ATST Project construction at the Preferred Mees site that would affect visitors would be the visibility of the crane from the crater floor, as described in Section 4.6.2-Evaluation of Potential Impacts at the Preferred Mees Site. When combined with the negligible, adverse, long-term impacts of past and present actions at HO, the crane would have a minor, adverse, and short-term impact on the visitor use and experience at HALE. Operations of the proposed ATST Project would not be seen or heard by visitors in the wilderness areas and when combined with the negligible, adverse, and long-term impacts of past, present, and reasonably foreseeable actions, the cumulative impacts would be negligible, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

Since the Reber Circle site would be closer and less terrain-shielded than it would be at the Preferred Mees site, it would be more visible from the Pu'u 'Ula'ula Overlook and from the summit of White Hill (Pa Ka'oao) and Magnetic Peak. As described in Section 4.6.3-Evaluation of Potential Impacts at the Reber Circle Site, visual resources impacts related to visitor use and experience would, however, be similar to those described for the Preferred Mees site. When combined with the major, adverse, and long-term impacts of past and present actions at HO, construction of the proposed ATST Project would have a major, adverse, and short-term cumulative impact on visitor use and experience at HALE. No impact would adequately reduce this cumulative impact.

Visitors would see the completed ATST Project from the access road and its contribution to the slight increase in space occupied in views by the cluster of HO facilities. When combined with the major, adverse, long-term impacts of past and present actions at HO, the overall cumulative impact on visitor use and experience resulting from the operations of the proposed ATST Project would be major, adverse, and long-term.

The impacts to visitor use and experience due to traffic and noise along the upper Park road corridor would be similar to those described for the Preferred Mees site. If the proposed ATST Project were to be constructed at the Reber Circle site, it would be somewhat more visible along the Park road corridor due to its position within HO and the reduced terrain and facility blocking as described in Section 4.5-Visual Resources and View Planes. From closer than 0.6 miles from HO on the upper Park road corridor, this visual intrusion, when combined with the minor, adverse, and long-term impacts of past and present actions, and the minor to major, adverse, and short term reasonably foreseeable actions at HO, would likely result in a major, adverse, and long-term impact on the visitor use and experience. At longer distances along the upper Park road corridor, the impacts would be not much different from past and present HO activities, namely minor, adverse, and long-term.

Unlike the Preferred Mees site, the proposed ATST Project at Reber Circle would likely be visible, at least from the upper carousel within the wilderness area that includes the crater, which would result in a combined cumulative minor, adverse, and long-term impact on visitor use and experience from some locations in the crater.

No-Action Alternative

There would be no direct cumulative impact to visitor use and experience under the No-Action Alternative, as visitor use and experience would remain the same as the existing conditions outlined in Section 3.0-Description of Affected Environment.

4.17.10 Water Resources

The ROI for water resources is HO, the affected areas of HALE and the Park road corridor, which are all within the Waiakoa and Manawainui Gulch watersheds and Kahikinui Aquifer system. The water resources considered are both groundwater and surface water systems within the ROI. Temporal consideration extends to early records from Western sources.

IMPACTS OF PAST AND PRESENT ACTIONS ON WATER RESOURCES

Within the affected ROI for HALE, there are only surface water resources. Catchment for both Visitor Center restrooms is from the impervious surfaces around the Visitor Center, and elsewhere in HALE there are storage tanks that take advantage of rainwater runoff. Streams in the affected portion of HALE are largely intermittent runs that are typically dry in good weather. These runs cross under the Park road corridor at the bridge, the 11 box culverts, and other natural drainage areas.

Past actions at HO have had a minor, adverse, and long-term **impact** on water resources, in that, due to inadequate maintenance of pathways, soil erosion occurred that changed local water drainage and infiltration patterns on Kolekole, at least in the short-term. Subsequent to implementation of the Storm Water **Management** Plan for Haleakalā High Altitude Observatory (SWMP) in 2006 (Vol. II, Appendix L), present actions do not result in local erosion or drainage issues.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON WATER RESOURCES

The reasonably foreseeable future actions within the ROI, excluding the proposed ATST Project, are not likely to affect the water resources of the ROI. The construction of the SLR 2000 would not require use of either surface water or basal groundwater for construction purposes. Ground disturbance for this project would be minimal, based upon use of pre-existing impervious surfaces (road beds and concrete pads) for construction. The **impacts** would be negligible, adverse, and short term. **The slurry sealing of the upper two miles of Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8 would not require use of either surface water or basal groundwater for construction purposes. The impacts of these future actions would be negligible, adverse, and short-term.**

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

At the Preferred Mees site, the proposed ATST Project and other future proposed actions, including the construction of the SLR 2000, would require land-disturbing activities, which could increase the potential for soil erosion to change infiltration routes and drainage patterns. Compliance with State-administered NPDES regulations and the guidelines of the HO SWMP would minimize the impacts on surface and groundwater resources.

The proposed ATST Project would capture most onsite stormwater for reuse in an existing cistern reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through onsite French drains where water would percolate to the natural subsurface environment. As such, the proposed action would be self-contained and would not contribute to HO stormwater systems. Since no changes to the Park road corridor are proposed, there would be no changes in stormwater runoff patterns, infiltration, or drainage within the remaining portions of the ROI.

Finally, the proposed ATST Project would replace an existing cesspool with an IWS, which would capture and process domestic wastewater prior to infiltration into the ground. This would have a minor, beneficial, and long-term impact on groundwater.

When added to the past, present, and reasonably foreseeable future actions, the proposed ATST Project and its associated MECO upgrade would result in cumulatively minor, adverse, and long-term impacts on the water resources.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

If implemented at the Reber Circle site, cumulative **impacts** of existing projects and the proposed projects on surface and groundwater resources would be similar to those described for the **Preferred** Mees site.

A wastewater treatment plant would be built to capture and treat domestic wastewater from the facility for the proposed ATST Project, if it were constructed at the Reber Circle site. In this case, however, the existing cesspool at the MSO facility would not be removed and untreated wastewater would continue discharging directly into the ground, resulting in minor, adverse, and long-term **impacts** on groundwater. Overall, the cumulative **impacts on water resources** from past, present, and reasonably foreseeable future actions, including **those from** operation of the proposed ATST project at Reber Circle, would be minor, adverse, and long-term.

No-Action Alternative

Under the No-Action Alternative, the proposed ATST Project would not be constructed and, therefore, the surface water features and groundwater resources would not be affected. Future proposed projects, including road improvements and SLR 2000 could, however, have minor, adverse, and short- term **impacts** on the surface water resources as described above. Under the No-Action Alternative, the existing cesspools at HO would not be removed and, therefore, the subsurface discharge of wastewater would continue.

Considering past, present, and reasonably foreseeable future actions, excluding the proposed ATST Project, the cumulative **impacts** from the No-Action Alternative would be **minor**, adverse, and long-term **impacts** on surface water and groundwater resources within the ROI.

4.17.11 Hazardous Materials and Solid Waste

The ROI for HAZMAT and solid waste includes HO, the Park road corridor, and the portion of the State highway leading up to the Park entry boundary. Consideration of cumulative **impacts** is focused primarily on HO because it is the main user of such materials and solid waste in the summit area. Temporal consideration extends back to 1961 when HO was identified as a separate land user.

IMPACTS OF PAST AND PRESENT ACTIONS ON HAZARDOUS MATERIALS AND SOLID WASTE

Hazardous Materials

Those organizations within HO that use HAZMAT and generate hazardous waste have had hazardous waste management plans for many years. The IfA "Hazardous Material and Hazardous Waste Management Program" (UH IfA, 2005b), governs the handling of HAZMAT for the HO site. The management plan complies with applicable Federal, State, and County regulations that govern the use of HAZMAT and the disposal of hazardous wastes. Since 2004, handling of hazardous waste emergencies at MSSC are in accordance with the Hazardous Material Emergency Response Plan for the MSSC, which is the responsibility of Boeing LTS, which has the prime responsibility for spill response (Boeing, 2005b). The HAZMAT plan identifies emergency contacts, an emergency action plan, organizational roles and responsibilities, site-specific contingency plans, information on hazards analysis, response functions, public information and community relations, as well as information on containment and cleanup.

Recently completed projects, such as the AEOS MCF for the AEOS telescope require the use of HAZMAT with commensurate increases in the amounts of HAZMAT brought to HO. The materials used at the AEOS MCF are the same as those used to maintain smaller mirrors at the AEOS telescope building. The volume of hazardous waste that is generated from stripping the AEOS mirror is approximately between 207 and 376 kilograms (456 to 829 pounds), once every six years (U.S. AFRL, 2005). The recently constructed Pan-STARRS Telescope facility does not store HAZMAT or generate hazardous waste.

Past actions at HO have resulted in only one recorded spill incident since 1961. On September 11, 1999, a subcontractor working at MSSC released 330 gallons of a 20 percent mixture of propylene glycol and water into the cinders and rock. (NOTE: The Food and Drug Administration (FDA) has determined propylene glycol to be "generally recognized as safe" for use in food, cosmetics, and medicines.) All required notifications were made to the appropriate agencies and personnel. A containment trench and a plastic covering were installed immediately. The EPA was not contacted because the material did not violate RCRA and was not Federally-regulated.

The site was cleaned up on Saturday, September 18, 1999. A trench was dug around the contaminated area, plastic was used to cover it, samples were collected and prepared for shipment to a certified lab in Honolulu, and photographs were taken. Soils were excavated to a depth of six inches in the contaminated areas and at three feet along an area where a concrete slab acted as a dam. The excavated soil was placed in containers and covered with plastic sheeting. A "no further action" letter was received from the State of Hawai'i, Hazard Evaluation and Emergency Response on September 27, 1999 (Ueshiro, 1999), and the site does not pose any risk to human health. To date, there have been no spills or releases at any of the other facilities on HO (Shimko, 2005).

In consideration of the increased amounts of HAZMAT stored at HO since the MCF was completed, and in consideration of the small but always present risk of uncontained spills, the **impacts** of past and present actions on HAZMAT are minor, adverse, and long-term.

Solid Waste

With respect to solid waste, the remote location of HO has required certain practices and procedures. Each facility has its own trash receptacle and each facility's building maintenance personnel are responsible for trash collection. Non-hazardous trash is disposed of off-site in a licensed landfill, with computer paper and aluminum being recycled (UH IfA, 2001).

At IfA, approximately four to five bags of solid waste are produced from the MSO facility and other facilities at HO under their jurisdiction (i.e., the Atmospheric Airglow facility, the Zodiacal Observatory, and the FTF). Municipal solid waste from MSSC, such as food trash, is collected twice a week for off-site disposal at the Central Maui Landfill. Other wastes associated with MSSC operations and maintenance, such as used oil, are collected in containers within the AEOS facility and transported off-site for disposal as non-hazardous waste. Amounts of solid waste vary, with MSSC as the largest producer, generating 3,335 pounds of non-RCRA waste in fiscal year 2004 (Shimko, 2004). These amounts are an almost infinitesimally small fraction of the total daily capacity permitted at the receiving landfill in Central Maui, which accepts approximately 450 tons per day.

Past and present actions at HO do not result in more than miniscule additions to the solid waste stream on Maui; therefore, the **impacts** have been negligible, adverse, and long-term.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON HAZARDOUS MATERIALS AND SOLID WASTE

The reasonably foreseeable future action within the ROI for HAZMAT and solid waste are the installation of SLR 2000 at HO, the slurry sealing of the upper two miles of Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8. These activities would not involve the use of HAZMAT as defined in OSHA 29 CFR part 1910, subpart Z (Toxic and Hazardous Substances). Therefore, there would be no impact on HAZMAT. This project would generate a small amount of solid waste during construction, which would need to be disposed of at the Central Maui landfill. Small scale construction does not typically result in large quantities of solid waste and it is anticipated that this project would have a negligible, adverse, and short-term impact on solid waste within the ROI.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

During construction, some activities such as welding and metal working could generate minor quantities of hazardous waste and air pollutants. Other HAZMAT or substances that may be used in the construction phase would include fuels, oils, and lubricants in machinery operations and paints on building structures. Petroleum products are Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)-defined HAZMAT and would be monitored, handled, and reported through RCRA, if necessary. No other HAZMAT or substances would be used in construction. The LRDP imposes construction constraints, such that no oil or chemical treating may be used at the site for dust control. While the contribution of the proposed ATST Project would be negligible, the added risk and volume of HAZMAT combined with the past, present and reasonably foreseeable future actions at HO would increase the intensity of cumulative **impacts** to minor, adverse, and short-term.

In accordance with LRDP requirements, construction contractors would remove construction trash frequently, particularly food sources that could increase the population of mice and rats. Most construction waste would be removed in roll-off trash receptacles that would be covered before transport. During demolition and construction activities at the **Preferred** Mees site, solid waste requiring disposal would be generated. Construction waste and debris would be secured to minimize windblown materials, particularly during non-working hours. The amount of demolition and construction debris generated by the proposed ATST Project at the **Preferred** Mees site is expected to be minimal, with only a small **impact** on waste streams; however, the short-term cumulative **impacts** on the solid waste management from past, present and reasonably foreseeable future actions within the ROI would raise the expected cumulative intensity to minor, adverse, and short-term.

When operational, the proposed ATST Project would be a Conditionally Exempt Small Quantity Generator of hazardous waste, in that it would not generate more than 100 kilograms (approximately one-half of a 55-gallon drum, 27 gallons, or 220 pounds) of hazardous waste, nor would it generate more than 1 kilogram (2.2 pounds) of acute hazardous waste in one month, and it would not have more than 1,000 kilograms (approximately five 55-gallon drums, or 275 gallons, or 2,200 pounds) of total accumulated hazardous waste, or no more than 1 kilogram (2.2 pounds) of accumulated acute hazardous waste at any time (U.S. AFRL, 2005). Mirror recoating operations every approximately two years would require the largest use of HAZMAT, as described in Section 2.4.4-Telescope Operation Activities and shown in Table 2-5. Overall, while these amounts are considered small enough to not require regulations imposed on large generators, when added to the small quantities generated by past, present, and future known activities within the ROI for HAZMAT, the combined cumulative **impacts** would be minor, adverse, and long-term.

After completion of the proposed construction, the facility would be operational and solid waste generated on-site would be carried out of the building by facility workers and kept in covered refuse containers. Non-hazardous trash and recyclable material would be disposed of off-site at Maui's licensed landfill. There would be no change in the long-term solid waste disposal practices from the **Preferred** Mees site, although solid waste generation would increase somewhat, perhaps by as much as 4 to 8 bags of solid waste a week. The increase would be generated by the approximately 6 to 8 additional personnel

at the site in two shifts, when combined with the past, present and reasonably foreseeable future actions would still be cumulatively negligible, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

Hazardous materials storage and handling, and solid waste collection and disposal at the Reber Circle site would be identical to that for the **Preferred** Mees site, with the exception of diesel fuel. For the Reber Circle site, a new aboveground fuel tank would be installed, which would comply with all USEPA and State requirements. All applicable inspection, maintenance, and safety regulations related to the fuel tank and generator would be enforced during ATST operations. Operating the diesel fuel tank at the Reber Circle site would result in increased risk of contamination of on-site soils when handling and storing diesel fuel, but overall the safety and HAZMAT procedures that would be in place would result in a small risk and negligible, adverse, and long-term **impacts** on HAZMAT. Overall, the cumulative **impacts** of past, present, and reasonably foreseeable future actions on HAZMAT would be the same as for the **Preferred** Mees site, minor, adverse, and long-term. The **impacts** on solid waste would, cumulatively, be negligible, adverse, and long-term.

No-Action Alternative

For the No-Action Alternative, the proposed ATST Project would not be constructed, thereby not involving any short or long term use of HAZMAT. Existing facilities would continue to use such materials for mirror coating and cleaning, lubrications, refrigerants, etc. Therefore, the potential for a release would still exist. Based on the historical record of HAZMAT and waste handling at HO, which is excellent and does not include any EPA-reportable spills of HAZMAT in the more than 30 years since reporting requirements were imposed, only negligible, adverse, and long-term **impacts** are expected as a result of the No-Action Alternative.

4.17.12 Infrastructure and Utilities

The ROI for infrastructure is HO, its adjacent neighbors, and the Park road corridor. The temporal consideration for this section begins in 1961 with the identification of HO as a separate land user in the summit area. Infrastructure is defined as those systems that pertain to wastewater and solid waste disposal, stormwater and drainage, electrical service and communications, and roadways and traffic. The cumulative **impacts** considered are those from the past, present, and reasonably foreseeable future actions at HO and adjacent neighbors on co-located properties in the Kolekole area.

IMPACTS OF PAST AND PRESENT ACTIONS ON INFRASTRUCTURE AND UTILITIES

Wastewater

There is no centralized means of sewage disposal within the ROI. Septic tanks have been used since at least the first facilities were installed at HO in 1963. Most facilities at HO have their own septic systems and these generally have either simple cesspools or separation tanks and leach fields. Occasionally, throughout the history of HO, some of these systems have needed to be serviced via off-site waste removal contractors. The effluent from these systems has not affected the remainder of the ROI, since groundwater levels are thousands of feet below the summit area (FTF EA, 2001). Therefore, the **impacts** of past and present actions with respect to wastewater are, in general, **minor**, adverse, and long-term.

Stormwater and Drainage System

On the slopes of Haleakalā, virtually all precipitation will infiltrate into the soil profile (Section 3.7-Water Resources). Once in the soil, gravity continues to flow water down into the soil; and when the water hits a less permeable layer, such as basalt, it will flow in the path of least resistance. At the HO site, this confining layer of basalt ranges from depths of 5 to 20+ feet. This confining layer of basalt in and around the summit area causes precipitation falling near the summit to infiltrate and flow subsurface toward the

natural drainage courses, e.g., Manawainui Gulch. As a result, runoff from the impervious surfaces associated with HO facilities and adjacent roads has not been likely to increase the total volume of stormwater flow entering natural drainages, although it may have affected the way it is transported there (UH IfA, 2005a). Past and present actions at HO have had a minor, adverse, and short-term **impact** on stormwater and drainage systems, due to inadequate maintenance of runoff pathways within HO; between 2002 and 2006 soil erosion occurred that changed local water drainage and infiltration patterns on Kolekole, at least in the short-term. Subsequent to implementation of the Storm Water **Management** Plan for Haleakalā High Altitude Observatory (SWMP) in 2006 (Vol. II, Appendix L), present actions do not result in local erosion or drainage issues. Also, within HO, minor, adverse **impacts** on stormwater systems have occurred from surfaces, such as roads, buildings, and parking lots that may direct flow off Kolekole as sheet flow that also causes minor erosion of soil at the site. In recent years, sheet flow has been redirected at both the north and south sides of Kolekole to minimize such **impacts**. Therefore, the overall long-term **impacts** of past and present actions at HO on stormwater and drainage are minor and adverse.

Electrical Systems

MECO generates electricity for the HO site and has since the inception of HO. There have been minor upgrades since 1963, including newer substation components on the north side of HO during the 1990s. MECO currently provides a 3750/4688 kilovolt-ampere (kVA) transformer at the Kula substation that presently serves HO. The site is connected via 23 kV conductors on power lines to a 450 kVA transformer bank and voltage regulators at a substation within HO and distributed from there. Past and present actions at HO have and continue to utilize considerably less than the current reserve capacity of the main power line to Haleakalā, which is estimated by MECO to be approximately 1900 kVA. As such, the **impacts** on electrical systems from past and present actions at HO have been negligible, adverse, and long-term.

Communications System

Hawaiian Telcom provides telephone and other communications services for the HO complex. Over the years, HO communications have been upgraded by the addition of new technologies, and are currently served for data and telephone connectivity by a range of copper, fiber-optic, and microwave lines. The U.S. Air Force facilities are served by a dedicated fiber cable with OC3C capacity. The IfA facilities are served by a microwave link with DS3 capacity. Hawaiian Telecom provides commercially available copper and fiber-optic lines to HO. With more than 100 percent reserve capacity, these communication links result in negligible, adverse, and long-term **impacts** on communications within HO.

The Federal Aviation Administration (FAA) operates and maintains a 50 Watt transmitter and receiving equipment for remote air/ground interisland and trans-Pacific communications to and from aircraft. The antennas for these transmitters/receivers are located on two towers within the FAA property adjacent to HO. The frequencies for transmission and receiving are in the Very High Frequency (VHF) and Ultra-High Frequency (UHF) radio bands, to and from transiting aircraft at altitudes from 8,000 to 50,000 feet. These FAA communications systems do not use substantial power from the reserve available through the MECO substation, and according to the FAA, they have not been or are currently affected by HO operations (FAA, 2009). The overall **impacts** of past and present HO activities on communications within the relevant portion of the ROI are negligible, adverse, and long-term.

Roadways and Traffic

As the only route to the summit for visitors and HO users, the Park road is traveled by upwards of 1.7 million persons each year. The road also experiences extremes of weather throughout the year and therefore the condition of the Park road is the result of a combination of factors that include travel to and from HO. As shown on Table 3-10, a 2003 traffic study included in the LRDP showed an average daily total traffic volume of 48 vehicles entering and leaving HO. That approximate number has not changed

substantially since about 1995, when the last major facility (AEOS) became operational at HO. Prior to AEOS construction, HO contributed smaller numbers of vehicles to the traffic on the Park road corridor. The volume of average daily traffic on the Park road over the last four years is 600 passenger cars and 16 buses, (Vol. II, Appendix P-FHWA **HALE Road** Report, Table 10), and so from the available data, HO traffic constitutes approximately 8 percent of the daily traffic. The condition of the road has been described in the 2009 FHWA Report. In addition, the FHWA study of the condition of the road through HALE also characterized the current traffic volume on that road based on statistics provided by the NPS. Tables 9 and 10 in the FHWA Road Report depict an average traffic volume from 2004 to 2008 of approximately 225,000 total vehicle trips annually, comprising approximately 600 daily passenger car trips and 16 daily bus trips. Considering the fraction of daily vehicular traffic that can be ascribed to HO, the past and present actions at HO are considered to have resulted in minor, adverse, and long-term **impacts** on the condition of the Park road.

The road within HO is used exclusively by those going to and from HO. Traffic patterns and parking have been modified over the years to accommodate new facilities and security concerns. However, with less than 50 cars each day using the road, it has not required much surface maintenance other than berms and shoulder work for stormwater control. The past and present actions at HO have resulted in only minor, adverse, and long-term **impacts** on the condition of the HO roadway.

State Road 378 is the access road from lower elevations on Maui to the entry of the Park road. Much of the road traverses Haleakalā Ranch (Fig. 4-29), which is privately-owned land (County of Maui, Real Property). The State road has been used for access to HO through HALE since 1961. Traffic on this road was measured by the State of Hawai'i Department of Department of Transportation (DOT) in a recent traffic survey on September 19 and 20, 2007 (DOT, 2007). Route 378, the State-maintained portion of the Haleakalā access road was reported to have total, two-way, 24-hour traffic of 1,439 vehicles (September 19, 2007) and 1,562 vehicles (September 20, 2007) in the traffic count conducted by the DOT. The traffic from past and present actions at HO would constitute approximately 3 percent of that volume, which is small enough to be considered negligible, adverse, and long-term with respect to **impacts** on that roadway.

There are two other access roads that serve the Haleakalā summit area. The FAA maintains an exclusive access road to facilities in the Saddle Area and the FAA Low Site. There is also an unimproved access road known as Skyline Drive, which originates at the Saddle Area and traverses the Southwest Rift zone, ultimately leading to Spring State Recreation Area (also known as Polipoli State Park) (DLNR, Hawai'i State Parks). Its entire length is within State land and most of it is within the fog belt of the Kula Forest Reserve. Approximately half of Skyline Drive is in the Limited Subzone of the State Conservation District and the remaining half in the Resource Subzone. A locked gate near the Saddle Area restricts vehicle access to the road from the Haleakalā summit to those holding DLNR permits. Hikers, hunters, and bicyclists use the unpaved road. The slopes along the existing road range from flat to 28 percent.

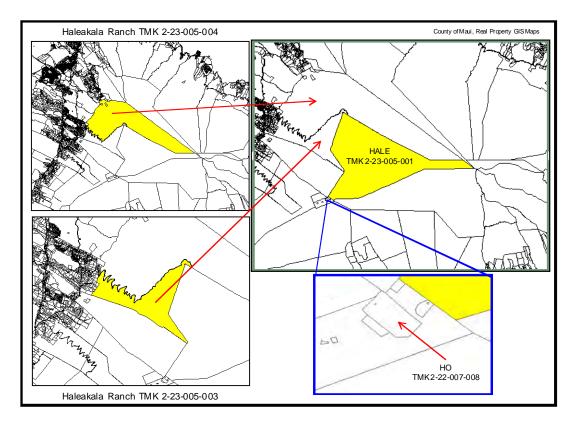


Figure 4-29. TMK Maps Showing Haleakalā Ranch and HALE Land.

Due to the steep grades, tight turns, and soft roadbed conditions of this access road, it is not appropriate for the range of vehicles necessary for construction, maintenance, and operation of HO facilities and this road has experienced negligible, adverse, and long-term **impacts** from past and present actions at HO.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON INFRASTRUCTURE AND UTILITIES

The reasonably foreseeable future actions within the relevant areas of the ROI, exclusive of the proposed ATST Project, is the installation of SLR 2000 at HO, the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

The cumulative **impacts** of the proposed ATST Project and its associated MECO upgrade on wastewater, stormwater, drainage, electrical systems, communication systems, and roadways and traffic are considered in the paragraphs below. With the exception of roadways and traffic, only construction impacts are considered for these resources, since the remaining infrastructural elements would not contribute to cumulative impacts before the proposed ATST Project becomes operational. Both construction- and operations-related impacts are considered for roadways and traffic.

<u>Wastewater</u>. The existing cesspool at the MSO facility would be removed and an advanced aerobic Individual Wastewater System (IWS) would be installed to treat sanitary wastewater. In order to receive a permit, the IWS must meet Hawai'i Department of Health requirements. Effluent from the IWS would be discharged to the subsurface through a septic tank leach field, except that the effluent from the proposed

system would be treated as opposed to the current untreated effluent. The proposed IWS would not increase the amount of effluent, but it would **improve** the effluent quality relative to current conditions. Therefore, construction of the proposed ATST Project would likely result in a beneficial change in effluent quality that, along with present and past actions at HO and adjacent neighbors, would constitute a minor, beneficial, and long-term **impact** on wastewater generation.

Stormwater and Drainage System. A majority of the HO site is served by a stormwater collection system of paved channels designed to convey runoff from impervious areas to a central infiltration basin. The proposed ATST Project facility would capture most of the on-site stormwater and surface water for reuse in an existing cistern reducing the potential adverse impacts on the infiltration basin. Stormwater that does not reach the cistern would be filtered through onsite French drains where water would percolate to the natural subsurface environment. As a requirement, the proposed ATST Project would implement the guidance of the SWMP for HO (Vol. II, Appendix L). As such, changes to runoff are not expected to increase and no measurable or perceptible consequences on the existing stormwater management system or drainage patterns would result. Capturing stormwater and implementing the guidance of the SWMP for HO would reduce the potential for increased runoff entering the stormwater management system. Therefore, because the proposed ATST Project would not contribute to the overall cumulative impact, the cumulative impact, regardless of the minor, adverse, and long-term impacts on stormwater and drainage patterns from past, present and reasonably foreseeable future actions within Kolekole, would remain negligible, adverse, and long-term.

<u>Electrical Systems.</u> The estimated total electric service for the proposed ATST Project is 960 kVA, although the entirety of that load would not be concurrent. Applying a diversity factor of 70 percent the maximum anticipated new electrical demand would be approximately 670 kVA. The reserve capacity in the existing MECO substation at HO is estimated by MECO engineers to be adequate for the existing connected loads and all currently identified future loads, including the **SLR 2000 and the** proposed ATST Project (Kauhi).

Although the existing HO substation has adequate capacity, the equipment is considered obsolete. MECO is planning to upgrade it to a new 2500 kVA substation with improved efficiency and safer reserve capacity (Kauhi, 2005). The upgrade itself would require small scale construction within HO that would not have more than negligible **impacts** on the other elements of infrastructure described in these sections. A "Request for Electric Service" has been submitted to MECO on behalf of the proposed ATST Project to allow incorporation of the anticipated electrical power requirements into planning and capital budgeting processes. A MECO-funded study (AMEL, 2005) was completed that identified ways to reduce the peak ATST electrical load through specification of more efficient equipment and shifting cooling loads to off-peak times. These identified strategies have been incorporated into the planning for the proposed ATST Project. All connections would be via underground electrical lines. The MECO upgrade would alter the existing electrical system by improving efficiency and providing a safer reserve capacity, which in combination with past, present, and reasonably foreseeable future actions would result in cumulative minor, beneficial, and long-term **impacts** on the electrical system at HO.

<u>Communications Systems.</u> The proposed ATST Project at the **Preferred** Mees site would require data connectivity of approximately 1 Gigabit per second to a base facility at lower elevation; however, the location of the Maui base facility and ATST data repository has not been determined. Connectivity from the site to the base headquarters would use existing dark optical fiber from the proposed ATST Project. Arrangements would be made with the commercial provider to lease the necessary capacity. The hardware to implement the connection and the service agreement with the commercial provider would be supplemental to the existing communications connections within the ROI. These required changes to the existing communication system would have no perceptible consequence to the other facilities on Kolekole. In addition, communication connections to serve the proposed ATST Project at the **Preferred**

Mees site would be through existing reserve lines or new lines that would follow the path of existing lines. Any required new lines would be placed during site excavation.

The FAA RCAG system on Pu'u Kolekole maintains two sets of frequencies for contact with interisland air traffic down to 8,000 feet. As a result of the potential addition of the proposed ATST Project at the Preferred Mees site, physical obstruction to the geometric line-of-sight for signals from RCAG could occur. These frequencies could experience attenuation, which would be defined as signal loss in a narrow swath of 7 degrees originating at the RCAG antennas and intersecting the width of the proposed ATST Project structure about 800 feet away. Signal refraction around objects occurs at Pu'u Kolekole, since some of the current natural terrain as well as man-made objects (AEOS, Zodical Light Building) are up to about 60 feet higher than the RCAG line-of-sight to the horizon, but do not interfere with FAA signals (FAA, 2007). FAA specialists working with NSF have addressed any potential issue involving a degradation of signal as a result of the proposed ATST Project. Given the potential for a degradation of signal, the FAA has determined that degradation of signal can be mitigated by replacing the existing antennas with high gain antennas and modifying/replacing the existing platforms on which the antennas are mounted, to accommodate wind loading and configuration of the new antennas (MIT-2). The FAA has stated that further modification of the site and relocations of the antennas may be needed, but environmental impacts from such a potential modification and relocation would not rise to a level of significance. In addition, NSF will work with the FAA to obtain adequate funding for implementation of the resolution. This would reduce the impacts to negligible, adverse, and long-term.

Overall, in combination with past, present and reasonably foreseeable future actions at HO and adjacent neighbors, the cumulative **impacts** of the proposed ATST Project at the **Preferred** Mees site on communications would be negligible, adverse, and long-term.

<u>Construction-Related Cumulative impacts On Roadways And Traffic.</u> Roadways and traffic include both the roads within the HO property and the Park road corridor leading to HO. The different areas of roadway are subject to different levels of traffic, are managed by different agencies, and require varying levels of maintenance. They are treated separately in this analysis to allow for appropriate assessment of the cumulative **impacts** of construction of the proposed ATST Project.

<u>Roadways at HO</u>. During the construction phase of the proposed ATST Project, the roads at HO would continue to be used for ongoing observatory operations. Any necessary barricading would be temporary and would be prearranged with HO users. Some roads within the HO complex may be temporarily widened to allow through-traffic during construction. The access road that leads from north of the MSO facility down to the main staging area would be reopened for use during construction. This would require removing rock and soil that have been placed at the entrance to the road as a surface water diverter. The rock and soil diverter would be reconstructed after the proposed ATST Project construction is complete. All of these activities would be done in accordance with and to a level not to interrupt the effective use of the HO stormwater management, discussed in Section 3.7.1-Surface Water. The roads within HO are maintained by IfA, with contributions from all users of roads and easements. Vehicular traffic is normally slow-speed and low in volume and would not be substantially affected by the cyclic integration of construction vehicles and equipment related to the proposed ATST Project. Currently, roadways within HO require very little maintenance and have considerable longevity. These observatory roads were not designed, however, to support unusually heavy loads, such as large trucks and construction vehicles. The project-proposed mitigation measure, MIT-11, would reduce the potential for degradation during the ATST project from a moderate to a minor, adverse, long-term impact. When combined with past, present, and reasonably foreseeable future actions at HO and adjacent neighbors, construction of the proposed ATST Project would result in cumulatively minor, adverse, and long-term impacts on the condition of the roads within HO.

<u>Roadways Leading to HO</u>. The roadways leading to the construction site for the proposed ATST Project include State-maintained highways up to the Park entrance and the Park road itself. Traffic along these routes would primarily be affected by slow moving heavy equipment, delivery of concrete and materials, and miscellaneous service trips as characterized in Section 2.4.3-Construction Activities. The following discussion deals first with **impacts** that are common to all these highways – both State- and Park-managed – and then addresses the issues that are particular to each.

Large trucks, delivery vehicles, van shuttles and passenger vehicles would all travel the State and HALE roadways leading to HO during construction of the proposed ATST Project at the **Preferred** Mees site. Construction vehicles would include heavy vehicles, such as dump trucks, flatbeds, water trucks and vehicles to transport large construction equipment such as bulldozers, backhoes, trenchers, a truck-mounted auger, and a large crane. The most intensive period of construction-related traffic would be during the first years of the project when heavy earth-moving equipment and most of the concrete for foundations and the telescope pier would be transported to the project site. The heavy equipment would remain at the site for as long as practicable to minimize conveyance over the roads. During the entirety of the construction period all large-vehicle traffic would be coordinated around heavier traffic periods and neighboring activities to minimize adverse **impacts**. Furthermore, to minimize highway traffic and the need for on-site vehicle parking, construction workers would be required to carpool.

Even with these measures, traffic on the State and Park roadways leading to the site would be adversely affected by the construction traffic. The **impacts** from construction-related traffic would be most evident on the mountain highways – State Route 378 and the Park road, which together form the only access route leading to the summit and into HO. The majority of this route is a two-lane highway with steep inclines and numerous switchback curves. This is a speed-limiting factor for large trucks causing inevitable queuing of vehicles behind the trucks. MIT-12 would be implemented during the ATST Project construction period to reduce the moderate, adverse, short-term impact to minor. Considering the characteristics of the road, coupled with the normal tourist traffic and combined with past and present actions at HO, it is anticipated that the combination with past, present, and reasonably foreseeable future actions at HO and adjacent neighbors would result in **cumulatively minor**, adverse, and short-term **impacts** to traffic on the State highways and the roadway through the Park. These are expected to occur during periods of heavy equipment use and material deliveries to the proposed ATST Project site.

<u>State Road</u>. In response to the DEIS, the DOT — the agency with jurisdiction over this portion of the road — identified no special concerns regarding road conditions or traffic related to the proposed ATST Project. They did, however point out that "...any heavy or wide truck transportation of project equipment on our State highways would require that your project staff and/or construction contractor contact our Highways Maui District Office for the appropriate truck permit and traffic route coordination." The ATST Project engineering team has researched the applicable statutes regarding standard authorized dimensions and weights of loads on State Highways, as well as the permitting requirements for loads that exceed these limits (HRS §291-34 to 36). The Project would fully comply with these requirements. It is anticipated that when combined with past, present, and reasonably foreseeable future actions at HO, the **impacts** associated with construction-related traffic on this roadway would be minor, adverse, and short-term.

<u>Park Road</u>. Large trucks carrying heavy loads and other construction-related traffic as defined in Section 2.4.3-Construction Activities, would utilize the Park road corridor leading up to HO during construction of the proposed ATST Project. The FHWA **HALE** Road Report (Vol. II, Appendix P) concluded that the estimated traffic required for construction of the proposed ATST Project would increase the road wear factor by approximately 4 percent, which is considered in the report to be a relatively small increment. The report also provided recommendations regarding road maintenance and measures for protection of drainage structures (culverts and bridge) along the road during construction of the proposed ATST

Project, as noted above in the summary of the report. These recommendations would be considered to prevent road damage from construction-related traffic (**MIT-12**). In addition, all construction-related traffic within the Park road corridor would be coordinated with HALE and conducted in compliance with an SUP issued by HALE, so as to avoid or minimize: damage to the road pavement, potential damage to historic structures along the Park road corridor, traffic congestion, and other potential adverse **impacts** on Park resources and the visitor use and experience. Even with these provisions, based on the conclusions of the FHWA Road Report, the use of the Park road by these vehicles in combination with past and present actions at HO and adjacent neighbors would have a cumulative minor, adverse, and long-term **impact** on the longevity of the pavement. The contribution of the proposed ATST Project to a future road repair project to compensate for this **impact** would be addressed in the provisions of the SUP.

Table 2-4 contains information on the anticipated wide loads that would need to be employed during construction of the proposed ATST Project. The entry to the Park road at the station is insufficiently wide to accommodate these wide loads. In consultation with HALE, a preferred option was chosen to temporarily widen and improve the shoulder on the entry station (uphill side) to permit wide construction loads to enter the Park road past the entry station. This would consist of installing compacted fill for a distance of approximately 12 feet beyond the existing paved roadway at the widest point, tapered back to the roadway on each end of the widened lane. Modifications would also include relocating an existing light pole, upgrading utility pull boxes to withstand the anticipated loads, and other related work.

In order to limit adverse **impacts** on that location within the Park road corridor several measures would be employed. Metal plate covers, beam structures or similar protective devices would be deployed to prevent damage to the underlying septic system. If protection proves impractical, relocation of the septic tank could be considered as an option. Secondly, the improved shoulder would need to be adequate for the heavy loads anticipated by the proposed ATST Project and maintenance of the shoulder improvement area would also be necessary. To deter Park visitors and others from driving on the new temporary shoulder, a barricade system such as removable bollards or similar devices would be installed on the improved shoulder.

This portion of the Park road corridor contains native plants and is also a nēnē habitat area. Therefore, construction would be completed outside of the nēnē nesting season, which is November through March. Native plants would be protected where possible in coordination with HALE staff. When the widened shoulder is no longer needed for the project the area, would be fully restored and rehabilitated through a restoration/rehabilitation plan reviewed and approved by HALE resource staff.

The addition of a temporary shoulder using locally obtained compacted fill and employing the precautions described above, when combined with past, present, and reasonably foreseeable future actions at HO and its adjacent neighbors, would not cause more than short-term, recoverable minor, adverse **impacts** on a very small portion of the Park road infrastructure that cumulatively would be considered minor, adverse and short-term.

Operations-Related Cumulative impacts On Roadways And Traffic. The operational phase of the proposed ATST Project would, if approved, begin approximately in late 2015. An estimated on-site staff of six would operate the facility, with others staffing remote locations on Maui or off-island. Four to seven round trips per day are estimated during the preliminary operational phase, which accounts for three shifts for observing, maintenance, and engineering staff. The estimated round trips per day includes three carpooling van trips to accommodate the three shifts and one to four additional cars. After the initial operational phase, the round trips per day are expected to decrease to about one to five.

<u>Roadways at HO.</u> Once construction is complete, there should be no further need for barricading of roadways for normal operational access to the proposed ATST Project. All truck and passenger vehicle parking is expected to be accommodated within the ATST service yard. During operations of the proposed ATST Project the cumulative **impacts** of past, present, and reasonably foreseeable future actions on roadways within HO is anticipated to be negligible, adverse, and long-term.

<u>State Road</u>. The State roadways in the Upcountry area and State Route 378 would continue to be utilized for access to the proposed ATST Project during its full operational lifetime. Given that the additional ATST-bound traffic would be minimal in comparison to normal traffic, as described in the traffic survey (DOT, **2007**) in combination with past, present and reasonably foreseeable future actions at HO and adjacent neighbors the cumulative **impacts** would be negligible, adverse, and long-term.

<u>Park Road</u>. The Park road corridor would continue to be utilized for access to the proposed ATST Project during its full operational lifetime. Any necessary mitigation measures related to this use, such as continued carpooling by ATST staff, advance notification and approval of occasional large or heavy loads, compliance with established procedures for transportation of HAZMAT, etc., would be arranged with HALE pursuant to the SUP. Given these measures, and the fact that additional ATST-related traffic would be minimal in comparison with normal park traffic as documented in the FHWA Road Report, there would be negligible, adverse, and long-term **impacts** on the Park road from operation of the proposed ATST Project.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

With the exception of the removal of the Mees septic system, the cumulative **impacts** on wastewater, stormwater, electrical systems, communication systems and roadways and traffic would be similar to the cumulative **impacts** that would result from past, present, and reasonably foreseeable future actions at HO and adjacent neighbors, if the proposed ATST project were implemented at Reber Circle. Constructing the proposed ATST Project at the Reber Circle site would include the installation of a wastewater treatment plant and the cesspool at the MSO would continue to operate, which would result in a **cumulatively** minor, adverse, and long-term **impact** on wastewater.

No-Action Alternative

Under the No-Action Alternative, the proposed ATST Project would not be constructed. The demands on the existing infrastructure and utilities would be minimally increased due to the only reasonably known future activity that would **be added**, the SLR 2000. The MECO upgrade would not be pursued without the proposed ATST Project. The MSO cesspool would remain in place. The SLR 2000 would have negligible, adverse, and long-term impacts on infrastructure and the cumulative impacts on infrastructure and utilities in the ROI from past, present, and future proposed projects combined with impacts from the No-Action Alternative would be negligible, adverse, and long-term.

4.17.13 Noise

The ROI for assessing noise **impacts** includes HO and the Park road corridor portions affected by on-site construction, installation, and operations including the Pu'u 'Ula'ula Overlook, and the area between the Haleakalā Visitor Center and Magnetic Hill. Noise-sensitive receptors within the ROI include cultural practitioners, scientists, staff, recreational users, and other visitors. Temporal consideration **when** the Park roadway **was originally opened** to general traffic in 1935.

IMPACTS OF PAST AND PRESENT ACTIONS ON NOISE

Past and present actions listed in Table 4-8 have resulted in a small continuous ambient noise level increase within the ROI, which can be attributed primarily to the increase in vehicular traffic in HALE over the years. It should be noted that while the traffic to facilities at HO has increased since 1964, it constitutes a very small fraction (less than 3 percent) of the total daily traffic through HALE. Additional short-term noise increases have occurred as a result of construction and installation associated with the activities listed in Table 4-8. General operations of telescope facilities are inherently low-noise activities. Visitor activities within HALE are generally low-noise in nature as well, and consistent primarily of vehicular traffic to and from the park.

The current ambient noise level within the ROI is low; however, some users of Haleakalā may be particularly **concerned about** noise. In particular, **traditional** cultural practitioners within the immediate vicinity of a noise source could potentially be disturbed. Most disturbances are low-level, discrete events rather than a substantial increase in the overall ambient noise level. In general, current noise levels are compatible with existing activities within the ROI. Consequently, noise levels from past and present actions have resulted in a combined minor, adverse, and long-term **impact**.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON NOISE

Reasonably foreseeable future actions within the ROI excluding the proposed ATST Project would have short-term noise consequences. The construction of SLR 2000 would involve relatively low levels of noise, considering that much of the construction would be the erection of pre-fabricated sections. Without need for heavy construction equipment, there would be only minor, adverse **impacts** for a short **time** during construction. **The slurry sealing of the upper two miles of Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8 would also have minor, adverse, and short-term impacts on noise during those activities.**

Overall, **impacts** from the reasonably foreseeable future actions other than the proposed ATST Project are anticipated to generate noise at levels comparable to those of past and present actions. Construction and installation activities would lead to larger increases in noise levels within the ROI for short periods of time, but it is anticipated that noise levels would remain compatible with existing activities within the ROI, constituting a minor, adverse, and long-term **impact**.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

The data in Section 4.10,-Noise, for the **Preferred** Mees Site indicates that minor adverse **impacts** on ambient noise levels at HO would occur from the proposed ATST Project construction. While short-term construction **noise** may be audible throughout the ROI, the construction noise contours in Figure 4-28 suggest that **unmitigated** construction noise would **comply with state requirements** at a distance of about 2,500 feet. This constitutes a cumulatively major, adverse, and **short-term impact** on ambient noise levels within the areas of HALE out to about 2,500 feet from the proposed ATST Project site.

Should the construction coincide with the MECO upgrade, the SLR 2000 installation, or the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8, noise and vibrations generated from all of these phases would be even higher. Consistent with the recommendations of USFWS and NPS and implemented through MIT-6, noisy construction activities would be limited to between a half-hour after sunrise and a half-hour before sunset, and would be prohibited from April 20th through July 15th, reducing the impacts to negligible, adverse, and long-term during those periods.

There would be a minor permanent increase in background noise levels in the ROI associated with the operation of the proposed project. Operational noise levels of all facilities within the ROI would be expected to remain compliant with State-wide community noise regulations applicable to Class A districts. Therefore, with the exception of those short periods during which slurry sealing of the Park road or rehabilitation of the Park road between MPs 11.2 and 14.8, it is anticipated that the cumulative impacts on noise levels are anticipated to be minor, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

The cumulative noise **impacts** from existing conditions, the proposed ATST Project at Reber Circle site, and future proposed projects would essentially be identical to those described for the Preferred Mees site, considering that noise from construction would not be any closer to HO or HALE receptors. **Therefore, it is anticipated that the cumulative impacts on noise levels will result in minor, adverse, long-term noise impact**.

No-Action Alternative

The cumulative **impacts** of existing and reasonably foreseeable future actions from the No-Action Alternative would have **minor**, adverse, and short-term **impacts** on noise conditions within the ROI. Under the No-Action Alternative, the proposed ATST Project would not be constructed therefore noise conditions would not change. However, reasonably foreseeable future actions would generate short-term, non-impulse, and impulsive noise emissions during construction which may be audible throughout the ROI and outdoor levels would likely exceed respective State standards for Class A zoning districts on occasion. Therefore, **impacts** from existing conditions within the ROI and the proposed ATST Project would not alter that (as it would not be constructed under this alternative).

4.17.14 Air Quality

The ROI for cumulative **impacts** on air quality is HO and the Park Road corridor.

IMPACTS OF PAST AND PRESENT ACTIONS ON AIR QUALITY

As described in Section 3.11-Air Quality, all areas in Hawai'i are considered to comply with Federal and State ambient air quality standards; no areas of Hawai'i are classified as non-attainment or maintenance areas. Therefore, all of Maui, including Haleakalā, is currently an attainment area for EPA "criteria" pollutants. Furthermore, HALE is categorized as a "Class 1" area under the Clean Air Act's Prevention of Significant Deterioration Program, a category the EPA reserves for the most pristine areas of the country in order to maintain the excellent level of air quality already attained. In addition, the excellent air quality at the summit of Haleakalā is due to the favorable meteorological conditions, including a temperature inversion layer that rings the mountain at an elevation of approximately 5,000 and 7,000 feet ASL (HALE, 2005b). This inversion layer stabilizes the atmosphere above the basin and limits airborne pollutants from rising to the summit, including that of the largest source of air pollution in the area, Kilauea Volcano on the island of Hawai'i (HALE, 2005a). Additionally, prevailing trade winds from the northeast are persistently gusty at HO, which accelerates the dilution of any locally generated air emissions.

Observatory operations generally do not produce air emissions, and the passive electro-optical telescopes, sensors, and other equipment at HO are no exception. Minor emission sources at HO include facility maintenance that could emit minimal levels of nitrogen oxides. These include occasional testing of emergency generators for those facilities. While there are no known emission sources at HALE facilities, the increased popularity of HALE as a visitor destination has increased traffic to the summit, which has generally increased vehicular emissions and fugitive dust generation. These emissions have not resulted in

reported substantial deterioration of the air quality within HALE. Overall, past and present actions within the ROI have resulted in minor, adverse, and long-term b on air quality.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON AIR QUALITY

The reasonably foreseeable future actions within the ROI, with the exception of the proposed ATST Project, would have minor, adverse, and temporary **impacts** on air quality. These would be similar to past projects with respect to release of fugitive dust and pollutants. The small SLR 2000 modular facility at HO is not likely to result in more than a minor, adverse, and short-term **impact** on air quality, **nor would the slurry sealing of the upper two miles of Park road and the rehabilitation of the Park road between MPs 11.2 and 14.8.**

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

It is anticipated that only minor, adverse, and long-term cumulative **impacts** on air quality would occur within the ROI with the addition of the proposed ATST Project and its associated MECO upgrade during from construction. The other two reasonably foreseeable future actions within the ROI would be temporary and these activities would not likely contribute substantially to fugitive construction dust emissions. Contractor compliance with applicable State regulations under HAR 11-60.1-33, implementation of reasonable precautions at the job site, and adoption of the operational practices mandated under the LRDP for HO would minimize fugitive dust emissions during construction as well. Meteorological conditions at the summit, which facilitate rapid dispersion and the off-site transport of airborne pollutants, would further reduce the potential for noticeable suspended particulate matter adversely affecting neighboring parts of the ROI. In particular, the prevailing wind direction during the majority of time in the summit area would be away from HALE toward the southwest slopes of Haleakalā, reducing any adverse **impacts** even further. It is not anticipated that there would be substantial changes to the operations of the observatories and surrounding facilities in the future, or substantial increases in vehicular emissions at HALE. Cumulative operational impacts resulting from existing projects, the proposed ATST Project at the Preferred Mees site, and the reasonably foreseeable future actions would be considered negligible, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

The cumulative **impacts** on air quality with the ROI from past, present, and reasonably foreseeable future actions, including the proposed ATST at Reber Circle would essentially be identical to those described for the **Preferred** Mees site, above. The cumulative **impacts** resulting from existing projects, the proposed ATST Project at the Reber Circle site, and the reasonably foreseeable future actions would be considered negligible, adverse, and long-term.

No-Action Alternative

The cumulative air quality **impacts** from past, existing, and reasonably foreseeable future actions when added to those from the No-Action Alternative would result in negligible, adverse, and short-term **impacts** on air quality within the ROI. Under the No-Action Alternative, the proposed ATST Project would not be constructed and, therefore, air quality would not change. The reasonably foreseeable future actions may generate fugitive dust emissions, however these activities would be temporary and the adoption of the operational practices mandated under the LRDP would continue to minimize emissions at HO. The cumulative **impacts** from existing conditions, the No-Action Alternative, and the reasonably foreseeable future actions would result in negligible, adverse, and short-term impacts on air quality within the ROI.

4.17.15 Socioeconomics and Environmental Justice

The ROI for the affected environment pertaining to socioeconomics is the island of Maui. The ROI for the affected environment pertaining to environmental justice is the summit area of Haleakalā.

IMPACTS OF PAST AND PRESENT ACTIONS ON SOCIOECONOMICS AND ENVIRONMENTAL JUSTICE

For this analysis, the scope of past and present actions at HO are considered with respect to their **impacts** on the economy and the sociological environment of the ROI as well as any **impacts** on minority or low-income communities or the health and safety of children within this region. The socioeconomic indicators of any such **impacts** are in three key areas:

- 1. Population and housing,
- 2. Employment, economy, and income; and,
- 3. Education

Additionally, environmental justice issues and the protection of children from environmental health risks are also considered.

Population and Housing

Negligible adverse **impacts** on population and housing have been associated with past or present actions at HO. Although approximately 195 people on Maui are directly employed through activities at HO (County of Maui, 2006) these employees have not increased the demand for housing, given that a majority are drawn from the local Maui population. As much as possible, many employment positions are filled from the growing number of available qualified Maui-based individuals. There has been no displacement of residents in their communities and demand for housing can be accommodated with existing vacant housing units. Therefore, there has been a negligible, adverse, and long-term **impact** on population and housing.

Employment, Economics, and Income

The past and present actions at HO have had minor, beneficial, and long-term **impacts** on local economy and employment because these activities have contributed to Maui-based technical industry through well-paying jobs that are generally stable and do not have high turnover rates. Some employees at HO have more than thirty years of service. In addition nearly 2,000 people on Maui perform services and provide materiel for direct use at HO. These include subcontractors, vendors, repair services, and others (UH IfA, 2009).

Education and Outreach

The past and present actions at HO have had minor, beneficial, and long-term **impacts** on the schools within the ROI. Section 3.12.1.3-Education describes the numerous educational and professional outreach programs that have been offered in the Maui community by the participating agencies at HO.

Environmental Justice

HO is located in a Conservation District where no urban or rural population or housing is permitted. It is not in a predominantly minority or low-income community, so none of the activities have disproportionately affected minority or low-income groups.

Protection of Children from Environmental Health or Safety Risk

The past and present actions at HO have not had disproportionate health and safety **impacts** on children. **Impacts** have been negligible and changes so small that they are not measurable or perceptible consequences. HO is close to HALE, where children may be present; however, since HO is not open to the public, unescorted and unauthorized children cannot gain access to the site to potentially suffer any mishaps. Children are only allowed into HO accompanied by adults and supervised as part of a visiting group to HO facilities.

IMPACTS OF REASONABLY KNOWN FUTURE ACTIONS ON SOCIOECONOMICS AND ENVIRONMENTAL JUSTICE

The reasonably foreseeable future action within the ROI are the installation of SLR 2000 and the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8. These are all small projects that would contribute negligibly to employment and income and would have no impact on education, outreach, environmental justice or protection of children. In addition to the past and present actions at HO, it would have only a combined negligible, beneficial, and short-term impact on these resources within the ROI.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

Population and Housing. Approximately 25 to 30 people (half of the estimated personnel) proposed to work at ATST on Maui would be hired and brought in from off-island, and this is not likely to substantially increase the demand for housing given the vacancy rates from the last few years (U.S. Census Bureau, 2006a). This small and localized demand is expected to be minor and of little consequence when added to the past, present, and reasonably foreseeable future actions at HO, in comparison with the annual increase in residents to the island of Maui, which has averaged approximately 2,600 per year since 1990 (County of Maui, 2006). With a 1.68 percent projected annual population growth rate, the cumulative needs for housing related to existing and reasonably foreseeable future actions within the ROI, including the proposed ATST Project would have only an inconsequential **impact** on population and housing. It is not anticipated that the population would exceed population projections and there would be no displacement of residents in their communities, so demand for housing can be accommodated with existing vacant housing units. Further, the change in demand for socioeconomic resources would be so small that it would not be of any measurable or perceptible consequence. The overall cumulative **impact** on housing from the proposed ATST Project at the Preferred Mees site would be minor, adverse, and long-term.

Employment, Economics, and Income. The construction of the proposed ATST Project itself at the Mees site would have minor, beneficial, and short-term **impacts** on the local economy and employment because it would require employment of local contractors to build the facility and it would increase associated spending within the ROI during the construction phase. The proposed ATST Project also would have a minor, beneficial, and long-term **impact** on employment with an estimated 50 to 55 new hires by the final year of commissioning. Because present employment within HO is stable, the overall cumulative **impacts** from the proposed ATST Project on employment, economics and income would be minor, beneficial, and long-term.

Education and Outreach. The proposed ATST Project at the Mees site would have minor, beneficial, and long-term **impacts** on the schools within the ROI. The estimated number of personnel and dependents relocating to Maui is expected to be relatively small and temporary. As described in Section 1.4.3-ATST Education and Public Outreach, the ATST consortium would provide education and outreach on several fronts that leverage and expand existing programs within the partnering groups and create unique opportunities during both its development and operation of the proposed ATST Project. Along

with the education and outreach programs already provided by other agencies at HO, the proposed ATST Project, with its accompanying commitment to fund an educational initiative at MCC to address the intersection between Native Hawaiian culture and science, would constitute a cumulative minor, beneficial, and long-term impact on education and outreach within the ROI.

Environmental Justice. The proposed ATST Project would have no adverse environmental justice **impacts**. The **Preferred** Mees site is in a Conservation District where no urban or rural population or housing is allowed. The potentially affected area **does not include** a predominantly minority or low-income community, so none of the **impacts** of construction and operation of the proposed ATST Project would disproportionately affect minority or low-income groups. When combined with past, present, and reasonably foreseeable future actions at HO, there would be a cumulative negligible, adverse, and long-term **impact**.

Protection of Children from Environmental Health or Safety Risks. The proposed ATST Project would not have disproportionate health and safety **impacts** on children. **Impacts** would be negligible and changes would be so small that it would not be of any measurable or perceptible consequence. The proposed ATST Project would be near HALE, where children may be present. Construction fencing and other precautions would, however, prevent children from gaining access to the site during construction. Children allowed into HO would be accompanied by adults and supervised as part of a visiting group to HO facilities.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

Population and Housing. Potential **impacts** on population and housing resulting from the proposed ATST Project at the Reber Circle site would be identical to those discussed for the **Preferred** Mees site. **Impacts** are expected to be small and localized and would be minor and of little consequence. When added to past, present, and reasonably foreseeable future actions at HO, the cumulative **impact** would be minor, adverse, and long-term.

Employment, Economics, and Income. Impacts on employment, economics, and income for the proposed ATST Project at the Reber Circle site would be identical to that of the **Preferred** Mees site. The development duration and the estimated cost are the same as those for the **Preferred** Mees site. Minor, beneficial, and short-term **impacts** would be realized during the construction phase for local vendors and materials hiring and spending. Minor, beneficial, and long-term **impacts** to employment would result from operational staffing of the proposed ATST Project facility. When combined with the minor, beneficial, and long-term **impacts** from past, present, and reasonably foreseeable future actions at HO, the overall cumulative **impacts** would remain minor, beneficial, and long-term.

Education and Outreach. There would be no difference in **impacts** for the proposed ATST Project at the Reber Circle site. No adverse **impacts** are expected on the schools and community within the ROI and when combined with the ongoing education and outreach efforts of the current HO users, the overall cumulative **impact** would be minor, beneficial, and long-term.

Environmental Justice. The intensity of **impact** for environmental justice for the proposed ATST Project at the Reber Circle site would be identical to that of the **Preferred** Mees site. No adverse **impacts** on low-income or minority communities are anticipated, and when combined with the negligible **impacts** from past, present, and reasonably foreseeable future actions, the cumulative **impacts** would be negligible, adverse, and long-term.

<u>Protection of Children from Environmental Health or Safety Risks</u>. The evaluation of **impacts** for the protection of children is identical for the proposed ATST Project at the Reber Circle site as for the Mees

site. No adverse **impacts** on children are anticipated and therefore when combined with the negligible, adverse and long-term **impacts** from past, present, and reasonably foreseeable future actions at HO, the overall cumulative **impact** would be negligible, adverse, and long-term.

No-Action Alternative

The No-Action Alternative would result in the proposed ATST Project not being constructed. Thus, it would not contribute to **impacts** on socioeconomic resources and environmental justice within HO.

4.17.16 **Public Services and Facilities**

The ROI for public service and facilities is HO and the Park road corridor. Due to their remote location, HO and the Park road corridor are between 10 and 22 miles from the nearest public services and facilities. The nearest school **and healthcare facility** is in Kula, approximately 27 miles from HO and 17 miles from the entry to the Park road. With a travel time of nearly an hour from HALE to the closest police or fire stations, and an hour and a half to the facilities at HO, neither is able to utilize timely services from Maui public departments. For practical purposes, both HO and the Park road corridor can be considered to be independent of most public services and facilities.

IMPACTS OF PAST AND PRESENT ACTIONS ON PUBLIC SERVICES AND FACILITIES

Police Protection

The nearest police substation is located in Kula, which is the community closest to the summit of Haleakalā, but still approximately 22 miles away from HO. Park rangers are the designated policing authority within the Federal jurisdiction of HALE. The Maui Police Department has no jurisdiction over Park activities. Park rangers have responded to emergency needs on the Park road corridor and have, on occasion, assisted HO personnel with emergency needs. Law enforcement requirements at HO have been and are at present minimal. The Maui Space Surveillance Complex at HO maintains its own security personnel who control access to that area and provide some monitoring functions at the site. Past and present actions at HO have not resulted in more than negligible, adverse **impacts** on the police services provided by HALE for the Park road corridor.

Fire Protection

The closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā and 18 miles from the entry to the Park road. Another fire station serving the Upcountry community is located in Makawao, approximately 29 miles from the summit. These two fire stations, although the closest to HO and the Park road corridor, are beyond fire fighting capabilities for both. In the event of a wildlife fire, National Park Wildlife Firefighters comprised of a militia of approximately 10 to 12 certified, wildland firefighters residing on Maui would undertake this responsibility (Section 3.13.2-Fire Protection). HO does not maintain trained fire fighters and would not have the equipment to fight fully engaged fires. The few small fires that have occurred at HO in the past have been extinguished with handheld fire extinguishers. Therefore, past and present actions at HO and on the Park road corridor have resulted in negligible, adverse, and long-term **impacts** anticipated on fire protection services.

Schools

The closest schools to the ROI are in the Kula community (Haleakalā Waldorf School, King Kekaulike High School, Kula Elementary, the Carden Academy, and the Kamehameha Schools) and are approximately 25 to 27 miles from the summit of Haleakalā and about 12 miles from the beginning of the Park road corridor. The past and present actions of HO and those along the Park road corridor have had negligible, adverse, and long-term **impacts** on these schools, which are too far away to experience any interaction.

Recreational Facilities

As described in Section 3.13.4-Recreational Facilities, Pu'u Ula'ula Overlook, located about 0.3 mile east of HO along the Park road between the Haleakalā Visitor Center and the summit, is a major visitor attraction. The past and present actions at HO can be seen from Pu'u Ula'ula Overlook and for those who prefer the vista to be completely free of man-made structures, those activities have had a **major**, adverse, and long-term **impact**. The Haleakalā Visitor Center is located approximately two-thirds of a mile east of HO and is one of the main attractions for visitors to the summit. HO is not visible from that location, and past and present actions at HO have had only a negligible, adverse, and long-term **impact** on that facility. The same is true of the Leleiwi and Kalahaku overlooks along the Park road corridor. HO cannot be seen from these overlooks and past and present actions at HO have not had more than negligible, adverse, and long-term **impact**.

The nearby Skyline Trail begins at the 9,750-foot elevation at the lowest point of the paved access road near the Saddle Area and continues for about 6.5 miles, ending at the Polipoli Spring State Recreation Area. The activities at HO have been visible to those enroute to Skyline Trail, but are not visible along the trail. The **impacts** of past and present actions at HO have been negligible, adverse, and long-term. The Park road corridor provides access to the Skyline Trail for those approaching it through HALE rather than through the Polipoli area. Throughout the existence of HO, no access to the Park road corridor has been blocked or impeded and no trails have been re-routed. Vistas from the Park road corridor have been affected by past and present actions at HO, in that natural landscapes are interposed with HO facilities from some parts of the viewshed. Although the **impacts** have not constituted a substantial loss of visual resources, the recreational facilities have experienced and continue to experience minor, adverse, and long-term **impacts**.

Healthcare Services

The closest healthcare facility is the Kula Hospital and Clinic which provides limited acute-care services and urgent care and limited rural emergency care on a 24-hour, 7-day a week basis. The past and present actions within HO have resulted in only negligible, adverse, and long-term **impacts** on this facility and the more distant Maui Memorial Hospital. The higher traffic volume on the Park road corridor correlates with a higher vehicular accident rate than at HO. Bicycle tours accounted for three fatalities in 2007 requiring healthcare services (KHNL, 2007). The activities within the ROI have not, however, affected healthcare services substantially and the overall **impact** is negligible, adverse, and long-term.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON PUBLIC SERVICES AND FACILITIES

The reasonably foreseeable future action within the ROI are the installation of the SLR 2000 facility at HO, the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between MPs 11.2 and 14.8. These actions would have no affect on schools, since the closest are approximately 25 to 27 miles from the summit of Haleakalā and about 12 miles from the beginning of the Park road corridor. These actions would also have no impact on healthcare services. Overall, the projects would result in minor, adverse, and short-term impacts to public services and facilities.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

Police Protection. Construction or operations of the proposed ATST Project at the **Preferred** Mees site would not affect MPD operations, which are too distant to be summoned for emergencies typically requiring such services. Police communication facilities in the summit area would not be affected by the construction or operations of the proposed ATST Project at the **Preferred** Mees site. The number of extra vehicles on the road during construction and operation of the proposed ATST Project relative to the approximately 1,600 vehicles that ascend the summit each day would not appreciably increase demands

on Park rangers or MPD services. In combination with past, present, and reasonably foreseeable future actions, Park rangers or MPD would cumulatively experience negligible, adverse, and long-term **impacts** on police protection.

Fire Protection. The proposed ATST facility would be equipped with standard fire prevention and fire fighting capabilities. Aside from these capabilities, fire fighting would be difficult, since the closest fire station is located in Kula approximately 28 miles away from the summit of Haleakalā, which is beyond fire fighting capabilities. National Park Wildlife Firefighters comprised of a militia of approximately 10 to 12 certified firefighters residing on Maui would not be able to undertake this responsibility either. The few extra vehicles on the road during construction and operation of the proposed ATST Project relative to the approximately 1,600 vehicles that ascend the summit each day would not contribute substantially to the demands on fire protection services within the ROI for these services, Therefore, the cumulative **impacts** of the proposed ATST Project along with past, present, and reasonably foreseeable future actions is negligible, adverse, and long-term.

<u>Schools</u>. Due to the distance to the nearest schools, the addition of the proposed ATST Project at the **Preferred** Mees site would contribute a negligible, adverse, and long-term **impact** to the already negligible, adverse **impacts** of the past, present, and reasonably foreseeable future actions within the ROI. The cumulative **impact** would be negligible, adverse, and long-term.

Recreational Facilities. The activities at HO already pose a minor, adverse impact on recreational facilities from some locations along the Park road corridor, i.e., those closer than 0.6 mile from HO. The addition of the proposed ATST Project at the Preferred Mees site would pose more loss in the value of those recreational facilities, but recreational resources at HALE are neither limited to nor mostly present on the Park road corridor. The main attractions for recreation are the locations where most visitors congregate, i.e., the Pu'u Ula'ula Overlook, the Haleakalā Visitor Center, the Leleiwi Overlook, the Park Headquarters Visitor Center, and the crater trails. The Park road corridor has a few pullouts and visitors are not encouraged to leave their cars on the road to view scenic vistas. Of the main attractions in HALE, only Pu'u Ula'ula Overlook offers visitors a close-up view of HO, where the proposed ATST Project would also be seen. During construction, high impact noise, as described in Section 4.10-Noise, would affect recreational facilities at HALE within about 2,500 feet from the proposed ATST Project site. The impacts would be loud enough to be considered major, adverse, and long-term at that distance. Mitigation measures also described in Section 4.10 would reduce the **impacts** part of the time to minor, adverse, and long-term. At distances greater than 2,500 feet, the **impacts** would be negligible, adverse, and long-term. Therefore the cumulative **impact** from past, present, known and reasonably known activities, including the proposed ATST Project on recreational resources for the Park road corridor would be minor, adverse, and long-term.

<u>Healthcare Services</u>. The proposed ATST Project and its associated MECO upgrade would not add more than negligible, adverse, and long-term **impacts** on healthcare services. The traffic on the Park road resulting from the proposed ATST Project at the **Preferred** Mees site would increase slightly and it is unlikely that such traffic would result in more than minimal requirement for healthcare services for vehicular mishaps. The overall cumulative **impact** of the proposed ATST project along with past, present, and reasonably foreseeable future actions would remain negligible, adverse, and long-term.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

The proposed ATST Project at the Reber Circle site would have similar **impacts** on most public services and facilities as it would at the Preferred Mees Site, with the following exceptions: for recreational facilities, minor, adverse, and long-term **impacts** are anticipated due to the visibility of the proposed ATST Project from locations along the Park road corridor. The proposed ATST Project would appear to be taller and closer within HO if located at the Reber Circle site and would be more imposing and would

dominate part of the viewshed from the Pu'u Ula'ula Overlook. The loss of visual resources in addition to those already compromised by past and present actions at HO could be considered a cumulatively moderate, adverse, and long-term **impact** on that HALE recreational facility. Other recreational facilities within HALE would only experience a cumulative minor, adverse, and long-term **impact** with the addition of the proposed ATST Project at the Reber Circle site.

No-Action Alternative

If the proposed ATST Project were not constructed, there would continue to be negligible, adverse, and long-term **impacts** on public services and facilities. There would be no measurable or perceptible consequence as a result of the No-Action Alternative.

4.17.17 Natural Hazards

The ROI for Natural Hazards is HO and the Park road corridor.

IMPACTS OF PAST AND PRESENT ACTIONS ON NATURAL HAZARDS

The natural hazards of concern within the ROI are high winds, extreme rain, ice, and snow due to storms or hurricanes; earthquakes due to Hawaii's position within a seismically active zone, and, hypoxia due to the high altitude of the site. These have all occurred within the ROI in the last decade and the **impacts** on the ROI have included structural damage to facilities from wind, flooded facilities, structural damage to facilities from ice, vehicular accidents, and personnel requiring medical treatment for illness. As described in Appendix J(4)-Supplemental Description of ATST Equipment and Infrastructure and the NSO "Preliminary Seismic Design Analysis: Advanced Technology Solar Telescope" (NSO, 2007), the proposed ATST Project has been designed to resist damage from both earthquakes and wind and thus would not contribute more than very little to risk from those hazards.

The stormwater management system for the proposed ATST Project is also designed to minimize the addition of stormwater runoff to the pathways within HO and would not contribute more than slightly to the potential for flooding of the infiltration basin at HO. A discussion of stormwater management is included in Section 4.7.

Altitude-related conditions, including hypoxia, is a potential affect experienced by some personnel working at the summit. Working at high altitudes requires proper planning, specialized training, and adequate equipment. As required of all personnel working at HO, employees of the proposed ATST Project, both during construction and operation, would be required to attend training prior to beginning work at the site.

HALE takes precautionary measures to prevent or minimize the **impacts** of natural hazards by closing the Park during severe weather events. In addition to patrols for traffic issues, Park rangers patrol the road corridor for problems relating to natural hazards and respond rapidly to alerts or help calls from visitors in the event of rock falls, flooding, or other problems arising within the Park road corridor.

The cumulative **impacts** on natural hazards from past and present actions within the ROI are considered to be negligible, adverse, and long-term.

IMPACTS OF REASONABLY FORESEEABLE FUTURE ACTIONS ON NATURAL HAZARDS

The reasonably foreseeable future actions within the ROI are the installation of SLR 2000, and the slurry sealing of the upper two miles of Park road, and the rehabilitation of the Park road between miles 11.2 and 14.8. They would not have any impact on the outcome of natural hazards within the ROI.

Cumulative Impacts of the Proposed ATST Project at the Preferred Mees Site

Implementing the proposed ATST Project at the **Preferred** Mees site, including the MECO upgrade would not increase the potential for natural hazards and would not change the nature of natural hazards which occur within the ROI. Therefore, the cumulative **impacts** from existing projects, the proposed ATST project at the **Preferred** Mees site, and the reasonably foreseeable future actions would be negligible, adverse, and long-term. The construction and operation of the proposed ATST Project would have a negligible, adverse, and long-term **impact** on the safety of the public and adverse impacts on the environment would be negligible such as to cause damage, destruction, or loss of life.

Cumulative Impacts of the Proposed ATST Project at the Reber Circle Site

The cumulative **impacts** on natural hazards at HO from the proposed ATST Project at Reber Circle site and the reasonably foreseeable future actions would be identical to those described for the **Preferred** Mees site. The cumulative **impacts** resulting from existing projects, the proposed ATST Project at the Reber Circle site, and the reasonably foreseeable future actions would be considered negligible, adverse, and long-term **impact on the safety of the public and adverse impacts on the environment would be negligible such as to cause damage, destruction, or loss of life.**

No-Action Alternative

Under the No-Action Alternative, the proposed ATST Project would not be constructed at HO. However, the potential for natural hazards at HO, including high winds, extreme rain, ice, and snow due to storms or hurricanes, earthquakes due to Hawaii's position within a seismically active zone, and hypoxia due to the high altitude of the site would remain. These natural hazards may affect the HO site and personnel at any time and would exist with the construction of future proposed projects; therefore, cumulative **impacts** resulting from existing projects, the No-Action Alternative, and the reasonably foreseeable future actions from natural hazards would be negligible, adverse, and long-term.

4.17.18 Summary of Intensities of Impacts

Tables 4-9 to 4-11 summarize the highest intensities of **impacts**, both adverse and beneficial, during past, present, and reasonably foreseeable future actions at HO and its adjacent neighbors, as described for the fourteen aspects of the affected environment in the sections above. **Table 4-12** summarizes the overall anticipated cumulative **impacts** on the fourteen aspects of the affected environment from the addition of the proposed ATST Project at the **Preferred** Mees and the Reber Circle sites.

Table 4-9. Intensity of Impacts from Past Actions.
--

				Affe	ected Envir	onment (se	ee Affected	Environn	nent Numb	er Codes,	Legend, ar	d Notes be	elow)		
Facility	Past Actions	1	2	3	4	5	6	7	8	9	10	11	12	13	14
MSO	Built 1966	Mi A L	Mi A L	Mi A L	Mi A S	Mi A L	Mi A L	N A L	Mi A L	Mi AL	Mi A L	NAL	NAL	NAL	N A L
Atmospheric Airglow	Built 1961	Mi A L	Mi A L	Mi A L	Mi A S	Mi A L	Mi AL	NAL	NAL	Mi A L	NAL	N A L	NAL	NAL	NAL
Zodiacal Light	Built 1961	Mi A L	Mi A L	Mi A L	Mi A S	Mi A L	Mi A L	N A L	N A L	Mi A L	NAL	N A L	N A L	NAL	N A L
Cosmic Ray Neutron Monitor Station	Built 1961	Mi A L	NAL	Mi A L	Mi A S	NAL	Mi A L	NAL	Mi A L	Mi A L	NAL	NAL	NAL	NAL	NAL
Baker-Nunn Site	Built 1957	Mi A L	N A L	Mi A L	Mi A S	NAL	Mi A L	N A L	N A L	Mi A L	NAL	N A L	N A L	NAL	NAL
FTF	Built 2001	Mi A L	Mi A L	Mi A L	Mi A S	Mi A L	Mi A L	NAL	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
Pan-STARRS, PS-1 South	Refurbished facility 2007 (formerly LURE)	Mi A L	Mi A L	Mi A L	Mi A S	Mi A L	Mi A L	NAL	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
PS-2 North, 2 nd Facility	Refurbished facility 2009	NAL	NAL	NAL	NAL	Mi A L	Mi A L	NAL	Mi A L	Mi A L	Mi A L	N A L	NAL	NAL	NAL
MSSC	Built 1963 with several years of building remodel construction; Construction of AEOS MCF	Mi A L	Mi A L	Mi B L	Mi A S	Mo A L	Mi A L	NAL	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
Haleakalā Visitor Center Comfort Station	Renovations in 2002	Mo B L	Mi A L	Mi A L	Mi A S	NAL	Mi B L	NAL	NAL	Mi B L	NAL	N A L	NAL	Mi B L	NAL
FAA RCAG Towers	Constructed in Mees era	N A L	Mi A L	Mi A L	Mi A S	Mi AL	NAL	NAL	NAL	Mi AL	N A L	N A L	NAL	Mi B L	NAL
FAA site adjacent to HO, Homeland Security tower	Constructed in 2006	NAL	Mi A L	Mi A L	Mi A S	Mi A L	NAL	NAL	NAL	Mi A L	NAL	NAL	NAL	Mi B L	N A L
Hawaiian Telcom		N A L	NAL	Mi A S	Mi A S	NAL	NAL	N A L	N A L	Mi B L	NAL	NAL	NAL	Mi B L	N A L

				Affe	cted Enviro	onment (see	e Affected	Environm	ent Numb	er Codes, I	legend, ar	nd Notes bel	low)		
Facility	Past Actions	1	2	3	4	5	6	7	8	9	10	11	12	13	14
(Roadway)		Mi B S	NAS	Mi A S	Mi AS	N A L	Mi B L	NAL	N A L	Mi B L	Mi A S	Mi A S	N A L	Mi B L	Mi B L
HALE road cattle guard		Mi B L	Mi A L	Mi A S Mi B L	NAL	N A L	NAL	N A L	NAL	N A L	Mi AS	N A L	N A L	NAL	N A L
2Cultural, Hi3Biological F4Topography5Visual Reso6Visitor Use7Water Reso8Hazardous N9Infrastructur10Noise11Air Quality12Socioeconordiant	d Existing Activities storic, Archeological Ro- tesources , Geology, and Soils urces and View Planes and Experience urces Materials and Solid Was re and Utilities mics and Environmenta ces and Utilities	ste			intensity is o	Mi M	each box, w	hether it is a	gible Mo		S of affected ould not be	Major Short-term environment, assumed that			

Table 4-9. Intensity of Impacts from Past Actions (cont.).

				Affe	cted Envir	onment (se	ee Affected	Environn	nent Numb	er Codes,	Legend, a	nd Notes be	elow)		
Facility	Present Actions	1	2	3	4	5	6	7	8	9	10	11	12	13	14
MSO	Currently used	Mi A L	Mi A L	Mi A L	N A L	NAL	Mi AL	NAL	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
Atmospheric Airglow	Currently used	Mi A L	Mi A L	Mi A L	N A L	Mi A L	Mi A L	N A L	NAL	Mi A L	N A L	NAL	NAL	N A L	NAL
Zodiacal Light	Currently used	Mi A L	Mi A L	Mi A L	NAL	Mi A L	Mi A L	NAL	N A L	Mi A L	NAL	NAL	NAL	NAL	NAL
Cosmic Ray Neutron Monitor Station	Inactive	Mi A L	Mi A L	Mi A L	NAL	NAL	Mi A L	N A L	NAL	N A L	N A L	NAL	NAL	NAL	NAL
Baker-Nunn Site	Currently used	Mi A L	Mi A L	Mi A L	N A L	N A L	Mi A L	N A L	N A L	Mi A L	N A L	N A L	N A L	N A L	NAL
FTF	Currently used	Mi A L	Mi A L	Mi A L	N A L	NAL	Mi A L	NAL	Mi A L	Mi A L	Mi A L	NAL	Mi B L	NAL	NAL
Pan-STARRS, PS-1 South	Currently used	Mi A L	Mi A L	Mi A L	NAL	Mi A L	Mi A L	N A L	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
PS-2 North, 2 nd Facility	Currently used	Mi A L	Mi A L	Mi AL	N A L	Mi A L	Mi A L	N A L	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
MSSC	Currently used	Mi A L	Mo A L	Mi A L	N A L	Mo A L	Mi A L	NAL	Mi A L	Mi A L	Mi A L	NAL	NAL	NAL	NAL
 Land Use a Cultural, H Biological 	nent Number Codes and Existing Activities istoric, Archeological Re Resources y, Geology, and Soils	esources			Legend	A A Mi N	dverse linor	B Benef N Negliį		Long-term Moderate	Ma S	Major Short-term	• 		
 5 Visual Reso 6 Visitor Use 7 Water Reso 8 Hazardous 9 Infrastructu 10 Noise 11 Air Quality 12 Socioecond 	ources and View Planes and Experience ources Materials and Solid Was ure and Utilities pomics and Environmental vices and Utilities					city, where th						environment	, for present	actions, only	7 the

Table 4-10. Intensity of Impacts from Present Actions.

				Aff	ected Enviro	onment (se	e Affected	Environm	ent Numb	er Codes, I	legend, and	d Notes bel	ow)		
Facility	Future Actions	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SLR 2000	Reuse of site behind MSO for Laser Ranging	N A L	Mi A L	Mi A L	Mi A S	NAL	Mi A S	N A L	NAL	Mi A L	N A L	N A L	NAL	NAL	N A L
MECO	Replace Transformers, voltage regulators, upgrade and relocate substation for proposed ATST Project	NAL	Mi A L	Mi A L	Mi A S	NAL	Mi A L	NAL	NAL	Mi B L	Mi A S	NAL	NAL	NAL	N A L
HALE	Slurry Sealing of Upper Park Road	Mi AS	N AS	Mi AS	Mi AS	N AS	Mo AS	N AS	N AS	Mi AS	Mi AS	Mi AS	NA S	NAS	N AS
HALE	Rehabilitation of HALE Park Road Between MPs 11.2 and 14.9	Mi AS	NAS	Mi AS	Mi AS	N AS	Ma S	NA S	NA S	Mi AS	Mi AS	Mi AS	NA S	NA S	NA S
1Land Use a2Cultural, H3Biological I4Topography5Visual Resc6Visitor Use7Water Resc8Hazardous9Infrastructur10Noise11Air Quality12Socioecond	y, Geology, and Soils burces and View Planes and Experience burces Materials and Solid Wast ire and Utilities bunics and Environmental ices and Utilities	te			Legend Notes For simplicit only the high	Mi Mir	re are multip	Negligit	ole Mo		S S	Aajor hort-term vironment, fo	or foreseeabl	e future actio	ons,

Table 4-11. Intensity of Impacts from Reasonably Foreseeable Future Actions.

Table 4-12. Summary of Cumulative Impacts from the Addition of the Proposed ATST Project.

		Affected Environment (see Affected Environment Number Codes, Legend, and Notes below)												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Baseline of Impacts For Past, Present, Reasonably Foreseeable Future Actions Other Than the Proposed ATST Project	Mi A L	Mo A L	Ma A L	Mi A L	N A L	Mi B L	Mi A L	N A L						

Proposed ATST Project at the Preferred Mees	Construction	Mi A L	Ma A L	Mi A L	Ma A L	Ma A L	Ma A L	Mi A L	Mi A L	Mi A S	Ma A S	NAS	Mi B S	Mi A S	NAL
Site Cumulative Intensities	Operation	Mi A L	Ma A L	N A L	Ma A L	Ma A L	Ma A L	Mi A L	Mi A L	Mi A L	Mi A L	N A L	Mi B L	Mi A L	N A L

Proposed ATST Project at the	Construction	Mi A L	Ma A L	Mi A L	Ma A L	Ma A L	Ma A L	Mi A L	Mi A L	Mi A S	Ma A S	NAS	Mi B S	Mi A S	NAL
Reber Circle Site Cumulative Intensities	Operation	Mi A L	Ma A L	NAL	Ma A L	Ma A L	Ma A L	Mi A L	Mi A L	Mi A L	Mi A L	N A L	Mi B L	Mi A L	N A L

Affec	ted Environment Number Codes	Legend	A Adverse	В	Beneficial	L	Long-term	Ma	Major
1	Land Use and Existing Activities		Mi Minor	Ν	Negligible	Mo	Moderate	S	Short-term
2	Cultural, Historic, Archeological Resources								
3	Biological Resources								
4	Topography, Geology, and Soils	Notes							
5	Visual Resources and View Planes								
6	Visitor Use and Experience	The designati	ons in each box for	cumula	ative impacts a	re the o	overall combin	ned antic	cipated impacts from the addition of the proposed ATST Project to the
7	Water Resources	past, present,	and reasonably for	eseeabl	e future actions				
8	Hazardous Materials and Solid Waste								
9	Infrastructure and Utilities								
10	Noise								
11	Air Quality								
12	Socioeconomics and Environmental Justice								
13	Public Services and Utilities								
14	Natural Hazards								

4.18 Mitigation

Section 4.18 - Mitigation has been revised to provide further clarification and analysis in response to comments on the SDEIS from NPS and other reviewers.

CEQ CFR, Title 40, Parts 1500 to 1508, Section 1508.20-Mitigation states that "Mitigation" includes:

- (a) Avoiding the effect altogether by not taking a certain action or parts of an action.
- (b) Minimizing effects by limiting the degree or magnitude of the action and its implementation.
- (c) Rectifying the effect by repairing, rehabilitating, or restoring the affected environment.
- Reducing or eliminating the effect over time by preservation and maintenance operations (d) during the life of the action.
- Compensating for the effect by replacing or providing substitute resources or environments. (e)

Table 4-13 summarizes the proposed mitigation measures to reduce, minimize, or avoid impacts to resources that may be adversely affected by the proposed ATST Project. These are also discussed in the appropriate resource sections, as specified on the table.

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-1	NSF would decommission and deconstruct the proposed ATST Project at	4.1-Land Use and
	the end of its productive lifetime (approximately 50 years from the date operations commence), unless decided otherwise in consultation with the	Existing Activities*
	Native Hawaiian community. In that case, NSF would take steps to divest	4.2-Cultural, Historic,
	itself of all responsibility of the ATST Project.	and Archeological
		Resources
		*mitigation not
		required, but applied
		to reduce long- term
		impacts
MIT-2	FAA will erect high-gain antennas in the same location as the current	4.1-Land Use and
	RCAG antennas and modifying/replacing the existing platforms on which	Existing Activities
	the antennas are mounted, to accommodate wind loading and configuration	
	of the new antennas. The FAA has stated that further modification of the	4.9-Infrastructure and
	site and relocations of the antennas may be needed, but environmental	Utilities
	impacts from such a potential modification and relocation would not rise to	
	a level of significance.	
MIT-3	NSF, AURA/NSO, and UH IfA, in consultation with the Native Hawaiian	4.2-Cultural, Historic,
	community, will use best efforts to locate an area for a Hawai'i star	and Archeological
	compass at the summit.	Resources
MIT-4	In accordance with IfA's Long Range Development Plan, all construction	4.2-Cultural, Historic,
	crewmembers would attend UH-approved "Sense of Place" training prior to	and Archeological
	working on the proposed ATST Project.	Resources

Table 4-13. Mitigation Summary.

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-5	AURA/NSO would hire a cultural resource monitor to ensure protection of existing traditional cultural resources during construction. The cultural resource monitor will be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has knowledge of the spiritual and cultural significance and protocol of Haleakalā. The cultural resource monitor's knowledge should be concentrated in traditional and cultural practices and protocols. The cultural resources monitor would be chosen in consultation with appropriate organizations and individuals with knowledge of such traditions and protocols.	4.2-Cultural, Historic, and Archeological Resources
MIT-6	HALE would restrict noise levels during certain hours of the day and during certain months of the year, limit on-site ATST-related construction activities during the time-frame from 30 minutes after sunrise to 30 minutes prior to sunset, limit the hours for wide load vehicles to traverse the Park road (such vehicles need to come through the Park during the night between approximately 8:00 p.m. and 4:00 a.m., and prohibit wide or heavy loads from coming through the Park at night between April 20 th and July 15 th). The seasonal restriction on wide load traffic is also imposed by USFWS.	 4.2-Cultural, Historic, and Archeological Resources; 4.3-Biological Resources; 4.6-Visitor Use and Experience; 4.10-Noise
MIT-7	SUP Pre- and Post-Project Documentation: Prior to and after the proposed ATST Project, all historic features and other areas susceptible to potential impact along the Park road shall be photographed and documented (see FHWA report – "Haleakala Highway, Haleakala National Park, Pavement Drainage Condition Investigation, Distress Identification and Recommendations Report # HALA 3-2-2009, March 2, 2009 (revised April 2009)", found in Vol. II-Appendix P). This will be completed by a qualified person funded by the ATST Project.	4.2-Cultural, Historic, and Archeological Resources
MIT-8	Remove site Archeological Site 50-50-11-5443, concrete ring, which is a remnant of a 1952 radio telescope experiment, in accordance with the Archaeological Data Recovery Plan.	4.2-Cultural, Historic, and Archeological Resources
MIT-9	 Mitigation measures developed in coordination with NPS and USFWS would implement monitoring, avoidance, and minimization measures for the project, including the following: The Project will fund an agreed-upon and qualified person to conduct reasonable biological monitoring activities as outlined by the USFWS in its informal consultation. Specifically, the monitor will ensure that any changes in behavior and any petrel mortality associated with the proposed ATST Project are monitored and reported to the NPS and USFWS. The monitor will also monitor the impacts to nēnē and other biological resources. All monitoring activities shall take place during the construction phase of the proposed ATST Project and subsequently during the first three years of the operations phase. 	4.3-Biological Resources

Mitigation			
No.	I	Mitigation Description	Affected Resources
MIT-9 (cont.)	 2. The National Park Forestry and Wildlife manage the 'ua'u, as i included annual surve NPS maps of active by provided to IfA period biological monitor pro- work with NPS resour burrows. Should newl those shown in Figure consultation with USF 3. Formal Section 7 c possibility of "take". 4. Endangered Specie adhere to the mitigation consultation with the noise and vibration im petrel burrows, (c) flig vehicles, and (e) incre As requested by DLN and vibration during c thresholds are not exc Section 7 Informal Co vibration measuring even endangered species ar 	Service, in cooperation with the State Division of (DOFAW), will likely continue to monitor and t has for over 25 years. This monitoring has ys of the Kolekole colony for new burrows, and urrow locations at the Kolekole colony have been dically for a number of years. Independently, a ovided by the proposed ATST Project would cree staff to survey the colony routinely for new y active burrows be found closer to ATST than a 3-7 of the FEIS (40-feet), additional Section 7 FWS would be necessary. onsultation would take place prior to the set Act Compliance - The construction must on measures outlined in the informal Section 7 USFWS. The USFWS consultation addressed (a) apacts, (b) ground vibration that could collapse ght obstacles, (d) spread of AIS from construction ased traffic and potential collisions with wildlife. R, AURA/NSO would monitor cumulative noise construction to ensure that noise and vibration eeded at the site, in accordance with the USFWS onsultation Document (Appendix M). Noise and quipment would be monitored to ensure that e not exposed to potential harm.	
	Dessible Impost	Avoidance and Minimization Measure	
	Possible Impact Collision of petrels with equipment and buildings	Adopted Construction crane will be lowered at night and marked with white polytape for visibility. All structures will be painted white. No outdoor lighting will be associated with the project.	
	Burrow collapse from construction vibration	USFWS set ground vibration thresholds for burrow collapse. Vibration will be monitored to ensure that the burrow collapse threshold is not exceeded.	
	Noise concerns and incubating Hawaiian petrels	Construction noise at burrows within 80 meters will be no louder than 83 dBA measured at 5- feet from the source during incubation periods (April 20 th through July 15 th). Only two truck round-trips per day will be driven to the construction site during the incubation period.	
	Predator population increase		

Mitigation			
No.		Mitigation Description	Affected Resources
MIT-9		Avoidance and Minimization Measure	
(cont.)	Possible Impact	Adopted	
	Transport of invasive	Cargo will be thoroughly inspected for	
	species to Haleakala	introduced non-native species. All ATST	
		facilities and grounds with 100 feet of the buildings will be thoroughly inspected for	
		introduced species on a semi-annual basis and	
		any introduced floral species found will be	
		removed.	
	Driver education	All drivers will receive a briefing and a breeding	
		season refresher to further reduce the chance	
		that a vehicle associated with the project would	
		cause injury or mortality to nēnē.	
	5. Alien Invasive S	pecies Prevention - NPS vehicle, equipment, and	
	-	nd inspection protocol will be followed by the	
	ATST Project. Furth	her, to augment prevention, the IfA has	
	implemented weeding		
	AIS introduction if j	prevention is not successful.	
		n To Nēnē At Entrance Station - To enable wide	
	loads to clear the Pa		
	occupied by a septic		
	_	y developed into a drivable surface. To mitigate	
		on nēnē that frequent the area, widening of the	
		ompleted outside the nēnē nesting season. Park	
		th the ATST project team to implement nene	
		for this road-widening work. Avoidance measures y of the site for nēnē prior to construction and	
		prary "orange fencing" around the outer perimeter	
		area to prevent nene from walking into the site	
		The site will be restored with native vegetation	
		educe impacts on nënë.	
	7. Programmatic M	onitoring - A programmatic monitoring plan for	
		and fauna during the project has been prepared for	
	the project, as descri		
MIT-10		nd/or vehicles that are class 5 or larger should not	4.6-Visitor Use and
		between approximately 11:00 a.m. and 2:00 p.m.	Experience;
		hours. The ATST Project shall provide regular	4.10-Noise
	updates to appropriate N		
	provide information to P		
MIT-11		ade aware of the potential for road damage and	4.9-Infrastructure and
		e measures to minimize the damage. Any damage	Utilities
	-	es result from ATST construction traffic would be	
	-	nimum, restore those roadways back its condition	
		e proposed ATST Project. These mitigation	
		ed between the affected parties, would reduce the	
		adways and traffic down to minor, adverse, and	
	short-term impacts.		

Table 4-13.	Mitigation	Summarv	(cont.).
1 abic 4-13.	mingation	Summary	(00000)

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-12	All construction-related traffic within the Park road corridor would be coordinated with HALE and conducted in compliance with an SUP issued by HALE, so as to avoid or minimize: damage to the road pavement, potential damage to historic structures along the park road corridor, traffic congestion, and other potential adverse impacts on Park resources and the visitor use and experience. SUP provisions issued by HALE would include mitigation measures to address traffic issues, potentially including those recommended in the FHWA HALE Road Report. The provision of wide- load truck access at the HALE entrance station would require special mitigations related to that project, as described in Section 2.4.3- Construction Activities, Construction Traffic. This would include: 1. Assurance by the ATST Project that the septic system is adequately protected. Mitigation may include placement of metal plate covers, grade beams, other protective structures, or relocation of utilities as a last resort.	4.9-Infrastructure and Utilities
	 Protection of existing utility man-hole covers. Specifically, the Project would: a. avoid direct axle loading on the covers, b. replace the existing covers with heavier gage steel; or, c. reinforce the existing covers with additional steel bracing. Provision of a barricade system, such as a gate, removable bollards or similar devices on the widened shoulder to deter Park visitors and staff from driving on it. 	
	 4. To minimize the potential impact to the nēnē habitat in this area, the access widening project would be completed outside the nēnē nesting season, which is November through March. 5. Native plants in the area of the access widening project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and HALE staff would work with the Project would be protected when possible and	
	on this mitigation.6. When the widened access is no longer needed for the proposed ATST Project, the area would be fully restored and rehabilitated to its pre-existing condition.	
MIT-13	To mitigate construction noise, contractors would implement reasonable noise-reduction practices and abatement procedures. These would include the following source control mitigation measures, all regarded as somewhat standard in the industry. These mitigation measures to minimize expected noise impacts during construction at HO would be as follows: 1. Conduct all noise-emitting activities within strict day and time	4.10-Noise

Mitigation		
No.	Mitigation Description	Affected Resources
MIT-13 (cont.)	2. Reduce or substitute power operations/processes through use of proportionally sized and powered equipment necessary only for tasks at hand.	
	3. Maintain all powered mechanical equipment and machinery in good operating condition with proper intake and exhaust mufflers,	
	4. Turn off or shut down equipment and machinery between active operations; and,	
	5. Shield noise sources where possible.	
	Contractors would be required to comply with applicable State noise regulations, under HAR 11-46.	
MIT-14	During the 50-year lifetime of ATST, the Project will periodically reassess technological options for new types of coatings, more efficient cooling methods, or improved compensation for thermal turbulence which may allow the ATST enclosure and buildings to be painted a color other than white. If such future technology is determined to be an effective, reliable and affordable solution that meets the scientific requirements of the ATST Project, NSF will consider repainting the exterior structures of the ATST with a more neutral color.	4.2-Cultural, Historic, and Archeological Resources
MIT-15	If there are Native Hawaiian scientists among the pool of scientists qualified to conduct research at the proposed ATST Project, NSO will reserve up to 2% of total ATST usage time for these Native Hawaiian scientists. Usage time will be provided through the Telescope Allocation Committee process similar to other scientists' requests based on technical feasibility and scientific merit. Unused time will not be carried forward to the next allocation period. Qualifications for usage will be based on established NSO guidelines.	4.2-Cultural, Historic, and Archeological Resources
MIT-16	The exterior design for the lower portion of the ATST building will include a well thought-out representation of traditional Hawaiian culture suitable to the Haleakalā setting, such as artwork depicting Maui and the Sun or other appropriate motifs. These depictions will be developed in consultation with Native Hawaiian artists.	4.2-Cultural, Historic, and Archeological Resources
MIT-17	NSF will support Maui Community College (MCC) in developing an educational initiative (Akeakamai I Ka La Hiki Ola, or Scientific Exploration Beneath the Life-Bringing Sun) on Maui to address the intersection between traditional Native Hawaiian culture and science. To support this educational initiative at MCC, NSF will, if the proposed ATST Project is approved, make available \$20 million (\$2 million per fiscal year, commencing in FY 2011), subject to applicable Federal law.	4.2-Cultural, Historic, and Archeological Resources
MIT-18	UH IfA will work with appropriate authorities to consider renaming the roads on the summit.	4.2-Cultural, Historic, and Archeological Resources

5.0 NOTIFICATION, PUBLIC INVOLVEMENT, AND CONSULTED PARTIES

Pursuant to the National Environmental Policy Act (NEPA) and upon recommendation by the State of Hawai'i Dept. of Health, Office of Environmental Quality Control (OEQC), Federal and State agencies, Native Hawaiian Organizations (NHO) and individuals, other organizations and members of the public were notified, contacted, and consulted during the course of planning for the proposed Advanced Technology Solar Telescope (ATST) Project and in the course of preparing studies or submitting applications for various approvals.

Details of public and agency disclosure and involvement regarding the proposed ATST Project **are reflected in** of notification letters, agency and media announcements, document distribution lists, public hearings, consultations, and comment periods, **which are described** in the following subsections. Responses to issues and concerns raised during the public hearings, comment periods, and consultation meetings were addressed by the ATST point-of-contact.

Consultation meetings pursuant to the Section 106 process of the National Historic Preservation Act (NHPA) also took place both before and after publication of the September 2006 draft Environmental Impact Statement (DEIS), and after the publication of the May 2009 Supplemental Draft Environmental Impact Statement (SDEIS). At times, the NEPA and National Historic Preservation Act (NHPA) processes were linked (as is reflected in some of the notification letters and cards), and at other times, there were additional focused Section 106 consultation meetings. This section discusses both the NEPA and Section 106 processes. A description of the events leading up to the publication of the DEIS and SDEIS are included, as well as a summary of the public comments received during the SDEIS public hearings and public comment period. The Section 106 subsection describes NSF's identification of the Area of Potential Effects (APE), the historic properties located therein, the evaluation of those properties for National Register eligibility, and consultation efforts to determine ways to address adverse effects. Since 2005, NSF has held over 30 formal and informal consultation meetings with Native Hawaiian Organizations and individuals, the Hawai'i State Historic Preservation (ACHP), and other interested entities and individuals.

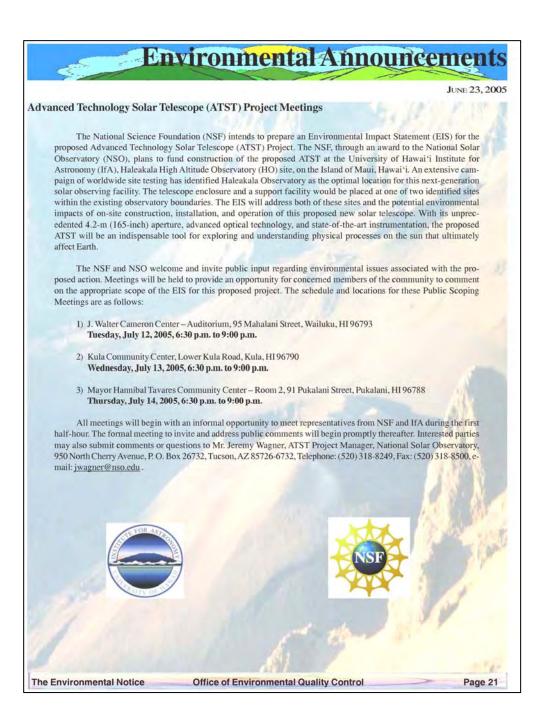
Consultation with the U.S. Fish and Wildlife Service also took place pursuant to the Endangered Species Act. A summary of that interaction and the results of consultation are provided in Section 4.3-Biological Resources and Vol. II, Appendix M-USFWS Section 7 Informal Consultation Document.

5.1. EIS Process

5.1.1 **Pre-Assessment Notification**

Federal Process

After **receiving the proposal from AURA/NSO for construction of the** proposed ATST Project, NSF determined that it would prepare an EIS to assess the environmental effects of the proposed ATST Project pursuant to NEPA. On June 23, 2005, the Notice of Intent (NOI) for the proposed ATST Project was published in the Federal Register. (The Federal Register is a legal newspaper published every business day by the National Archives and Records Administration (NARA). The Federal Register contains: Federal Agency Regulations, Proposed Rules and Notices, Executive Orders, Proclamations, and Other Presidential Documents. The proposed ATST Project comes under the Federal Register's organizational category of "Notices, including scheduled hearings and meetings open to the public, grant applications, and administrative orders.")


Figure 5-1 is the Notice of Intent (NOI) for the proposed ATST Project that was published in the Federal Register on Thursday, June 23, 2005 in Vol. 70, No. 120/Notices. Detailed information regarding three public scoping meetings that were held on Maui in July 2005 was also included in the NOI.

NATIONAL SCIENCE FOUNDATION	National Environmental Policy Act	after the scoping meetings or within 30	
Preparation of an Environmental Impact Statement (EIS) for the	(NEPA). Written comments may be forwarded to:	days after publication in the Bulletin of the State of Hawaii Office of Environmental Quality Control.	
Advanced Technology Solar Telescope (ATST) at the Haleakala High Altitude Observatory (HO) Site, Mt. Haleakalā, Island of Maui, Hi	ADDRESSES: Dr. Craig B. Foltz, Program Officer, National Science Foundation, Division of Astronomical Sciences, 4201 Wilson Blvd., Room 1045, Washington,	whichever is later. Written comments may be submitted to Dr. Craig B. Foltz at the address above. Dated: June 6, 2005.	
AGENCY: National Science Foundation. ACTION: Notice of intent.	DC 22230. Telephone: (703) 292–4909. Fax: (703) 292–9034. E-mail: cfoltz@nsf.gov	Craig B. Foltz, Program Officer.	
SUMMARY: The National Science Foundation (NSF) intends to prepare an Environmental Impact Statement (EIS) for the proposed Advanced Technology Solar Telescope (ATST) Project. The NSF, through an award to the National Solar Observatory (NSO), plans to fund construction of the proposed ATST at the University of Hawai'I Institute for Astronomy (IfA), Haleakalā High Altitude Observatory (HO) site, on the Island of Maui, Hawai'I. An extensive campaign of worldwide site testing has identified Haleakalā Observatory as the optimal location for this next-generation solar observing facility. The telescope enclosure and a support facility would be placed at one of two identified sites within the existing observatory boundaries. The EIS will address both of these sites and the potential environmental impacts of on-site construction, installation, and operation of this proposed new solar telescope. With its unprecedented 4.2-m (165- inch) aperture, advanced optical technology, and state-of-the-art instrumentation, the proposed ATST will be an indispensable tool for exploring and understanding physical processes on the sun that ultimately affect Earth. The EIS will address, among other things, the potential direct, indirect, and cumulative environmental impacts associated with the proposed Advanced Technology Solar Telescope for the proposed action will be conducted in accordance with the	 cfoltz@nsf.gov. SUPPLEMENTARY INFORMATION: Proposed Alternatives to be considered may include, but not be limited to, the following: Alternatives to be considered may include, but not be limited to, the following: Haternative 1: (Proposed Action): Undeveloped site East of Mees Observatory. Alternative 2: Former radio telescope site known as Reber Circle. Alternative 3: No-Action. The National Science Foundation will not construct the Advanced Technology Solar Telescope on Maui. Publication of the NOI does not foreclose consideration of any courses of actions or possible decisions addressed by the National Science Foundation in its Final Environmental Impact Statement (FEIS). No final decisions will be made regarding construction of the ATST prior to completion and signature of the Record of Decision for the proposed action. Scoping Process: Federal, State and local agencies and the public are invited to participate in the scoping process will help identify potential impacts and key issues to be analyzed in the EIS. Scoping meetings will be held at the following locations on the island of Maui, Hawai'i, with notification of the times and locations published in the incal newspapers. I) Walter Cameron Center—Auditorium, 95 Mahalani Street, Lower Kula Road, Kula, HI 96793; Tuesday, July 12, 2005, 6 p.m. to 19, p.m. Written comments identifying potential impacts to be analyzed in the EIS. 	[FR Doc. 05–11970 Filed 6–22–05; 8:45 am] BILLING CODE 7555–01–M	Figure 5-1. Federal Register Notice of Intent, June 23, 2005.

State Process

Office of Environmental Quality Control

The OEQC was established in 1970 to help stimulate, expand and coordinate efforts to maintain the optimum quality of the State's environment. The OEQC implements the Environmental Impact Statement law, Chapter 343, HRS. If the lead agency decides that a proposed project may have a significant environmental impact, a State EIS must be prepared prior to implementing the proposed project. For the proposed ATST Project, the University of Hawai'i (UH) Institute for Astronomy (IfA), as the accepting authority for the proposed Project, decided that a State EIS must be prepared. Figure 5-2 is the Announcement for the proposed ATST Project that was published in the June 23, 2005 issue of the OEQC Bulletin. Detailed information regarding three public scoping meetings that were held on Maui in July 2005 was also included in the announcement.

Figure 5-2. Office of Environmental Quality Control Environmental Announcement, June 23, 2005.

Formal notification letters announcing the intent of the NSF to prepare an EIS for the proposed ATST Project were sent in June 2005 to State of Hawai'i elected officials, organizations, Federal and State agencies, and community individuals (Table 5-1). Each pre-assessment letter included a project description with the intent to publish an EIS, detailed information about the three Public Scoping Meetings, and ATST project management contact information.

		STATE OF HAWAI'I ELEC	TED	OI	FFICIALS	
	1	Congressman Ed Case	8 Senator Chris Halford			
	2	Congressman Neil Abercrombie	9		nglish	
	3	Council Member Charmaine Tavares	10		enator Kyle Yamas	-
	4	Council Member Mike Molina	11		enator Mele Carrol	
	5	Council Member Robert Carroll	12	-	enator Rosalyn Ba	
	6	Honorable Governor Linda Lingle	13		S. Senator Daniel	
	7	Mayor Alan Arakawa	14	-	S. Senator Daniel	
	1 ·	AGENCIE		1		
		Affiliation			Last Name	First Name
1		ory Council on Historic Preservation, cil on Environmental Quality				
2	Air Fo	orce Maui Optical Supercomputing Site			Richert	Lt. Col. Brent
3	Boein	g LTS, L&EOS Hawai'i Director			Zelenka	Richard
4	Count	ty of Maui, Dept. of Parks and Recreation, Direct	ctor		Correa	Glenn
		ty of Maui, Dept. of Planning, Director			Foley	Mike
6		ty of Maui, Police DeptTelecommunications			Pacheco Walt	
7	Federal Aviation Administration, Realty Contracting Officer				Young	Darice
8	Haleakalā National Park Service, Superintendent				Reeser	Donald
		i'i Telecom, Area Manager			Tanabe	Winslow
10	Maui	County Chief of Police			Phillips	Thomas
11	Maui	County Cultural Resources Commission			Sablas	Lorraine
12		Economic and Development Board, Inc., am Director High Tech Maui			Liu	Tom
13	Maui	Electric Company, Inc.			Yamasaki	Craig
		nal Weather Service/NOAA, nunications Manager			Suekawa	Carl
15	Rayco	om Media, Inc., Director of Engineering			Aotaki	Keith
16	Rayco	om Media, Inc., General Manager			Fink	John
17	Sandi	a Laboratories, Site Manager			Vigil	Orlando
18	State Historic Preservation Division, I Asst. Maui Archaeologist			Dagher	Cathleen	
19					Chinen	Melanie
20		Historic Preservation Division, Archaeologist			Kirkendall	Melissa
						Robert
23		of Hawai'i, Department of Accounting and ral Services Public Works, Maui Branch Engine	er		Victor	David

Table 5-1. Pre-Assessment Notification Distribution List, June 2005.

	AGENCIES		
	Affiliation	Last Name	First Name
	State of Hawai'i, Department of Business, Economic Development and Tourism, Office of Planning, Land Use Division	Mitsuda	Abe
	State of Hawai'i, Department of Transportation, Maui Director	Ginoza	Kyle
26	State of Hawai'i, Department of Transportation, Director	Haraga	Rodney
	State of Hawaiʻi, Dept. of Hawaiian Homelands Land Management Division (Non-Homestead)		
	State of Hawaiʻi, Dept. of Land and Natural Resources, Island Burial Council	Maxwell, Sr.	Kahu Charles
	State of Hawai'i, Dept. of Land and Natural Resources, Office of Conservation and Coastal Lands	Lemmo	Samuel
	State of Hawai'i, Dept. of Land and Natural Resources, Division of Forestry and Wildlife, Maui Wildlife Manager	Ueoka	Meyer
	State of Hawai'i, Dept. of Land and Natural Resources, Division of Forestry and Wildlife, Wildlife Biologist	Duvall, II	Dr. Fern
	State of Hawaiʻi, Dept. of Land and Natural Resources, La Division, Land Agent-Maui	nd Ornellas	Daniel
	State of Hawai'i, Dept. of Land and Natural Resources, Ma Na Ala Hele Advisory Council, Trails and Access Specialist	•	
36	State of Hawai'i, Dept. of Land and Natural Resources, Division of Forestry and Wildlife, Branch Manager	Cumming	John
38	State of Hawaiʻi, Office of Hawaiian Affairs, Chair	Apoliona	Haunani
39	State of Hawai'i, Office of Hawaiian Affairs, Community Resource Coordinator	Shimaoka	Thelma
40	U.S. Department of Energy	Yoshinaka	Eileen
41	U.S. Department of Interior, Fish and Wildlife Service, Acting Field Supervisor	Newman	Jeff
	U.S. Environmental Protection Agency Pacific Islands Contact Office, Region 9	Higuchi	Dean
	COMMUNITY MEMBE	RS	
	Affiliation	Last Name	First Name
1	Hui Ala Nui O Makena	ena Hall	
2	Kaho'olawe Island Reserve Commission	Kahoohalahala	Sol
3	Kipahulu Community Association	Lind	Tweetie
4	Kula Community Association	Mayer	Dick
5	Maui Outdoor Circle, President	McCord	Warren
6	Na Kupuna O Maui	Nishiyama	Kupuna Patty
7	Ritz Carlton Kapalua, Cultural Specialist	Naeole	Clifford

Table 5-1. Pre-Assessment Notification Distril	bution List. June 2005 (cont.).
Tuble e 1111 e fibbebbillent i (othicution Dibtin	

	COMMUNITY MEMBERS					
	Affiliation	Last Name	First Name			
8	Royal Order of Kamehameha I, Ku'auhau Nui	Garcia	Aliʻi Sir William			
9	Sierra Club, Maui	Holter	Lance			
10	The Nature Conservancy, Natural Resources Manager	Chimera	Melissa			
11		Amadeo	Kupuna Diana			
12		Dutro	David			
13		Hall	Issac			
14		Han	Elizabeth			
15		Holt-Padilla	Hokulani			
16		Kuloloio	Leslie			
17		Lind	John			
18		Uwekoolani	Edward			

Table 5-1. Pre-Assessment Notification Distribution List, June 2005 (cont.).

During consultation with the OEQC, it was determined that an EIS Preparation Notice (EISPN) was needed to address requirements under Hawai'i Revised Statutes (HRS) Chapter 200, Title 11, in that the proposed ATST Project may potentially meet one or more of the significance criteria for effects on Conservation District Land. The EISPN, which was a lengthy document describing the proposed ATST Project, was also prepared in accordance with HAR 13-5-31, which requires an EIS to accompany the required Conservation District Use Application (CDUA), where significant effects may be anticipated. The EISPN was published and distributed in August 2005 to the OEQC, a recommended number of elected officials, agencies and organizations, libraries, and other interested individuals. Additional copies of the EISPN were distributed during the following months as agencies or individuals requested a copy.

Agencies, groups or individuals were allocated the required 30 days from the initial publication of the Environmental Impact Statement Preparation Notice (EISPN) to submit written requests to become a consulted party or written comments regarding the issues and concerns of environmental effects of the proposed ATST Project. Responses to comments were addressed by the ATST point-of-contact. Table 5-2 is the distribution list for the EISPN. Vol. III, Appendix A-**Public Scoping Meetings** Comments **and Responses** contains the written commentary received from the 30-day public comment period as well as the responses that were addressed by the designated ATST point-of-contact.

5.1.2 Pre-assessment Public Scoping Meetings Pursuant to NEPA and OEQC Guidance

Three pre-assessment Public Scoping Meetings to assist the lead agency in determining the scope of environmental analysis, resources involved, and potential concerns about effects were held on Maui, Hawai'i, as follows:

- 1. J. Walter Cameron Center, Wailuku, HI, July 12, 2005.
- 2. Kula Community Center, Kula, HI, July 13, 2005.
- 3. Mayor Hannibal Tavares Community Center, Pukalani, HI, July 14, 2005 (This is also known as the Pukalani Community Center).

	STATE OF HAWAI'I ELECTED OFFICIALS					
1	Congressman Ed Case	8	Senator Chris Halford			
2	Congressman Neil Abercrombie	9	Senator J. Kalani English			
3	Council Member Charmaine Tavares	10	Senator Kyle Yamashita			
4	Council Member Mike Molina	11	Senator Mele Carroll			
5	Council Member Robert Carroll	12	Senator Rosalyn Baker			
6	Honorable Governor Linda Lingle	13	U.S. Senator Daniel Akaka			
7	Mayor Alan Arakawa	14	U.S. Senator Daniel Inouye			

Table 5-2. EISPN Distribution List, August 2005.

AGENCIES

AGENCIES				
	Affiliation	Last Name	First Name	
1	CKM Cultural Resources	Maxwell	Kahu Charles	
2	County of Maui, Department of Parks and Recreation			
3	County of Maui, Department of Planning			
4	Friends of Haleakalā	Stokesberry	Mele	
5	Geometrician Associates, LLC	Terry	Ron	
6	Haleakalā National Park	Natividad Bailey	Cathleen	
7	Hawai'i State Library - Hana Public and School			
8	Hawai'i State Library – Hawai'i Document Center			
9	Hawai'i State Library - Kahului			
10	Hawaiʻi State Library – Kihei			
11	Hawaiʻi State Library – Lahaina			
12	Hawaiʻi State Library – Makawao			
13	Hawaiʻi State Library – Wailuku			
14	Kula Community Association	Mossman	Karolyn	
15	Maui Economic and Development Board, Program Director High Tech Maui	Liu	Tom	
16	Maui Economic Development Board, President	Skog	Jeanne	
17	Pacific Analytics	Brenner	Greg	
18	Starr Environmental	Starr	Forest & Kim	
19	State Historic Preservation Division, Administrator	Chinen	Melanie	
20	State Historic Preservation Division, Archaeologist	Kirkendall	Melissa	
21	State of Hawai'i, Department of Accounting and General Services, Public Works and Environmental Management, Maui Branch Engineer	Victor	David	
22	State of Hawai'i, Department of Business, Economic Development and Tourism, Energy, Resources and Technology Division, Director	Liu	Ted	
23	State of Hawai'i, Department of Business, Economic Development and Tourism, Office of Planning, Land Use Division	Mistuda	Abe	

			AGENCIES				
	Affiliatio	on		1	Last N	ame	First Name
24	State of Hawai'i, Department of H Planning Office, Director of Heal		nmental Health,	Fukino, M.D.			Chiyome
25	State of Hawai'i, Department of H Office of Environmental Quality			Salmo	nson		Genevieve
26	State of Hawai'i, Department of H District Health Officer	Health,		Pang,	M.D.		Lorrin
27	State of Hawai'i, Department of I Office of Conservation and Coast			Lemm	0		Samuel
28	State of Hawai'i, Department of Land and Natural Resources, Division of Forestry and Wildlife, Branch Manager		Cumming			John	
29	State of Hawai'i, Office of Hawai	iian Af	fairs, Chair	Apolonia		Haunani	
30	State of Hawai'i, Office of Hawai Community Resource Coordinato		fairs,	Shimaoka		Thelma	
31	U.S. Department of Interior, Fish and Wildlife Service, Acting	Field	Supervisor	Newman			Jeff
32	U.S. Department of Interior, Fish Fish and Wildlife Biologist	and W	ildlife Service,	Freifeld			Holly
33	University of Hawai'i Environme	ental Co	enter				
34	Xamanek Researches, LLC			Freder	icksen		Erik
		CO	OMMUNITY MEMBE	RS	-		
1	Evanson, Mary	5	Medeiros, Art	9 Shibuya		a, Warren	
2	Hall, Issac	6	Miner, James		10	Smith,	Bill
3	Helm, Mikahala	7	Orszula, Edmund				
4	Mayer, Dick	8	Raymond, Ki'ope				

A Public Notice was published in the Maui Weekly in the June 30 to July 6, 2005 issue (Fig. 5-3) and in the Maui News on July 7, 2005 (Fig. 5-4). Each meeting was facilitated by Mediation Services of Maui, was recorded by a transcriptionist from Iwado Court Reporters, and a Hawaiian language interpreter was available for individuals wishing to speak in Hawaiian, although no testimony was heard in the Hawaiian language at any of the scoping meetings. The attending public was invited to sign-in, view and collect information made available about the proposed ATST Project, listen to presentations given by members of the NSF, the National Solar Observatory (NSO), the National Optical Astronomy Observatory (NOAO), the IfA, and the environmental consultants. The public was given the opportunity to ask questions, comment about issues and concerns, and given 30 days to submit written commentary or a written request to be included as a consulting party to the proposed ATST Project. Although particular comment periods were determined by the OEQC and Federal regulations, all written comments were accepted for inclusion into the DEIS and made part of the NSF's Administrative Record for the proposed ATST Project. Vol. III, Appendix A-Public Scoping Meetings Comments and Responses contains written commentary received from members of the community, elected officials, agencies, and organizations, as well as the responses that were addressed by the designated ATST point-of-contact. This scoping process assisted NSF in identifying the resources involved and potential effects that the proposed ATST Project might incur.

June 30 - July 6, 2005 • Maui Weekly • 15

The National Science Foundation (NSF) intends to prepare a joint Federal and State Environmental Impact Statement (EIS) for the Advanced Technology Solar Telescope (ATST) Project. The NSF, through an award to the National Solar Observatory (NSO), plans to fund construction of the ATST at the University of Hawai'i Institute for Astronomy (IfA), Haleakala High Altitude Observatory (HO) site, on the Island of Maui, Hawai'i

An extensive campaign of worldwide site testing has identified Haleakalā Observatory as the optimal location for this next-generation solar observing facility. The telescope enclosure and a support facility would be placed at one of two identified sites within the existing observatory boundaries. The EIS will address both of these sites and the potential environmental impacts of on-site construction, installation, and operation of this proposed new solar telescope. With its unprecedented 4.2-m (165-inch) aperture, advanced optical technology, and state-of-the-art instrumentation, the ATST will be an indispensable tool for exploring and understanding physical processes on the sun that ultimately affect Earth

The NSF and NSO welcome and invite public input regarding environmental issues associated with the proposed ATST. Meetings will be held to provide an opportunity for concerned members of the community to comment on the appropriate scope of the EIS for this proposed project. The schedule and locations for these Public Scoping Meetings are as follows:

J. Walter Cameron Center-Auditorium 95 Mahalani St., Wailuku, HI 96793 Tuesday, July 12, 2005, 6:30 РМ to 9:00 РМ

Kula Community Center - Lower Kula Road, Kula, HI 96790 Wednesday, July 13, 2005, 6:30 PM to 9:00 PM

Mayor Hannibal Tavares Community Center (Room 2) 91 Pukalani Street, Pukalani, HI 96788 Thursday, July 14, 2005, 6:30 PM to 9:00 PM

All meetings will begin with an informal opportunity to meet representatives from the project and the involved agencies during the first half-hour of the time allotted for the

The formal meeting to invite and address public comments will begin promptly thereafter. Comments or questions may be submitted to Mr. Jeremy Wagner, ATST Project Manager, National Solar Observatory, 950 North Cherry Avenue, Tucson, Arizona 85726. Mr. Wagner may also be reached by e-mail at jwagner@nso.edu or by telephone at (520) 318-8249.

The deadline to submit public comments or questions is August 14, 2005.

C6 - Thursday, July 7, 2005 - THE MAUI NE

The National Science Foundation (NSF) intends to prepare a joint Federal and State Environmental Impact Statement (EIS) for the Advanced Technology Solar Telescope (ATST) Project. The NSF, through an award to the National Solar Observatory (NSO), plans to fund construction of the ATST at the University of Hawai'! Institute for Astronomy (IFA), Haleakala High Altitude Observatory (HO) site, on the Island of Maui, Hawai'i.

Island of Maui, Hawai L. An extensive campaign of worldwide site testing has identified Haleakala Observatory as the optimal location for this next-generation solar observing facility. The telescope enclosure and a support facility would be placed at one of two identified sites within the existing observatory boundaries. The EIS will address both of these sites and the notential environmental impacts of boundaries. The EIS will address both of these sites and the potential environmental impacts of on-site construction, installation, and operation of this proposed new solar telescope. With its unprecedented 4.2-m (165-inch) aperture, advanced optical technology, and state-of-the-art instrumentation, the ATST will be an indispensable tool for exploring and understanding physical processes on the sun that ultimately affect Earth. The NSF and NSO welcome and invite public input regarding environmental issues associated with the proposed ATST. Meetings will be held to provide an opportunity for concerned members of the community to comment on the appropriate scope of the EIS for this proposed project. The schedule and locations for these Public Scoping Meetines are s follows: Meetings are as follows: 1) J. Walter Cameron Center – Auditorium,

- 95 Mahalani Street, Wailuku, HI Tuesday, July 12, 2005, 6:30 p.m. to 9:00 p.m.
- 2) Kula Community Center Lower Kula Road, Kula, HI Wednesday, July 13, 2005. 6:30 p.m. to 9:00 p.m.
- 3) Mayor Hannibal Tavares Community Center (Room 2) 91 Pukalani Street, Pukalani, HI Thursday, July 14, 2005, 6:30 p.m. to 9:00 p.m.

All meetings will begin with an informal opportunity to meet representatives from the project and the involved agencies during the first half-hour of the time allotted for the meeting. The half-hour of the time allotted for the meeting. The formal meeting to invite and address public comments will begin promptly thereafter. Comments or questions may be submitted to Mr. Jeremy Wagner, ATST Project Manager, National Solar Observatory, 950 North Cherry Avenue, Tucson, Arizona 85726. Mr. Wagner may also be reached by email at jwagner@nso.edu or by telephone at (520) 318-8249. The deadline to ubmit oublic comments or unextions is Autust submit public comments or questions is Augus 14, 2005. (MN: July 7, 2005) - #

STATE/COUNTY	STATE/COUNTY	
GOVERNMENT NOTICES	GOVERNMENT NOTICES	

Figure 5-3. Public Scoping Meetings Notification: Maui Weekly, June 30 to July 6, 2005 Issue.

Figure 5-4. Public Scoping **Meetings Notification:** Maui News, July 7, 2005.

5.1.3 Additional Public Meetings

Listed below are additional meetings that occurred either upon request from the community or at the request of ATST project members. Informal community meetings that were requested by the community were accommodated and those in attendance were given the opportunity to ask questions and comment on the proposed ATST Project. All information presented during these additional meetings was identical to the July 2005 Public Scoping meetings.

- 1. Mayor Hannibal Tavares Community Center, Pukalani, HI, July 12, 2005. Informal meeting requested by Friends of Haleakalā Board of Directors: Mary Evanson, Mele Stokesberry, Martha Martin, Matt Wordeman, and Advisory Board member Don Reeser, then Superintendent of Haleakalā National Park (HALE).
- 2. Maui Community College (MCC) Library, Kahului, HI, January 26, 2006. Informal meeting requested by community members: Don Reeser, Mary Evanson, Ki'ope Raymond, Art Medeiros, James Miner, Mikahala Helm, Dick Mayer, and Kalei Ka'eo.
- 3. Ha'iku Community Center, Ha'iku, HI, March 27, 2006. Informal community meeting requested by attendees at the January 26, 2006 MCC meeting. Public notification was advertised in the Maui News and the Haleakalā Times (Figs. 5-5 and 5-6).
- 4. Informal HO site visit/meeting held March 17, 2006, requested by community members: Reuben Dela Cruz, Mary Evanson, Jeremy Gray, Mikahala Helm, Dick Mayer, Ki'ope Raymond.
- 5. Formal meeting held on March 27, 2006, at Maui Economic Development Board (MEDB) with Jeanne Skog, Leslie Wilkins, Pam Benson, and Sandy Ryan.
- 6. Formal meeting held on March 27, 2006, with Chancellor Clyde Sakamoto of MCC.

The National Science Foundation (NSF) is preparing a joint Federal and State environmental Impact Statement for the Advanced Technology Solar Telescope (ATST) Project. The NSF, through an award to the National Solar Observatory, plans to fund construction of the ATST at the University of Hawai'i Institute for Astronomy, Haleakalā High Altitude Observatory site, on Maui. A public information meeting will be held on Monday, March 27, 2006, at 6:30 p.m. at the Haiku Community Center Main Hall
Monday, March 27, 2006, at 6:30 p.m. at the Haiku Community Center Main Hall. (MN: March 23, 2006)
Viere of Science and Annual Science A

Figure 5-5. Informal Community Meeting Notification: Maui News Public Notice, March 23, 2006.

Figure 5-6. Informal Community Meeting Notification: Haleakalā Times Community Calendar, March 15 to 28, 2006 Issue.

5.1.4 Publication of the Draft Environmental Impact Statement

The DEIS was published in the Federal Register on September 6, 2006 (Fig. 5-7), published in the OEQC Bulletin on September 8, 2006 (Fig. 5-8). Detailed information **announcing** three DEIS Public Comment Meetings that were held on Maui in September 2006 was also included in the Notices. The DEIS was distributed to Federal agencies and to the OEQC, an OEQC–mandatory and –approved number of State and County of Maui agencies, organizations, libraries, elected officials, and other interested individuals (Table 5-3). Additional copies of the DEIS were distributed during the following months upon request.

NATIONAL SCIENCE FOUNDATION	Written comments may be forwarded	3. Kula Community Center,
Publication of the Draft Environmental impact Statement (DEIS) for the Advanced Technology Solar Telescope (ATST) at the Haleakalā High Altitude Observatory (HO) Site, Haleakalā, Island of Maui, Hawai'i AGENCY: National Science Foundation.	to: ADDRESSES: Dr. Craig B. Foltz, Program Manager, National Science Foundation, Division of Astronomical Sciences, 4201 Wilson Blvd., Room 1045, Washington DC 22230, telephone: (703) 292–4909, fax: (730) 292–9034, e-mail: cfoltz@nsf.gov.	September 29, 2006, Friday, 6 p.m. to 10 p.m. Written comments may be submitted to Dr. Craig B. Foltz at the address above. Dated: August 23, 2006. Craig B. Foltz, ATST Program Officer.
ACTION: Notice—Draft Environmental mpact Statement.	SUPPLEMENTARY INFORMATION: Proposed alternatives to be	[FR Doc. 06–7429 Filed 9–5–06; 8:45 am] BILLING CODE 7555–01–M
SUMMARY: The National Science Foundation (NSF) has prepared a Draft Environmental Impact Statement (DEIS) for the proposed Advanced Technology Solar Telescope (ATST) Project. This oint DEIS is prepared in compliance with the Federal National Environmental Policy Act (NEPA) and the State of Hawai'i Chapter 343, Hawai'i Revised Statutes (HRS). The NSF, through an award to the National Solar Observatory (NSO), plans to fund construction of the proposed ATST at the University of Hawai'i Institute for Astronomy (IfA), Haleakalä High Altitude Observatory (HO) site, on the Island of Maui, Hawai'i. An extensive campaign of worldwide site testing has identified Haleakalā Observatory as the optimal location for this next-generation solar observing facility. The telescope enclosure and a support facility would be placed at one of two identified sites within the existing observatory boundaries. The DEIS addresses the multi-year selection process of these sites and the potential environmental impacts of on-site construction, installation, and operation of this proposed new solar telescope. With its unprecedented 4.2-m (165-inch) aperture, advanced optical technology, and state-of-the-art instrumentation, the proposed ATST would be an indispensable tool for exploring and understanding physical processes on the sun that ultimately affect Earth. The DEIS addresses, among other things, the potential direct, indirect, and cumulative environmental impacts associated with the proposed Advanced	 considered include, but are not limited to the following: Alternative 1 (Proposed Action): Undeveloped site East of Mees Observatory. Alternative 2: Former radio telescope site known as Reber Circle. Alternative 3: No-Action. The National Science Foundation will not construct the Advanced Technology Solar Telescope on Maui. Publication of the DEIS does not foreclose consideration of any courses of action or possible decisions addressed by the National Science Foundation in its Final Environmental Impact Statement (FEIS). No final decisions will be made regarding construction of the Proposed Action. Public Comment Period: The NSF welcomes and invites Federal, State, and local agencies, and the public to participate in the 45-day comment period for the completion of this EIS. The 45-day public comment period begins September 8, 2006, and ends on October 23, 2006. Public comment meetings will take place on the island of Maui, Hawai'i, with notification of the times and locations published in the local newspapers, as follows: Cameron Center Auditorium, September 27, 2006, Wednesday, 6 p.m. to 10 p.m. 	

Figure 5-7. Federal Register Notice of DEIS, September 6, 2006.

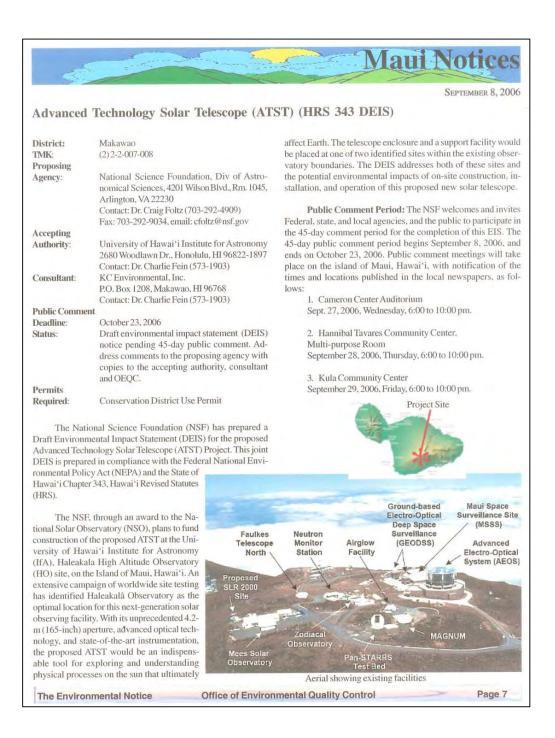


Figure 5-8. Office of Environmental Quality Control DEIS Notice, September 8, 2006.

Affiliation		Name	Title
1	Advisory Council on Historic Preservation	Martha Catlin	Program Analyst
2	County of Maui County Council	Robert Carroll	Council Member
3	County of Maui County Council	Dane Kane	Council Member
4	County of Maui County Council	Mike Molina	Council Member
5	County of Maui County Council	Charmaine Tavares	Council Member
6	County of Maui Police Dept., Telecommunications	Walt Pacheco	
7	County of Maui, Cultural Resources Commission	Lorraine Sablas	Chair
8	County of Maui, Department of Parks and Recreation	Glenn Correa	Director
9	County of Maui, Dept. of Planning	Michael Foley	Planning Director
10	County of Maui, Dept. of Planning,	Jeff Hunt	
10	Planning Commission	Jen munt	
11	County of Maui,	Milton Arakawa	Director
11	Dept. of Public Works and Environmental Management	Winton / Hakawa	Director
12	County of Maui, Dept. of Water Supply	George Tengan	Director
13	Friends of Haleakalā	Mele Stokesberry	
14	Friends of Polipoli	Brian Jenkins	President
15	Geometrician Associates, LLC	Ron Terry	
16	Hawaiian Telecom	Winslow Tanabe	Area Manager
17	Kula Community Association	Karolyn Mossman	
18	Maui Community College	Lui Hokoana	
19	Maui Community College Library		
20	Maui Economic Development Board	Jeanne Skog	President
21	Maui Electric Co.	Craig Yamasaki	Engineering Dept.
22	Maui Na Ala Hele Advisory Council	Torrie Nohara	Trails and Access Specialist
23	Na Kupuna O Maui	Kupuna Patty Nishiyama	
24	Pacific Analytics, LLC	Greg Brenner	
25	Raycom Media, Inc.	John Fink	General Manager
26	Royal Order of Kamehameha I	George Kahoʻohanhano	Ali'i Ku'auhau
27	Royal Order of Kamehameha I	William Garcia, Jr.	Office of the Kuʻauhau Nui
28	Royal Order of Kamehameha I	Clarence Soloman	Kahu Poʻo Iki
29	Sandia Laboratories	Orlando Vigil	Site Manager
30	Starr Environmental	Forest and Kim Starr	
31	State of Hawai'i, Department of Accounting and	Robert Hlivak	
01	General Services, Public Works,	1.000	
	Information and Communications Services Division		
32	State of Hawai'i, Department of Accounting and	David Victor	Maui Branch Engineer
	General Services, Public Works		
33	State of Hawai'i, Dept. of Agriculture		
33	State of Hawai'i, Dept. of Business, Economic	Ted Liu	Director
54	Development and Tourism,		Director
	Energy, Resources and Technology Division		
35	State of Hawai'i, Dept. of Business, Economic	Abe Mitsuda	
55	Development and Tourism,	1.00 1/11/0/004	
	Office of Planning, Land Use Division		
36	State of Hawai'i, Dept. of Business, Economic		
	Development and Tourism, Planning Office and Library		
37	State of Hawai'i, Dept. of Hawaiian Homelands		
- /	Land Management Division (Non-Homestead)		

Table 5-3. DEIS Distribution List, September 2006.

	Affiliation	Name	Title
38	State of Hawai'i, Dept. of Health	Dr. Lorrin Pang	District Health Officer
39	State of Hawai'i, Dept. of Health	Genevieve Salmonson	Director
57	Office of Environmental Quality Control	Genevieve Sannonson	Director
40	State of Hawai'i, Dept. of Health,	Dr. Chiyome Fukino	Director of Health
40	Environmental Planning Office	Di. Chiyonic i ukino	
41	State of Hawai'i, Dept. of Land and Natural Resources	Dr. Fern Duvall, II	Wildlife Biologist
	Division of Forestry and Wildlife		Whante Diologist
42	State of Hawai'i, Dept. of Land and Natural Resources	Samuel Lemmo	Administrator
	Office of Conservation and Coastal Lands		
43	State of Hawai'i, Dept. of Land and Natural Resources,	Meyer Ueoka	Maui Wildlife Manager
	Division of Forestry and Wildlife		
44	State of Hawai'i, Dept. of Land and Natural Resources,	Kahu Charles Maxwell, Sr.	
	Island Burial Council	,	
45	State of Hawai'i, Dept. of Land and Natural Resources,	Daniel Ornellas	Land Agent-Maui
	Land Division		
46	State of Hawai'i, Dept. of Land and Natural Resources,	John Cumming	Branch Manager
	Division of Forestry and Wildlife		
47	State of Hawai'i, Dept. of Transportation	Kyle Ginoza	Maui Director
48	State of Hawai'i, Dept. of Transportation	Rod Haraga	Director
49	State of Hawai'i, Head Librarian, Hana Public and		
	School Library		
50	State of Hawai'i, Head Librarian,		
	Hawai`i Document Center		
51	State of Hawai'i, Head Librarian, Hilo Regional Library		
52	State of Hawai'i, Head Librarian,		
	Kahului Regional Library		
53	State of Hawai'i, Head Librarian,		
	Kaimuki Regional Library		
54	State of Hawai'i, Head Librarian,		
	Kaneohe Regional Library		
55	State of Hawai'i, Head Librarian, Kihei Public Library		
56	State of Hawai'i, Head Librarian,		
	Lahaina Public Library		
57	State of Hawai'i, Head Librarian,		
	Legislative Reference Bureau Library		
58	State of Hawai'i, Head Librarian,		
	Lihue Regional Library		
59	State of Hawai'i, Head Librarian,		
<i>c</i> 0	Makawao Public Library		
60	State of Hawai'i, Head Librarian,		
<u>(1</u>	Pearl City Regional Library		
61	State of Hawai'i, Head Librarian,		
62	Wailuku Public Library	Clude Nārrus (a	Administrator
62	State of Hawai'i, Office of Hawaiian Affairs	Clyde Nāmu'o	Administrator
63	State of Hawai'i, Office of Hawaiian Affairs	Thelma Shimaoka	Community Resource
61	State of Howaid State Historic Description Division		Coordinator Propoh Chief
64	State of Hawai'i, State Historic Preservation Division	Maliana Kirkan dall	Branch Chief
65	State of Hawai'i, State Historic Preservation Division	Melissa Kirkendall	Maui Archaeologist
66	The Honolulu Advertiser		Editor
67	The Honolulu Star Bulletin	Dovid Heff	Editor
68	The Maui News	David Hoff	Editor in Chief

	Affiliation	Name	Title
69	U.S. Coast Guard Civil Engineering Unit, Honolulu	R. N. Wykle	Commanding Officer
70	U S. Coast Guard Civil Engineering Unit, Honolulu	Dr. Dennis Mead	
71	U.S. Environmental Protection Agency,	Carol Sachs	
	Region 9, CED-II		
72	U.S. Dept. of Defense		
73	U.S. Dept. of Energy	Eileen Yoshinaka	
74	U.S. Dept. of the Interior,	Dr. Kenneth Havran	
	Office of Environmental Policy and Compliance		
75	U.S. Environmental Protection Agency,	Dean Higuchi	
	Pacific Islands Contact Office, Region 14		
76	U.S. Federal Aviation Administration	Darice Young	Realty Contracting Officer
77	U.S. Federal Bureau of Investigation	George Hanzawa	Electronics Manager
78	U.S. Fish & Wildlife Service,	Holly Freifeld	
	Pacific Islands Fish and Wildlife Service		
79	U.S. Fish & Wildlife Service,	Patrick Leonard	Field Supervisor
	Pacific Islands Fish and Wildlife Service		
80	U.S. National Park Service, Haleakala National Park	Marilyn Parris	Park Superintendent
81	U.S. National Weather Service/NOAA	Carl Suekawa	Communications Manager
82	U.S. Environmental Protection Agency,		
	Office of Federal Activities, EIS Filing Section		
83	University of California, Santa Cruz,	Lisa Hunter	Associate Director
	Center for Adaptive Optics		
84	University of Hawai'i Environmental Center		
85	University of Hawai'i, Institute for Astronomy		
86	University of Hawai'i - Manoa,		
	Head Librarian, Hamilton Library		
87	University of Hawai'i - Manoa,	Dr. James Moncur	
	Water Resources Research Center		
88	Xamanek Researches, LLC	Erik Fredericksen	

Individuals			
Princess Aquino	Lorna Hazen	Richard Kinoshita	Leohu Ryder
Gordean Bailey	Mikahala & Rusty Helm	Ed & Puanani Lindsey	Nancy Shearman
Claire Barclay	Nameaaea Hoshino	Martha Martin	Warren Shibuya
Thomas Brayton	Michael Howden	Dick Mayer	Georgina Shito
Brad Breitbach	Maydeen Iao	Richard McCarty	Heather Snipes
Leslie Ann Bruce	Kaleikoa Ka'eo	Art Medeiros	Ellen Souza Sjholom
Suzanne Burns	Roselani Kahalenu	Bill Medeiros	Kalani Tassil
Toma Craig	Walter Kanamu	Verna Nahulu	Chris Taylor
Toni Dizon –pkg returned	Jen Kane	April Pofford	Margit Tolman
Carl Eldridge	U'ilani & Jonah Kapu	Jeanne Rabold	Alexander Vilahos
Mary Evanson	Lisa Kasprzycki	Rob Ratkowski	Kathie Zwick
Isaac Hall	Kapili Keahi	Ki'ope Raymond	
Haumea Hanakahi	Ashley Kekahuna	William Roback	

The public was given the required 45-day period in which to submit written comments on the DEIS. During this time period, the public was also invited to submit requests to become consulting parties pursuant to Section 106 of the NHPA. Responses to comments received during and after the 45-day public comment period, **as well as responses to comments raised during the three Public Comment Meetings are included in the DEIS Public Comments and Responses appendix of this FEIS (Vol. IV, Appendix A).**

DEIS Public Comment Meetings

MN: Sept. 8.

As stated earlier, DEIS was published on September 8, 2006, which initiated a 45-day public comment period. The DEIS addressed the multi-year site selection process by the scientific community to locate scientifically-viable sites. The DEIS also addressed the potential direct, indirect, and cumulative environmental effects of on-site construction, installation, and operation of the proposed ATST Project. Notification of the public hearings on the DEIS was published in the Maui News (Fig. 5-9), and the Haleakalā Times and Maui Weekly-South Edition, September 13 to 26, 2006 issue (Fig. 5-10).

Public Notice PUBLIC NOTICE The National Science Foundation (NSF) has prepared a Draft Environmental Impact ATST Draft EIS Public Meetings Time prepared Statement (DEIS) for the proposed Advanced Change - Due to scheduling conflicts, the tim Technology Solar Telescope (ATST) Project This joint DEIS is prepared in compliance with the Federal National Environmental Policy Act has changed for the public comment meetings for the Draft Environmental Impact Statement (DEIS) for the proposed Advanced Technology the rederal National Environmental Policy Act and the State of Hawai'i Chapter 343, Hawai'i Revised Statutes. The NSF, through an award to the National Solar Observatory, plans to fund construction of the proposed ATST at the University of Hawai'i Institute for Astronomy (IA), Haleakali High Altitude Observatory site, on the Island of Mani, Hawai'is The DEIS available and Mani, Hawai'is The DEIS Solar Telescope (ATST) Project, as follows: Cameron Center Auditorium – September 27, 2006, Wednesday, 7:00 to 10:00 pm. 2. Hannibal Tavares Community Center, Multipurpose Room - September 28, 2006, Thursday, 7:00 to 10:00 pm. is available at all Maui public libraries and or the Internet at: http://atst.nso.edu/. 3. Kula Community Center - September 29, 2006, Friday, 7:00 to 10:00 pm. Public Comment Period: The NSF welcome (MN: Sept. 22, 24, 2006) and invites Federal, state, and local agencies and the public to participate in the 45-day comment period heginning September 8, 2006 and ending on October 23, 2006, Publicomment meetings will take place, as follows: 1. Cameron Center Auditorium September 27, 2006, Wednesday, 6:00 to 10:00 pm. 2. Hannibal Tavares Community Center, Multi-purpose Room (pool room) September 28, 2006, Thursday, 6:00 to 10:00 pm. Kula Community Center September 29, 2006, Friday, 6:00 to 10:00 pm. Figure 5-9. ORIGINAL comments should be sent to the **DEIS Public Comment** Dr. Craig Foltz, ATST Program Manager National Science Foundation, Division of Astronomical Sciences **Meetings Notifications: Maui News Public** 4201 Wilson Boulevard, Room 1045, Arlington, VA 22230 Telephone: 703-292-4909, Fax: 703-292-9034, Notice, March 23, 2006. il: cfoltz@nsf.gov COPIES of comments should also be sent to: 1. Dept. of Health, Office of Environmental Quality Control, REF: ATST 235 South Beretania Street, Room 702, Honolulu, HI 96813 Fax: 808-586-4186 2. Mr. Mike Maberry, Associate Director University of Hawai'i Institute for Astronomy P. O. Box 209, Kula, HI 96790-0209, Dr. Charlie Fein, KC Environmental, Inc. P. O. Box 1208, Makawao, HI 96768 Telephone: 808-573-1903, Fax: 808-573-7837, h charlie@kcenv.com Your comments must be received or postmarked by October 23, 2006. Section 106 - National Historic Preservation Act (NHPA): During NSF's trip to Maui, pre-scheduled meetings will also be held on September 27th to 29th with interested individuals and groups who submit resolution proposals that seek to minimize or mitigate dverse affects by virtue of a Memorandum o Agreement as contemplated by the NHPA, Please submit resolution proposals to KC Environmental, In addition, Section 106 onsultations will also be part of the iscussion during the public comments to the DEJS and all proposals can be further submitted

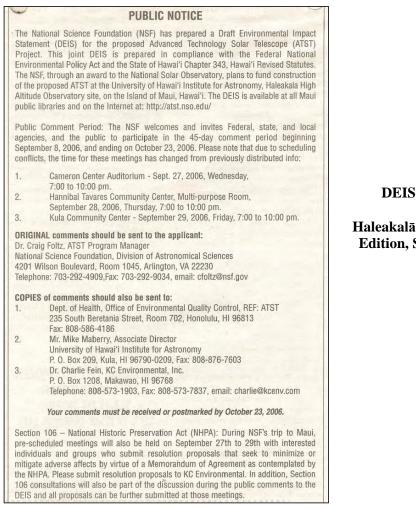


Figure 5-10. DEIS Public Comment Meetings Notification: Haleakalā Times and Maui Weekly-South Edition, September 13 to 26, 2006 Issue.

Three DEIS public hearings were held, as follows:

- 1. September 27, 2006, Cameron Center Auditorium, Wailuku, Maui, HI.
- 2. September 28, 2006, Mayor Hannibal Tavares Community Center, Pukalani, Maui, HI.
- 3. September 29, 2006, Kula Community Center, Kula, Maui, HI.

The 45-day public comment period ended on October 23, 2006; however, public comments were accepted beyond the deadline and are included in Vol. IV, Appendix A-DEIS Public Comments and Responses of this FEIS. Also included in Vol. IV, Appendix A are responses to comments found in the transcripts from the three DEIS Public Comment Meetings.

The format for each meeting was identical. Mediation Services of Maui facilitated all meetings and, at the onset of each meeting, set courtesy rules for comment and/or response interaction, notified participants that a court stenographer was in attendance to record the meeting, notified participants that those who signed up to give oral comments would be called upon to speak, and encouraged participants to submit comments before the comment deadline. The environmental consultant made additional opening statements by announcing the purpose of the meeting and introducing key members of the DEIS team. Meeting participants were also informed that staff from the news media and a videographer were in the audience and were independent of the proposed ATST Project.

During each meeting, the public was repeatedly encouraged to provide comments either by oral testimony, via mail, facsimile, or e-mail. The public was informed that all comments would be addressed in the Final EIS, either individually or collectively, depending on the nature of the comment. Display material, comment forms with submittal information, and a comment drop box were provided at each meeting. A stenographer from Iwado Court Reporters recorded each meeting.

Table 5-4 **reflects the number** of participants who registered at each meeting and the number of speakers who signed up to **provide** oral testimony. **The number of** registered participants is based on the number of individuals who signed an attendance sheet upon arriving at a meeting. Total attendance was higher than **the number of those who registered**.

Meeting Location	Registered Participants	Number of Speakers
Cameron Center Auditorium	35	20
Mayor Hannibal Tavares Community Center	23	9
Kula Community Center	15	10

Table 5-4. Summary of DEIS Meeting Participants.

DEIS Public Comments and Responses

Public input on the DEIS was provided via oral testimony, e-mail, fax, and letter. Comments submitted before publication of the DEIS and responses to substantive comments are included in Vol. III, Appendix A-Public Scoping Meetings Comments and Responses. Comments submitted after the DEIS was published and responses thereto are included in Vol. IV, Appendix A-DEIS Public Comments and Responses. Also included in Vol. IV, Appendix A are responses to comments found in the transcripts made during the DEIS Public Comment Meetings. Although NEPA regulations governed the duration of the public comment period, all comments received after deadlines were accepted. All comments received for the DEIS were carefully evaluated during the preparation of this FEIS and, where appropriate, they were incorporated into the document. Full consideration was given to the concerns, suggestions, information, and documentation provided by the commenting individuals, groups, and agencies.

5.1.5 Publication of the Supplemental Draft Environmental Impact Statement

The Supplemental Draft Environmental Impact Statement (SDEIS) for the proposed ATST Project was prepared in response to public and agency comments of the DEIS published in September 2006. In a number of respects, the SDEIS was considerably revised from the DEIS; comments received warranted additional surveys and studies, which were completed after the DEIS was published. The SDEIS was substantially changed from the DEIS of September 2006.

The Notice of Availability of the SDEIS was formally published on May 8, 2009 in the Federal Register (Fig. 5-11) and in the OEQC Bulletin (Fig. 5-12). Detailed information regarding two NEPA SDEIS Public Comment Hearings that were held on Maui in early June 2009 was also included in the Notice. This same information was also published in the Maui News, the Honolulu Advertiser, and the Star Bulletin newspapers with publication in each for May 8, 22, 31, 2009 and June 5, 2009. The SDEIS was distributed to Federal agencies and an OEQC-mandatory and – approved number of State and County of Maui agencies, organizations, libraries, elected officials, and other interested individuals (Table 5-5). Additional copies of the SDEIS were distributed upon request.

Federal Register/Vol. 74, No. 88/Friday, May 8, 2009/Notices

NATIONAL SCIENCE FOUNDATION

Supplemental Draft Environmental Impact Statement (SDEIS)

AGENCY: National Science Foundation, ACTION: Notice of Supplemental Draft Environmental Impact Statement (SDEIS).

SUMMARY: The National Science Foundation (NSF). through an award to the National Solar Observatory, plans to fand construction of the proposed Advanced Technology Solar Telescope (ATST) Project at the Kaleakalā High Altitude Observatory site on the Island of Maui, Hawai'i. The NSF has prepared a Supplemental Draft Environmental Impact Statement (SDEIS) for the proposed ATST Project. This SDEIS is a joint Federal and State of Hawai'i document prepared in compliance with the Federal National Environmental Policy Act (NEPA) and the State of Hawai'i Chapter 343, Hawai'i Revised Statutes. This SDEIS is also being prepared to evaluate the potential environmental impacts associated with issuing a National Park Service Special Use Permit application, pursuant to 36 CFR 5.6 to operate commercial vehicles on the Haleakalā National Park road during the construction and operation of the proposed ATST Project, if approved. The SDEIS is available at all Maui public libraries and on the Internet at: http://atst.nso.edu/.

DATES: Please submit comments during the 45-day public comment period

beginning May 8, 2009, and ending on June 22, 2009.

ADDRESSES: Original comments should be sent to the applicant: Craig Foltz, Ph.D., ATST Program Manager, National Science Foundation, Division of Astronomical Sciences, 4201 Wilson Boulevard, Room 1045, Arlington, VA 22230, Telephone: 703–292–4909, Fax: 703-292-9034, E-mail: cfoltz@nsf.gov. Copies of comments should also be sent to:

1. Dept. of Health, Office of Environmental Quality Control, REF: ATST, 235 South Beretania Street, Room 702, Honolulu, HI 96813, Fax: 808–586–4186. 2. Mr. Mike Maberry, Associate

Director, University of Hawai'i Institute for Astronomy, 34 Ohia Ku Street, Pukalani, HI 96768, Fax: 808-573-9557.

3. Charlie Fein, Ph.D., KC Environmental, Inc., P.O. Box 1208, Makawao, HI 96768, Fax: 808-573-7837. E-mail: charlie@kcenv.com. FOR FURTHER INFORMATION CONTACT: Dr. Foltz at the address listed above. SUPPLEMENTARY INFORMATION:

NEPA SDEIS Public Comment Hearings

Public Comment Period: The NSF welcomes Federal, State, and County agencies, and the public to participate in the 45-day comment period beginning May 8, 2009, and ending on June 22, 2009. Comments must be received or postmarked by June 22, 2009. Public comment hearings will take place, as follows:

1. Cameron Center Auditorium, 95 Mahalani Street, Wailuku, Maui, HI, June 3, 2009, Wednesday, 5 p.m. to 8 p.m.

2. Hannibal Tavares (Pukalani) Community Center, Pukalani Street, Room MHT #1 (downstairs), Pukalani, Maui, HI, June 4, 2009, Thursday, 7 p.m. to 10 p.m.

NHPA Consultation Meetings

Consultation meetings to solicit public input under Section 106 of the National Historic Preservation Act (NHPA) will be held on Maui by the National Science Foundation and Haleakalā National Park as follows: 1. June 8, 2009, Monday, 1 to 4 p.m.,

Kula Community Center, E. Lower Kula Road, Kula, Maui. 2. June 9, 2009, Tuesday, 10 a.m. to

p.m., Haiku Community Center, Hana Highway at Pilialoha Street, Haiku, Maui.

3. June 10, 2009, Wednesday, 3 to 6 p.m., Maui Community College, 310 W. Kaahumanu Avenue, Pilina Building— Multi-purpose Room, Kahului, Maui. You are invited to participate in these meetings to provide feedback and

comments on the area of potential effect, identification and evaluation of cultural, historic and archeological resources, and measures to avoid, minimize, and/ or mitigate potential adverse impacts to these resources. For questions or information about the consultation meetings, call Elizabeth Gordon, Haleakalā National Park Cultural Resources Program Manager at (808) 572-4424 or e-mail at elizabeth gordon@nps.gov. Information about the project is online at http:// www.atst.nso.edu/library/36CFR800 and http://www.nps.gov/hale. Dated: April 30, 2009.

Craig Foltz,

ATST Program Manager. [FR Doc. E9-10561 Filed 5-7-09; 8:45 am] BILLING CODE 7555-01-P

Figure 5-11. Federal Register Notice of SDEIS, May 8, 2009.

21719

The Environmental Notice Office of Environmental Quality Control May 08, 2009

8. Advanced Technology Solar Telescope (SDEIS)

	recimology dotal relescope (ddeld)
Island:	Maui
District:	Makawao
TMK:	(2) 2-2-07:08
Applicant:	National Science Foundation (NSF), Division of Astronomical Sciences, 4201 Wilson Boulevard,
	Room 1045, Arlington, VA 22230. Craig Foltz, Ph.D., ATST Program Manager, Tel: 703-292-4909; Fax: 703-292-9034; Email: <u>cfoltz@nsf.gov</u>
Accepting	
Authority:	University of Hawaii Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1897. Rolf- Peter Kudritzki, Ph.D., Director, Tel: 956-8312; Fax: 988-2790
Consultant:	KC Environmental, Inc., P. O. Box 1208, Makawao, HI 96768. Charlie Fein, Ph.D., Vice President, Tel: 573-1903; Fax: 573-7837; Email: charlie@kcenv.com
Comments: Permits:	DEIS notice pending 45-public comment. Address comments to the Applicant and Consultant Conservation District Use Permit

The NSF plans to fund construction of the proposed ATST Project at the Haleakala High Altitude Observatory site on the Island of Maui. This SDEIS is a joint Federal and State document and is also being prepared to evaluate the potential environmental impacts associated with issuing a National Park Service Special Use Permit application to operate commercial vehicles on the Haleakala National Park (HALE) road, if approved. Online information about the project: www.atst.nso.edu/library/36CFR800 and www.nps.gov/hale. See also Volume 2 and Volume 3.

NEPA 45-day Public Comment Period and Hearings: May 8 to June 22, 2009.

- 1. June 3, 2009, Wednesday, 5:00 pm to 8:00 pm.
 - Cameron Center Auditorium, Wailuku, Maui, HI
- 2. June 4, 2009, Thursday, 7:00 pm to 10:00 pm.

Hannibal Tavares Community Center, Room MHT #1, Pukalani, Maui, HI

National Historic Preservation Act Section 106 consultation meetings:

- 1. June 8, 2009, Monday, 1:00 to 4:00 pm
 - Kula Community Center, E. Lower Kula Road, Kula, Maui
- 2. June 9, 2009, Tuesday, 10:00 am to 1:00 pm
- Haiku Community Center, Hana Highway at Pilialoha Street, Haiku, Maui 3. June 10, 2009, Wednesday, 3:00 to 6:00 pm.
 - Maui Community College, 310 W. Kaahumanu Ave., Pilina Building Multi-purpose Room, Kahului

HAWAII (HRS 343)

Figure 5-12. Office of Environmental Quality Control DEIS Notice, May 8, 2009.

	First Name	Last Name		Affiliation
1	Martha	Catlin	Program Analyst	Advisory Council on Historic
				Preservation
				Office of Federal Agency Programs
2	Lisa	Hunter	Associate Director	Center for Adaptive Optics
				University of California, Santa Cruz
				Education & Human Resources
3	Jeff	Hunt	Planning Director	County of Maui Dept. of Planning,
			_	Cultural Resources Commission
4	Walt	Pacheco		County of Maui Police Dept
				Telecommunications
5	Milton	Arakawa	Director	County of Maui
				Dept. of Public Works and
				Environmental Management
6	Derek	Tomimoto	AWP-471 FMO	Federal Aviation Administration
7	George	Hanzawa	Electronics Manager	Federal Bureau of Investigation
8	Brian	Jenkins	President	Friends of Polipoli
9	Matt	Wordemann	President	Friends of Haleakalā National Park
10	Ron	Terry		Geometrician Associates, LLC
11	Sarah	Creachbaun	Superintendent	Haleakalā National Park
12	Winslow	Tanabe	Area Manager	Hawai'i Telecom
13	Sherry	Tihada		Hawai'i Telecom
14	Kiersten	Faulkner	Executive Director	Historic Hawai'i Foundation
15	Ki'ope	Raymond		Kilakila o Haleakalā
16			Head Librarian	Library - Hana Public and
				School Library
17			Head Librarian	Library - Hawai`i Document Center,
				Hawai`i State Library
18			Head Librarian	Library - Hilo Regional
19			Head Librarian	Library - Kahului Regional
20			Head Librarian	Library - Kaimuki Regional
21			Head Librarian	Library - Kaneohe Regional
22			Head Librarian	Library - Kihei Public
23			Head Librarian	Library - Lahaina Public
24			Head Librarian	Library - Legislative Reference
27				Bureau
25			Head Librarian	Library - Lihue Regional
26			Head Librarian	Library - Makawao Public
27			Head Librarian	Library - Maui Community College
28			Head Librarian	Library - Pearl City Regional
29			Head Librarian	Library - State of Hawai'i,
20				DBEDT Planning Office
30			Head Librarian	Library - University of Hawai'i -
21			II.e.d.L.:huenie	Manoa, Hamilton Library
31	Chuda	Calcomet	Head Librarian	Library - Wailuku Public
32	Clyde	Sakamoto	Chancellor	Maui Community College
33	Sol	Kaho'ohalahala	County Council Member	Maui County Council
34	Jeanne	Skog	President	Maui Economic Development Board
35	Craig	Yamasaki	Engineering Dept.	Maui Electric Co., Inc.
36	Torrie	Nohara	Trails and Access Specialist	Maui Na Ala Hele Advisory Council
37	Patty	Nishiyama		Na Kupuna O Maui

Table 5-5. SDEIS Distribution List, May 2009.

Γ	First Name	Last Name		Affiliation
38	Cari	Kreshak	Pacific Islands Cultural	National Park Service,
			Resource Program Manager	Regional Office
39	Kari	Kiser		National Parks
57		i i i i i i i i i i i i i i i i i i i		Conservation Association
40	Elizabeth	Merritt	Deputy General Counsel	National Trust for Historic
10	Liizuooui		Deputy Contra Counser	Preservation
41	Carl	Suekawa	Communications Manager	National Weather Service/NOAA
42	Greg	Brenner		Pacific Analytics, LLC
43	John	Fink	General Manager	Raycom Media, Inc.
44	George	Kaho`ohanohano	Ku`auhau	Royal Order of Kamehameha I
45	Clarence	Soloman	Kahu Po'oiki	Royal Order of Kamehameha I
46	William	Garcia, Jr. CK	Ku'auhau Nui	Royal Order of Kamehameha I
47	Jeff	Jerry	Site Manager	Sandia Laboratories
48	Kathy	McDuff		Sierra Club
49	Forest and Kim	Starr		Starr Environmental
50	Robert	Hlivak		State of Hawai`i, Department of
50	Robert	minvak		Accounting and General Services
				Public Works Information and
				Communications Services Division
51	David	Victor	Maui Branch Engineer	State of Hawai'i,
51	Duvia	v lotor	Maar Branch Engineer	Department of Accounting
				and General Services Public Works
52	Abe	Mitsuda		State of Hawai'i, Dept. of Business,
52	1100	misudu		Economic Development and Tourism,
				Office of Planning; Land Use Division
53	Ted	Liu	Director	State of Hawai'i, Dept. of Business,
55	100	214	Director	Economic Development and Tourism;
				Energy, Resources and Technology
				Division
54	Katherine	Kealoha	Director	State of Hawai'i, Dept. of Health,
				Office of Environmental Quality
				Control
55	Chiyome	Fukino, M.D.	Director of Health	State of Hawai'i, Dept. of Health,
		,		Environmental Planning Office
56	Kyle	Ginoza	Maui Director	State of Hawai'i,
	•			Dept. of Transportation
57	Brennon	Morioka	Interim Director	State of Hawai'i,
				Dept. of Transportation
58	Daniel	Ornellas	Land Agent-Maui	State of Hawai'i, DLNR,
				Land Division
59	Meyer	Ueoka	Maui Wildlife Manager	State of Hawai'i, DLNR,
	-			Division of Forestry and Wildlife
60	Kahu Charles	Maxwell, Sr.		State of Hawai'i, DLNR, Island Burial
				Council
61	Samuel	Lemmo		State of Hawai'i, DLNR,
				Office of Conservation and Coastal
				Lands
62	John	Cumming	Branch Manager	State of Hawai'i, DLNR,
				Division of Forestry and Wildlife
	Thelma	Shimaoka	Community Resource	State of Hawai'i,
63	Thenna	SiiiiiaOKa	Community Resource	State of Hawai I,

	First Name	Last Name			Affiliation
64	Clyde	Namu`o	Administrator		State of Hawai'i,
	2				Office of Hawaiian Affairs
65	Hinano	Rodrigues	Cultu	ral Historian	State of Hawai'i, SHPD
66	Pua	Aiu	Adm	inistrator	State of Hawai'i, SHPD
67	Nancy	McMahon	Arch	aeology and Historic	State of Hawai'i, SHPD
	5			rvation Manager	
69	Laura	Thielen	Direc		State of Hawai'i, SHPD
70			Edito	r	The Honolulu Advertiser
71			Edito	r	The Honolulu Star Bulletin
72	Brian	Perry	Edito	r	The Maui News
73	Cathleen	Goforth	Envir	onmental Review	U. E. Environmental Protection
			Offic	e Manager	Agency Region 9, CED-II
				e	Communities and Ecosystems
					Division
74					U. S. Environmental Protection
					Agency, Office of Federal Activities
75	R. N.	Wykle	Com	nanding Officer	U. S. Coast Guard Civil Engineering
				-	Unit Honolulu
76					U. S. Dept. of Agriculture
77					U. S. Dept. of Defense
78	Greg	Lind	Assis	tant Field Solicitor	U. S. Dept. of the Interior
79	Kenneth	Havran			U. S. Dept. of the Interior
					Office of Environmental Policy and
					Compliance
80	Patricia	Sanderson Port	Regio	onal Environmental	U. S. Dept. of the Interior
			Offic	er	Office of Environmental Policy and
					Compliance, Pacific West Region
81	Patrick	Leonard	Field	Supervisor	U. S. Fish & Wildlife Service
					Pacific Islands Fish and Wildlife
					Service
82	Daniel	Akaka	Senat		U. S. Senate
83	Daniel	Inouye	Senat	tor	U. S. Senate
84					University of Hawai`i Environmental
					Center
85	James	Moncur			University of Hawai'i at Manoa
					Water Resources Research Center
	Erik	Fredericksen			Xamanek Researches, LLC
87	Clarence	Apana	100	Kahu Charles	Maxwell, Sr.
88	Joyclynn	Costa	101	Dick	Mayer
89	Mary	Evanson	102	Art	Medeiros
90	Jamie	Fernandez	103	Ohua	Mirando
91	Isaac	Hall	104	Verna	Nahulu
92	Mikahala	Helm	105	Melissa	Prince
93	Liana	Horovitz	106	Ki`ope	Raymond
94	Kalei	Ka'eo	107	Leiohu	Ryder
95	Daniel	Kanahele	108	Warren	Shibuya
96	Shad	Kane	_		
97	Kathy	Kaohu	_		
98	Thomas	King, Ph.D.	_		
99	Judy	Mancini			

Table 5-5. SDEIS Distribution List, May 2009 (cont.).

The purpose of the required 45-day period comment was to provide the public with an opportunity to submit written comments on the SDEIS. The two Public Comment Hearings provided yet another opportunity for the public to provide comments on the SDEIS. Responses to comments were addressed by the ATST point-of-contact. Written comments received during and after the 45-day public comment period and responses to those comments are included in Vol. IV, Appendix B-SDEIS Public Comments and Responses. Also included in Vol. IV, Appendix B are responses to comments found in the transcripts from the two SDEIS Public Comment Hearings.

SDEIS Public Comment Hearings

The SDEIS was published on May 8, 2009, which initiated a 45-day public comment period. Notification of the public hearings on the SDEIS was published in the Maui News, the Honolulu Advertiser, and he Star Bulletin with the same information as the Notices in the Federal Register shown in Figure 5-11.

Two SDEIS public hearings were held, as follows:

- 1. June 3, 2009, Cameron Center Auditorium, Wailuku, Maui, HI.
- 2 June 4, 2009, Mayor Hannibal Tavares Community Center, Pukalani, Maui, HI.

The format for each meeting was identical. Each meeting was facilitated by a Meeting Facilitator who introduced key members of the ATST Project team, set courtesy rules for comment and/or response interaction, notified participants that a court stenographer was present to record the meeting, notified participants that those who signed up to give oral comments would be called upon to speak, and encouraged participants to submit comments before the comment deadline. Project display materials and hand-out sheets, comment forms with submittal information, and a comment drop box were provided at each meeting.

Table 5-6 reflects the number of participants who registered at each Public Comment Hearing and the number of speakers who signed up to participate in oral testimony. The number of registered participants is based on the number of individuals who signed an attendance sheet upon arriving at each hearing. Total attendance was higher than the number of those who registered.

Meeting Location	Registered Participants	Number of Speakers
Cameron Center Auditorium	37	~19
Mayor Hannibal Tavares Community Center	46	~24

 Table 5-6. Summary of SDEIS Meeting Participants.

SDEIS Public Comments and Responses

Public input on the SDEIS was provided via oral testimony, e-mail, fax, and letter. Although NEPA regulations governed the public comment period, all comments received after deadlines were considered. Substantive comments on the SDEIS were carefully evaluated during the preparation of this FEIS and, where appropriate, they were incorporated into the document. Full consideration was given to the concerns, suggestions, information, and documentation provided by the commenting individuals, groups, and agencies. Although the 45-day public comment period ended on June 22, 2009, public comments were accepted beyond the deadline. Responses to comments to both the DEIS published in September 2006 and the SDEIS published in May 2009, as well as transcripts for both meetings comprise Vol. IV of this document.

5.2 The Section 106 Consultation Process Pursuant to the National Historic Preservation Act

As stated in 36 CFR Part 800, "Section 106 of the National Historic Preservation Act requires Federal agencies to take into account the effects of their undertakings on historic properties and afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on such undertakings. The procedures in this part define how Federal agencies meet these statutory responsibilities. The Section 106 process seeks to accommodate historic preservation concerns with the needs of Federal undertakings through consultation among the agency official and other parties with an interest in the effects of the undertaking on historic properties, planning. The goal of consultation is to identify historic properties potentially affected by the undertaking, assess its effects and seek ways to avoid, minimize or mitigate any adverse effects on historic properties."

As stated in Section Subpart A, Section 800.2 (2) (ii) "Consultation on historic properties of significance to Indian tribes and Native Hawaiian organizations. Section 101(d)(6)(B) of the act requires the agency official to consult with any Indian tribe or Native Hawaiian organization that attaches religious and cultural significance to historic properties that may be affected by an undertaking. This requirement applies regardless of the location of the historic property. Such Indian tribe or Native Hawaiian organization shall be a consulting party."

In compliance with Section 106, NSF invited participation in this process to **Native Hawaiian** organizations (**NHO**) and individuals who may attach religious and cultural significance to a historic property that may be affected by a proposed undertaking. Table 5-7 briefly lists the Historic/Cultural Resource Preservation Consultation Events.

Date	Consultation Description
	Pre-notification letter of intent to prepare EIS sent to ACHP.
June 20, 2005	Pre-notification letter of intent to prepare EIS sent to: SHPD: Melanie Chinen, Administrator, Melissa Kirkendall, Maui Archaeologist, Cathleen Dagher, Asst. Maui Archaeologist.
August 22, 2005	Environmental Impact Statement Preparation Notice (EISPN) sent to SHPD: Melanie Chinen, Melissa Kirkendall, Cathleen Dagher.
January 12, 2006	SHPD Melissa Kirkendall notified of informal Section 106 meeting held on January 24, 2006.
January 24, 2006	Informal consultation meeting with Kahu Charles Maxwell and Hokulani Padilla Holt to discuss the proposed ATST Project and explain Section 106 process. Meeting minutes documented with copies to SHPD-David Brown and Melissa Kirkendall.
February 22, 2006	Invitation to David Brown, SHPD Branch Chief, and Melissa Kirkendall to 1 st formal Section 106 meeting held on March 28, 2006, at Pukalani Community Center with copies of all invite letters sent to the community.
March 28, 2006	1 st formal public Section 106 consultation meeting held at Pukalani Community Center.
March 28, 2006	Formal consultation with Boyd Mossman, OHA Trustee. Boyd Mossman provides NSF with Native Hawaiian Organizations (NHO) list to use for invitations to participate in Section 106 consultation.
March 31, 2006	Mail-out letters to OHA list of NHOs with update on project and process to date and invitation to participate.
April 3, 2006	David Brown and Melissa Kirkendall copied on all invitation letters to OHA-recommended consultation list inviting participation.

Table 5-7. Historic/Cultural Resource Preservation Consultation.

Date	Consultation Description
April 17, 2006	David Brown and Melissa Kirkendall copied on the distribution list for all postcard invitations to 2 nd formal public consultation meeting at Paukūkalo Community Center on May 1, 2006.
April 25, 2006	Charisse Carney-Nunes, NSF Assistant General Counsel, e-mail to David Brown acknowledging conversation about Section 106 process for the proposed ATST project and informing him of the May 1 st public consultation meeting. Record of Contact documented by Charisse Carney-Nunes, 2006.
April 26, 2006	David Brown e-mail to Charisse Carney-Nunes acknowledging conversation of previous day and forwarding contact info for Melissa Kirkendall.
May 1, 2006	2 nd formal Section 106 consultation meeting held at Paukūkalo Community Center. Attended by approximately 50 individuals.
June 5, 2006	Postcard sent to consulting parties encouraging submission of resolution proposals that would assist NSF in directing appropriate consideration to Native Hawaiian cultural and historic interests in connection with this project. Reminder of DEIS publication and NSF scheduling potential meetings with interested parties who submit resolution proposals.
June 13, 2006	KC Environmental, Inc. (KCE) letter sent to Melissa Kirkendall requesting written concurrence of adverse effect finding, copy to SHPD-Branch Chief David Brown, NSF, Archeologist Erik Fredericksen-Xamanek Researches.
July 6, 2006	Notification letter from Bijan Gilanshah, NSF Assistant General Counsel, to Mr. Donald Klima, Director, Office of Federal Agency Programs, ACHP, advising of finding of adverse effect regarding a proposed federal undertaking and updating as to the Section 106 consultations to date.
August 1, 2006	Martha Catlin, ACHP Program Analyst, to NSF-Bijan Gilanshah requesting additional, specific information on proposed project.
	E-mail from NSF-Bijan Gilanshah to SHPD-Melissa Kirkendall asking about June 13, 2006 request for written concurrence letter.
August 23, 2006	Response e-mail from SHPD-M. Kirkendall to NSF-B. Gilanshah requesting DEIS and will respond in writing upon review of DEIS. DEIS sent to SHPD-Kirkendall and David Brown September 2006.
August 25, 2006	Fax from Bijan Gilanshah to Martha Catlin following telecon and acknowledging regrets that she cannot attend public meetings. Follow-up of ACHPs request to participate in consultation meetings, providing dates of three DEIS public comment meetings on Maui, suggesting that perhaps someone else from Native American Program might be able to participate.
September 8, 2006	DEIS became public.
September 12, 2006	Formal meeting requested by Maui County Cultural Resources Commission in Wailuku, HI. Attended by Commission members and chaired by Sam Kalalau. ATST project represented by Mike Maberry, UH IfA and KC Environmental, Inc.
September 19, 2006	E-mail from ACHP-Martha Catlin to NSF-Bijan Gilanshah regarding not being able to attend three September meetings and Valerie Hauser from the Native American Program also had a conflict with attending, so do not count on ACHP representation at these particular meetings.
September 27, 2006	Formal consultation with Clyde Nāmu'o, OHA Administrator and ATST Project.
September 27, 28, 29, 2006	DEIS Public Comment Meetings held on Maui.

Date	Consultation Description
November 21, 2006	Letter from ACHP-Charlene Dwin Vaugh to Bijan Gilanshah acknowledging receipt of additional documentation, acceptance of invitation participate in consultation, and copy of letter to NSF Director. (In ACHP March 21, 2007 letter, ACHP also provided copies of notification letter to 17 individuals and organizations.)
November 21, 2000	Letter to NSF-Honorable Arden Bement, dated November 21, 2006, from, ACHP-Executive Director John Fowler notifying NSF of ACHPs decision to participate in consultation and will consult with NSF, Hawai'i SHPD, and others to resolve potential adverse effects of proposed undertaking.
March 19, 2007	 UH President David McClain, UH Chief of Staff Sam Callejo, IfA Director Rolf-Peter Kudritzki, IfA Assistant Director Mike Maberry, IfA Associate Director Bob McLaren, IfA Associate Director for the Haleakalā Division Jeff Kuhn met with Office of Hawaiian Affairs (OHA) Administrator Clyde Nāmu'o and OHA Trustee Judge Walter Meheula Heen. A PowerPoint presentation was given that provided an overview of the NSF's Draft Response to OHA's October 2, 2006, comments to the DEIS for the ATST. While OHA was not happy with the tone of the Draft Response, they were comfortable with its merit. Considering the project is undertaking an EIS and Section 106, OHA will not be inclined to provide funding to challenge the project.
March 21, 2007	Letter from ACHP-Charlene Dwin Vaugh to Bijan Gilanshah notifying NSF that ACHP received copies of letters from National Park Service, the Dept. of the Interior, and the Environmental Protection Agency regarding the proposed ATST. ACHP requests copies of referenced letters and other documentation to Section 106 consulting parties for ACHP review and a schedule for conducting the Section 106 process.
May 4, 2007	Informal site visit and meeting requested by Haumea Hanakahi with Mike Maberry, UH IfA, held at HO. Meeting requested based on comments provided by Haumea at a public meeting.
May 25, 2007	Final Supplemental Cultural Impact Assessment (SCIA) Report
July 2, 2007	Letter from Bijan Gilanshah to Martha Catlin with update on current status of consultations, enclosed copy of Supplemental Cultural Impact Assessment (SCIA) for the proposed ATST. KC Environmental, Inc. sent copy of NSF letter and SCIA to consulting parties.
July 31, 2007	ATST Project team and HALE meet to discuss project and HALE concerns as Section 106 consulting party.
August 28, 2007	NSF Section 106 consultation regarding mitigation proposal with Chancellor Clyde Sakamoto and Kalei Ka'eo of Maui Community College.
October 22, 2007	Letter from DOI-J. Jarvis to NSF-C. Foltz regarding July 31, 2007 meeting, road concerns in HALE, alternatives analysis, viewshed study, and Section 106 process with Native Hawaiian community.
November 8, 2007	NSF-Caroline Blanco letter to ACHP-Martha Catlin regarding NSF's positions on avoidance, minimization, and mitigation of adverse affects and request for guidance on how Section 106 compliance can best be accomplished. Attached mitigation proposal from Maui Community College.
	ACHP letter and MCC mitigation proposal also sent to Section 106 consultants.
December 26, 2007NSF-Craig Foltz to HALE-Marilyn Parris, Superintendent. Clarifying that HAL a copy of the 11/08/07 letter from NSF-C. Blanco to the ACHP expressing NSFs of move the Section 106 process forward	

Date	Consultation Description		
January 17, 2008Letter from ACHP-Charlene Dwin Vaugh to NSF-Caroline Blanco acknowled November 8, 2007 letter, understands HALE is providing comments to NSF a other parties in coming weeks, working with SHPD on their views before advis Section 106 matters, and advise NSF to refer to October 1, 2008 letter for AHC how best to proceed.			
February 11, 2008	Letter from DOI-J. Jarvis to NSF-C. Foltz regarding special use permit.		
February 11, 2008	HALE-Marilyn Parris, Superintendent to NSF-Craig Foltz. Requests for all information/questions/etc related to the ATST project come through Superintendent's office, letter with concerns forthcoming. Requests additional meeting with all parties.		
February 18, 2008	DLNR-SHPD-Laura Theilen and SHPD-Nancy McMahon to NSF. Request need to address the Area of Potential Effect (APE), additional alternative, and mitigation.		
April 8, 2008	MCC Chancellor Clyde Sakamoto appoints Sol Kahoohalahala to focus on identifying and responding to Native Hawaiian community concerns related to the development of ATST atop Haleakalā.		
May 6, 2008	NSF-Craig Foltz to SHPD-Laura Theilen and SHPD-Nancy McMahon. Clarification of communication efforts, APE, alternatives, and mitigation through previous correspondence.		
May 8, 2008	NSF invitation to HALE-Marilyn Parris, Superintendent requesting a June meeting to discuss Section 106 and HALE issues for mitigation.		
May 12, 2008	Letter from NSF-C. Blanco to ACHP-M. Catlin response to ACHP-Dwin Vaughn letter of 01-17-08. Clarification of communication efforts with ACHP and HALE, APE, alternatives, and mitigation through previous correspondence. Invitation to Section 106 meeting on Maui in June.		
May 12, 2008	Letter from NSF to consulting parties inviting to June Section 106 meetings at UH IfA to discuss and begin preparation of a Memorandum of Agreement (MOA), brief overview of position on adverse effects, and encourage submittal of mitigation proposals prior to June Section 106 meetings.		
May 13, 2008	NSF-Craig Foltz to HALE-Marilyn Parris, Superintendent. RE: Invitation to meet with NSF, suggest telecon before June, need for mitigation discussions and process to move forward between Federal agencies.		
May 13, 2008	HALE-Marilyn Parris, Superintendent to NSF-Craig Foltz. Re: Invitation to meet with NSF, HALE is not available in June. Suggest meeting in August.		
May 15, 2008	Letter from Historic Hawai'i Foundation-Kiersten Faulkner, Executive Director request for HHF to be a consulting party.		
May 19, 2008	Email from Ki'ope Raymond, President of Kilakila o Haleakalā to NSF requesting his organization to be a consulting party.		
June 4, 2008	Letter from SHPD-P. Aiu, Administrator and N. McMahon-Deputy SHPD/State Archaeologist to NSF-C. Foltz needs discussion of site alternatives.		
June 5, 2008	Email to HHF-Kiersten Faulkner accepting HHF as a consulting party with understanding this is late in the process and NSFs desire to keep the process organized and moving forward and invitation to June meetings.		
June 5, 2008	Correspondence between NSF and HALE confirming meeting on August 22, 2008 to resolve outstanding issues.		
June 9, 2008	Email from NSF-C. Foltz to Ki'ope Raymond, Kilakila o Haleakalā extending same invitation to be a consulting party as HHF.		
June 9, 2008	Letter to consulting parties with formal invitation to June 16 and 17, 2008 Section 106 meetings to be held on Maui.		

Date	Consultation Description
June 10, 2008	Letter from OHA regarding invitation to participate in June meetings, reiterates Native Hawaiian community position on project, concerns about mitigation proposals as "community benefits package".
June 12, 2008	Letter from ACHP-C. Dwin Vaughn to NSF-C. Foltz, ACHP unable to attend June meetings, overview of understanding of correspondence received regarding Section 106 process, HALE concerns, consulting parties, and Native Hawaiian historic properties.
June 12, 2008	Email from Kiope Raymond to NSF-C. Foltz regarding Kilakila o Haleakalā as consulting party.
June 16 and 17, 2008	Formal Section 106 meetings held at UH IfA Maikalani Facility to discuss ways in which to address adverse effects to historic properties associated with the proposed ATST Project.
June 17, 2008	Letter from NSF-C. Blanco to National Trust for Historic Preservation-Betsy Merritt with copies of Section 106 correspondence letters since June 2005.
July 10, 2008	Email to ACHP, follow-up on meeting with ACHP on 7-10-08 regarding NSFs Section 106 process to date, attached correspondence responding to ACHPs questions during meeting.
July 16, 2008	Email to ACHP, informing of forthcoming letter to consulting parties about August 27 and 28, 2008 Section 106 meetings and asking ACHP for additional input to letters.
July 17, 2008	Letter from ACHP-Dwin Vaughn to NSF-C. Blanco regarding follow up of July 10, 2008 meeting and additional questions and concerns.
July 21 to 28, 2008	Emails between NSF and HALE confirming August 22 nd meeting and requesting additional HALE consulting parties contact information. HALE responds that consulting parties should be SHPD and OHA. NSF responds that SHPD and OHA have indeed been consulting parties since 2006 and consultation with these agencies is ongoing.
July 22, 2008	Emails between NSF, ACHP regarding additional information as requested by ACHP in 07- 17-08 letter and HALE-M. Parris and G. Lind confirming August 22 nd meeting and requesting additional HALE consulting parties contact information.
July 24, 2008	NSF sends invitation to participate in upcoming August 27 th and 28 th , 2008 Section 106 consultation meetings. Letter sent to consulting parties and list of Potentially Interested Parties. Meeting was scheduled as a result of a suggestion made by the Hawai'i State Historic Preservation Officer during the June 16, 2008 consultation meeting and was consistent with guidance provided by the ACHP.
August 15, 2008	NSF sends 2 nd invitation to participate in upcoming August 27 th and 28 th , 2008 Section 106 consultation meetings. Letter sent to consulting parties and list of Potentially Interested Parties. Attachments included an Agenda, a Q&A sheet, and a list of the documents posted to the ATST Section 106 website.
August 22, 2008	NSF consultation with the National Park Service to discuss issues relating to HALE.
August 27, 2008	At the request of the Hawai'i State Historic Preservation Officer during the June 16, 2008 consultation meeting and consistent with guidance provided by the ACHP, this meeting was held to provide additional opportunities for consulting parties to meet with NSF to discuss ways in which to address adverse effects to historic properties associated with the proposed ATST Project.
August 28, 2008	Meeting with HALE, SHPD, ACHP, and ATST Project regarding next steps as a result of August 27 th Section 106 consultation meeting. Attending agencies to collaborate on "Consultation Summary" on Section 106 process.
May 8, 2009	Notice of Availability of SDEIS published in the Federal Register, which included announcement of three formal Section 106 consultation meetings to be held on June 8, 9, and 10, 2009.

Date	Consultation Description	
May 8, 22, 31, 2009 and June 5, 2009	Publication of detailed information announcing the two NEPA SDEIS Public Comment Hearings (held on June 3 and 4, 2009) and the three Section 106 Consultation Meetings (held on June 8, 9, and 10, 2009) in the Maui News, the Honolulu Advertiser, and the Star Bulletin newspapers with publication in each for May 8, 22, 31, 2009 and June 5, 2009.	
May 29, 2009	Newsletter (prepared jointly by HALE and NSF) describing the proposed ATST Project, the NEPA and NHPA processes, and announcing the two SDEIS Public Comment Meetings and the three Section 106 Consultation Meetings mailed out to all consulting parties.	
May 29, 2009	Letter from NSF (C. Blanco) to Ms. Laura Thielen, Hawai'i State Historic Preservation Officer (SHPO), re Request for SHPO Concurrence Regarding the Expanded Area of Potential Effects and the Determination of Adverse Effects Related to the National Science Foundation's Proposed Funding for Construction and Operation of the Advanced Technology Solar Telescope Project (ATST), Haleakalā, Maui, Hawai'i	
June 3 and 4, 2009	SDEIS Public Comment Hearings held at Cameron Center and Mayor Hannibal Tavares Community Center, respectively.	
June 8, 9, 10, 2009	Formal Section 106 meetings held at Kula Community Center, Ha'iku Community Center, and Maui Community College, respectively.	
July 9, 2009	Letter from NSF (C. Blanco) to all consulting parties attaching draft Programmatic Agreement and requesting comments on the draft document by July 23, 2009.	

 Table 5-7. Historic/Cultural Resource Preservation Consultation (cont.).

At the time the DEIS was published, NSF continued its outreach efforts to identify relevant **NHOs and individuals** that might have an interest in participating in the Section 106 consultation process. To that end, assistance was requested from the Office of Hawaiian Affairs (OHA) and the Native Hawaiian community prior to each consultation meeting to identify relevant **NHOs and individuals** to invite.

In September of 2007, the **U.S. Department of the Interior's** Office of Hawaiian Relations published **a Notice** in the Federal Register, Vol. 72, No. 186, a Notice regarding the development criteria for establishment of a NHO Notification List. The intent of the NHO list is to make available to other Federal agency officials this mechanism to assist with reasonable and good faith efforts to identify NHOs that are to be notified or consulted. Although the NHO list was not published prior to the publication of the DEIS, NSF did review the NHO list **soon after learning about it, which was** prior to conducting its August 2008 consultation meetings. **NSF then** invited the participation of all organizations appearing on the NHO list that had not previously been identified.

5.2.1 Section 106 Consultation Chronology

Advisory Council on Historic Preservation

The Advisory Council on Historic Preservation (ACHP) was sent a formal notification letter in June 2005 announcing the intent of NSF to prepare an EIS for the proposed ATST Project. This pre-assessment letter included a project description with the intent to publish an EIS, detailed information about the three Public Scoping Meetings, and ATST project management contact information. On July 6, 2006, a letter was sent to the ACHP, pursuant to 36 CFR § 800.6(a)(1)(iii), informing the ACHP of NSF's finding of adverse effect regarding the proposed undertaking. The letter also included a list of organizations and individuals the NSF had been in consultation with throughout the Section 106 process, a copy of CKM Cultural Resources' evaluation for the proposed Project, and a copy of a letter that was sent to Melissa Kirkendall, Maui archeologist, SHPD, requesting concurrence of the agency's adverse effect finding (ACHP, 2006). Additional information pursuant to Section 800.11(e) of the ACHP regulations was

submitted to the Council for its review and determination of whether its participation in this matter is warranted. Ultimately, the ACHP decided to become a consulting party to NSF's Section 106 process. Significant interactions with the ACHP regarding NSF's consultation efforts have taken place since issuance of the DEIS. Those interactions are discussed further below. A representative from the ACHP attended, in person, the formal consultation meetings in August 2008, and again in June 2009. The ACHP is currently working with NSF to develop a Programmatic Agreement (PA), pursuant to 36 CF. § 800.14(b), to address adverse effects to cultural/historic properties. The ACHP is currently reviewing a draft PA that was sent on July 9, 2009 to all consulting parties for review and comment.

State Historic Preservation Division

The SHPD is the responsible State of Hawaii entity with which NSF is required, pursuant to the NHPA, to engage in Section 106 consultations regarding the proposed ATST Project. A letter dated June 20, 2005 was sent to the SHPD (Melanie Chinen, Administrator; Melissa Kirkendall, Maui Archeologist; and Cathleen Dagher, Assistant Maui Archeologist) to notify them of NSF's intent to prepare an EIS. NSF directly, and through KCE, corresponded with the SHPD regarding formal and informal consultation meetings (Table 5-4). Since the publication of the DEIS, NSF and the SHPD have engaged in consultations regarding NSF's Section 106 process and ways in which adverse effects need to be addressed. NSF continues to consult with the SHPD as part of its Section 106 process and is currently working with the SHPD to develop a PA designed to address adverse effects associated with the proposed ATST Project. The SHPD is currently reviewing the draft PA that was sent to all consulting parties for review and comment on July 9, 2009.

Public Invitation to Participate – February 15, 2006

On June 23, 2005, notification of the proposed ATST Project was published in both the Federal Register and the State of Hawai'i Department of Health's OEQC Bulletin. During that same week, notification was also sent to Federal, State, and County offices, and members of Maui's community. In September 2005, on behalf of the NSF, KCE initiated consultation in accordance with Section 106 of the NHPA through numerous communications between Melissa Kirkendall, Maui Archaeologist of the Hawai'i SHPD and Archaeologist Erik Fredericksen of Xamanek Researches, LLC.

On January 24, 2006, informal consultation was initiated with Kahu Charles K. Maxwell, Sr. and Dane Maxwell of CKM Cultural Resources and Kumu Hula Hokulani Holt-Padilla of the Maui Arts and Cultural Center, all of whom are knowledgeable about the traditional, cultural, and spiritual significance of Haleakalā. A copy of the CKM Cultural Resources evaluation (Vol. II, Appendix F(1)) for the proposed project, "Cultural and Historical Compilation of Resources Evaluation and Traditional Practices Assessment," was made available on the ATST web site (http://atst.nso.edu/library/EIS.shtml, link to "E Mālama Mau Ka La'a: Preserve the Sacredness"). A copy of this evaluation was also made available in all Maui public libraries.

During consultations with HALE in January 2006, the HALE Superintendent expressed concerns about potential effects from construction of the proposed ATST Project on the historic Park road. Specifically, the Superintendent commented that the historic roadway has been evaluated by the National Park Service (NPS) and Historic American Engineering Record (HAER, ref. HALE HAER) as eligible for listing in the National Register of Historic Places under Criterion A (for its development of the National Park System, the development of early NPS landscape architectural design styles, and the craftsmanship of the Civilian Conservation Corps (CCC) and Criterion C (for its association with rustic park design that characterized early NPS development during the 1930s). Historic features of this roadway include: 1 bridge, 11 box culverts, and original culverts with mortared stone headwalls.

A letter from NSF dated February 15, 2006, and a copy of CKM Cultural Resources' evaluation was sent to agencies and members of the community who submitted written requests to be a consulted party to the

proposed ATST Project (Table 5-8). The letter briefly summarized the proposed ATST Project as it relates to the Section 106 process, a status of consultation meetings with Melissa Kirkendall of SHPD and archeologist Erik Fredericksen of Xamanek Researches, LLC, the January 24, 2006 informal consultation with CKM Cultural Resources and Hokulani Holt-Padilla, and an invitation to participate in a formal Section 106 consultation meeting that was being planned for March 28, 2006. A link to Section 106 information was posted to the ATST website and was also included in the invitation letter (http://atst.nso.edu/library/EIS.shtml).

						Last	First
			Affiliation			Name	Name
1	Dept. of Land and Natural Resources, Island Burial Council						
2	Friends of Polipoli, President					Jenkins	Brian
3	Hana Publi	ic and	School Library, Head	Librarian			
4	Hawaiʻi St	ate Li	brary, Hawaiʻi Docume	ent Center			
5			Library, Head Librarian				
6	Kihei Publ	ic Lib	rary, Head Librarian				
7	Lahaina Pu	ıblic I	Library, Head Librarian				
8			Library, Head Libraria				
9	Hana Publi	ic and	School Library, Head	Librarian			
10	Hawaiʻi St	ate Li	brary, Hawaiʻi Docume	ent Center			
11	Kula Com	munit	y Association			Mossman	Karolyn
12	Maui Arts	and C	ultural Center, Cultural	Programs Director		Holt-Padilla	Hokulani
13			y College and			Hokoana	Lui
			waiian Civic Club				
14			Development Board, Pr	resident		Skog	Jeanne
15	Na Kupuna					Nishiyama	Patty
16			ian Affairs, Administra			Nāmu'o	Clyde
17				Resource Coordinator		Shimaoka	Thelma
18	2		Kamehameha I, Kahu P			Solomon	Clarence
19			Kamehameha I, Office of			Garcia, Jr.	William
20			eservation Division, Br			Brown	David
21	State Histo	ric Pr	eservation Division, Ma	aui Archaeologist		Kirkendall	Melissa
			Last Name	First Name		Last Name	First Name
		22	Evanson	Mary	28	Medeiros	Art
		23	Hall	Isaac	29	Miner	James
Inc	dividuals	24	Helm	Mikahala	30	Orzula	Edmond
		25	Ka'eo	Kalei	31	Raymond	Ki'ope
		26	Maxwell, Sr.	Kahu Charles	32	Reeser	Don
		27	Mayer	Dick	33	Smith	Bill

Formal Consultation Meeting – March 28, 2006

A letter inviting participation in a formal Section 106 consultation was sent by KCE on behalf of the NSF on February 22, 2006. This letter was sent to elected officials, agencies, organizations, and members of the community who submitted written requests to be a consulting party to the proposed ATST Project (Table 5-9). A copy of the letter and mailing distribution list was also sent to the SHPD and OHA. Identical public notices were published in the Maui News on March 1 and 23, 2006 (Fig. 5-13), the Haleakalā Times in the March 15 to 28, 2006 issue and the Maui Weekly-South in the March 16 to 22, 2006 issue (Fig. 5-14).

Formal consultation meetings were held on March 28, 2006, at Mayor Hannibal Tavares Community Center and on May 1, 2006, at the Paukūkalo Community Center. The intent of both meetings was to introduce the Section 106 process to the public, discuss avoidance, mitigation and minimization proposals, answer questions and listen to testimony, request assistance in providing NSF with contact information for other Native Hawaiian organizations and individuals who may want to participate in this process, and to encourage discussion on identifying and resolving adverse effects. Proposals arising from these interactions were received from Mr. Warren Shibuya (March 28, 2006 and August 28, 2008), Kahu Charles K. Maxwell, (March 28, 2006), and Chancellor Clyde Sakamoto, Maui Community College (May 14, 2007). A stenographer from Iwado Court Reporters was employed to record the proceedings of the meeting for the administrative and public record. (NOTE: The mitigation proposal submitted by Kahu Charles Maxwell, Sr. on March 28, 2006 was formally withdrawn at the NHPA Section 106 Consultation Meeting held at Maui Community College on June 10, 2009.)

	Affiliation	Last Name	First Name
1	Congressman	Abercrombie	Neil
2	Congressman	Case	Ed
3	Dept. of Land and Natural Resources, Island Burial Council		
4	Friends of Polipoli, President	Jenkins	Brian
5	Kula Community Association	Mossman	Karolyn
6	Maui Community College and Hawaiian Civic Club	Hokoana	Lui
7	Maui Economic Development Board, President	Skog	Jeanne
8	Na Kupuna O Maui	Nishiyama	Patty
9	Office of Hawaiian Affairs	Nāmu'o	Clyde
10	Office of Hawaiian Affairs, Community Resource Coordinator	Shimaoka	Thelma
11	Royal Order of Kamehameha I, Kahu Po'o Iki	Solomon	Clarence
12	Royal Order of Kamehameha I, Office of the Ku'auhau Nui	Garcia, Jr.	William
13	Senator	Akaka	Daniel
14	Senator	Inouye	Daniel
15	State Historic Preservation Division, Branch Chief	Brown	David
16		Evanson	Mary
17		Hall	Isaac
18		Helm	Mikahala
19		Holt-Padilla	Hokulani
20		Ka'eo	Kalei
21		Maxwell, Sr.	Kahu Charles
22		Mayer	Dick
23		Medeiros	Art
24		Miner	James
25		Orzula	Edmond
26		Raymond	Ki'ope
27		Reeser	Don
28		Smith	Bill

 Table 5-9. Formal Section 106 Meeting Notification Distribution List, March 28, 2006.

PUBLIC NOTICE 36 CFR Part 800 – Protection of Historic

PropertiesAdvanced Technology Solar Telescope(ATST) Project

The National Science Foundation (NSF) is undertaking a review pursuant to the National Historic Preservation Act (NHPA) and the National Environment Policy Act (NEPA) for the proposed Advanced Technology Solar Telescope (ATST) Project. The proposed ATST is a project of the National Solar Observatory (NSO) that is being considered for construction funding by the NSF. NSF would serve as the lead federal agency for the NHPA/NEPA review. As the University of Hawai'i Institute for Astronomy (IfA) is one of several partners collaborating on this project, they would also cooperate in this process as well as a parallel state process.

Two of the alternatives that NSF and NSO are considering in this review would entail the planning and construction of the proposed ATST project was published in both the Federal Register and the State of Hawai'i Department of Health's Office of Environmental Quality Control (OEQC) Bulletin. During that same week, notification was also sent to Federal, State, and County offices, and members of Mau'is community. In September 2005, on behalf of the NSF, KC Environmental, Inc. caused consultation to be initiated under Section 106 of the NHPA through numerous Archaeologist of the Hawai'i State Historic Preservation Division (SHPD) and the Archaeologist of Xanamek Researches, LLC. A Cultural Resources Evaluation for the proposed project, *Cultural Resource Evaluation and Traditional Practices Report, January 2006*, is available now in all Maui public libraries and on the Internet at http://atst.nso.edu/library/ ElS.shtml. NSF hereby invites your participation in this process as an individual who may attach religious and cultural significance to a historic property that may be affected by a proposed undertaking. Specifically, we hereby invite your written comments on the above Cultural Resource Evaluation to address any Native Hawaiian concerns you may have about the proposed project; and we hope you will accept our invitation to participate in a formal Section 106 consultation meeting that will be held at:

Mayor Hannibal Tavares Community Center,Multi-purpose Room (next to the pool),Tuesday, March 28, 2006, 6:00 p.m.

The deadline to submit comments or questions on the Cultural Resource

Evaluation is March 20, 2006, While NSF closely oversees this process and will be legally responsible for making all required findings and determinations under Section 106 of the NHPA, we have authorized our local consultant, KC Environmental Inc., to represent us in this matter. KCEs contact information is: Dr. Charlie Fein, Vice-President. KC Environmental, Inc., P.O. Box 1208, Makawao, HJ 96768, pit. (808) 573-1903, Fax: (808) 573-7837, charlie@kcenv.com. In the event that you have questions you would like of address to a federal representative, please contact Assistant General Counsel Chrisse Camey-Nunes at (703) 293-8060 or Dr. Craig Foltz, the NSF ATST Program Director at (703) 292-4909. (MN: Mar, 1, 23, 2006)

Figure 5-13. Section 106 Meeting Notification: Maui News Public Notice, March 1 and 23, 2006.

36 CFR Part 800 – Protection of Historic Properties Advanced Technology Solar Telescope (ATST) Project

The National Science Foundation (NSF) is undertaking a review pursuant to the National Historic Preservation Act (NHPA) and the National Environmental Policy Act (NEPA) for the proposed Advanced Technology Solar Telescope (ATST) Project. The proposed ATST is a project of the National Solar Observatory (NSO) that is being considered for construction funding by the NSF. NSF would serve as the lead federal agency for the NHPA/NEPA review. As the University of Hawai'i Institute for Astronomy (IfA) is one of several partners collaborating on this project, they would also cooperate in this process as well as a parallel state process.

Two of the alternatives that NSF and NSO are considering in this review would entail the planning and construction of the proposed ATST project within the Haleakala High Altitude Observatories (HO) site on Maui. On June 23, 2005, notification of the proposed project was published in both the Federal Register and the State of Hawa'i Department of Health's Office of Environmental Quality Control (OEGC) Bulletin. During that same week, notification was also sent to Federal, State, and County offices, and members of Mau's community. In September 2005, on behalf of the NSF, KC Environmental, Inc. caused consultation to be initiated under Section 106 of the NHPA through numerous communications between the Mau' Archaeologist of the Hawa'i State Historic Preservation Division (SHPD) and the Archaeologist of Xamanek Researches, LLC. A Cultural Resources Evaluation for the proposed project, Cultural Resource Evaluation and Traditional Practices Report, January 2006, is available now in all Maui public libraries and on the Internet at: http://atst.nso.edu/library/EIS.shtml.

NSF hereby invites your participation in this process as an individual who may attach religious and cultural significance to a historic property that may be affected by a proposed undertaking. Specifically, we hereby invite your written comments on the above Cultural Resource Evaluation to address any Native Hawaiian concerns you may have about the proposed project; and we hope you will accept our invitation to participate in a formal Section 106 consultation meeting that will be held at:

Mayor Hannibal Tavares Community Center, Multi-purpose Room (next to the pool), Tuesday, March 28, 2006, 6:00 p.m.

The deadline to submit comments or questions on the Cultural Resource Evaluation is March 20, 2006.

While NSF closely oversees this process and will be legally responsible for making all required findings and determinations under Section 106 of the NHPA, we have authorized our local consultant, KC Environmental Inc., to represent us in this matter. KCEs contact information is: Dr. Charlie Fein, Vice-President, KC Environmental, Inc., P. O. Box 1208, Makawao, HI 96768, ph: (808) 573-1903, Fax: (808) 573-7837, charlie@kcenv.com. In the event that you have questions you would like to address to a federal representative, please contact Assistant General Counsel Charisse Carney-Nunes at (703) 292-8060 or Dr. Craig Foltz, the NSF ATST Program Director at (703) 292-4909.

Figure 5-14. Section 106 Meeting Notification: Haleakalā Times, March 15 to 28, 2006 Issue and Maui Weekly-South Edition, March 16 to 22, 2005 Issue.

OHA-Recommended Consultation – March 28, 2006

Consultation was held on March 28, 2006, with Retired Judge Boyd Mossman, Maui Trustee of OHA. NSF was given a list of additional Native Hawaiian groups that Judge Mossman recommended be invited to participate in the Section 106 process. Invitation letters dated March 31, 2006 were distributed (Table 5-10) and included a brief summary of the proposed ATST Project as it relates to the Section 106 process, including:

- 1. A status of consultation meetings to date,
- 2. An invitation to participate in the Section 106 process,
- 3. A web link to information posted to the ATST website,
- 4. A copy of the cultural evaluation; and,
- 5. NSF contact information.

Table 5-10. OHA-Recommended List of Those Invited to Participate.

	Affiliation	Last Name	First Name
1	A'o A'o O Na Loko I'a O Maui	Ople	Sheila
2	Alu Like, Inc.	Duey	Rose Marie
3	Dept. of Hawaiian Homelands	Medeiros	Vanessa
4	Dept. of Hawaiian Homelands, Grants Review Advisory Committee	Libed	Clifford
5	Fishpond Ohana	Ryan	Patrick
6	Friends of Moku'ula, Executive Director	Akana	Akoni
7	Hawaiian Community Assets, Inc.	Wagele	Jim
8	Hawaiian Homes Waiehu Kou 1	Ishizaka	Kekealani
9	Hui Kakoʻo ʻAina Hoʻopulapula and Na Poʻe Kokua	Feiteira	Blossom
10	Hui No Ke Ola Pono	Chang	Mei-Ling
11	Hui of Hawaiians	Filimoe'atu	Kehaulani
12	Ka Imi Na'auao 'O Hawai'i Nei	Bailey	Roselle
13	Kamehameha Schools Alumni	Takahashi	Dancine
14	Kamehameha Schools, Headmaster	Chamberlain	Dr. Rod
15	Keokea Hawaiian Homes	Newhouse	Robin
16	Lokahi Pacific	Ridao	Joann
17	Maui Community College – Kuʻina Program		
18	Maui Community College, Cooperative Education Program Coordinator	Pelegrino	Wallette
19	Na Leo Pulama	Ishikawa	Lei
20	Na Pua No'eau	Morando	Ohua
21	Native Hawaiian Educational Council	Keala	David
22	Paukukalo Hawaiian Homestead Community Association	Mariano	Velma
23	Punana Leo O Maui	Namauu	Kili
24	Queen Lili'uokalani Children's Center	Mountcastle	Iris

Formal Consultation Meeting – May 1, 2006

Notification postcards were sent to agencies, organizations, and members of the community announcing a second formal consultation meeting (Table 5-11). This meeting was held on May 1, 2006 at the Paukūkalo Community Center. A copy of the postcard announcement and mailing distribution list was sent to SHPD and OHA.

	Affiliation	Last Name	First Name
1	Friends of Moku'ula, Executive Director	Akana	Akoni
2	State Historic Preservation Division, Branch Chief	Brown	David
3	Alu Like, Inc.	Duey	Rose Marie
4	A'o A'o O Na Loko I'a O Maui	Ople	Sheila
5	Dept. of Hawaiian Homelands	Medeiros	Vanessa
6	Dept. of Land and Natural Resources, Island Burial Council		
7	Fishpond Ohana	Ryan	Patrick
8	Hawaiian Community Assets, Inc.	Wagele	Jim
9	Hawaiian Homes Waiehu Kou 1	Ishizaka	Kekealani
10	Hui Kakoʻo ʻAina Hoʻopulapula and Na Poʻe Kokua	Feiteira	Blossom
11	Hui No Ke Ola Pono	Chang	Mei-Ling
12	Hui of Hawaiians	Filimoe'atu	Kehaulani
13	Ka Imi Na'auao 'O Hawai'i Nei	Bailey	Roselle
14	Kamehameha Schools Alumni	Takahashi	Dancine
15	Kamehameha Schools, Headmaster	Chamberlain	Rod
16	Keokea Hawaiian homes	Newhouse	Robin
17	Lokahi Pacific	Ridao	Joann
18	Maui Community College – Kuʻina Program		
19	Maui Community College and Hawaiian Civic Club	Hokoana	Lui
20	Maui Community College, Cooperative Education Program Coordinator	Pelegrino	Wallette
21	Na Kupuna O Maui	Nishiyama	Patty
22	Na Leo Pulama	Ishikawa	Lei
23	Na Pua No'eau	Morando	Ohua
24	Native Hawaiian Educational Council	Keala	David
25	Office of Hawaiian Affairs, Administrator	Namu'o	Clyde
26	Office of Hawaiian Affairs, Community Resource Coordinator	Shimaoka	Thelma
27	Paukūkalo Hawaiian Homestead Community Association	Mariano	Velma
28	Punana Leo O Maui	Nāmauu	Kili
29	Queen Lili'uokalani Children's Center	Mountcastle	Iris
30	Royal Order of Kamehameha I, Kahu Po'o Iki	Solomon	Clarence
31	Royal Order of Kamehameha I, Office of the Ku'auhau Nui	Garcia, Jr. CK	William
32	State Historic Preservation Division, Maui Archaeologist	Kirkendall	Melissa
33		Barros	Jake
34		Bustamente	Keahi
35		Helm	Mikahala
36		Holt-Padilla	Hokulani
37		Kaeo	Kalei
38		Kahoohanohano	George
39		Kaohu	Kathy
40		Lindsey	Ed
41		Maxwell	Kahu Charles
42		Raymond	Ki'ope

 Table 5-11. Formal Section 106 Meeting Notification Distribution List, May 1, 2006.

Identical public notice advertisements were placed in the Maui News on April 21, 2006 (Fig. 5-15), the Haleakalā Times in the April 26 to May 9, 2006 issue, the Maui Weekly-South in the April 27 to May 3, 2006 issue (Fig. 5-16), and posted to the ATST web site.

PUBLIC NOTICE

The National Science Foundation (NSF) is undertaking a review pursuant to the National Historic Preservation Act (NHPA) and the National Environmental Policy Act (NEPA) for the proposed Advanced Technology Solar Telescope (ATST) Project. The next NHPA 106 consultation meeting will be:

Monday, May 1, 2006, 7:00 to 10:00 p.m. Paukūkalo Community Center

655 Kaumuali'i Street, Paukūkalo You are encouraged to submit resolution proposals by April 24th to KC Environmental Inc, P. O. Box 1208, Makawao, HI 96768. You may also bring them to the meeting where you can provide comments or testimony that would assist NSF in directing appropriate consideration to Native Hawaiian interests in connection with this project. All proposals, comments, and testimony will be fully considered as part of the NSF, NEPA, and NHPA review process.

Please visit the ATST website for additional information about the Section 106 process for this project: <u>http://atst.nso.edu/library/EIS.shtml</u>

(MN: April 21, 2006)

Figure 5-15. Section 106 Meeting Notification: Maui News Public Notice, April 21, 2006. The National Science Foundation (NSF) is undertaking a review pursuant to the National Historic Preservation Act (NHPA) and the National Environmental Policy Act (NEPA) for the proposed Advanced Technology Solar Telescope (ATST) Project. The next NHPA 106 consultation meeting will be:

Monday, May 1, 2006, 7:00 to 10:00 p.m. Paukukalo Community Center 655 Kaumuali'i Street, Paukukalo

You are encouraged to submit resolution proposals to KC Environmental Inc, P. O. Box 1208, Makawao, HI 96768. You may also bring them to the meeting where you can provide comments or testimony that would assist NSF in directing appropriate consideration to Native Hawaiian interests in connection with this project. All proposals, comments, and testimony will be fully considered as part of the NSF, NEPA, and NHPA review process.

Please visit the ATST website for additional information about the Section 106 process for this project: http://atst.nso.edu/library/EIS.shtml

Figure 5-16. Section 106 Meeting Notification: Haleakalā Times, April 26 to May 9, 2006 Issue and Maui Weekly-South Edition, April 27 to May 3, 2006 Issue.

At the meeting, the public was invited to participate in the Section 106 process, public testimony was heard, written testimony was accepted, and questions were answered. During public testimony, specific concern was heard about which organizations and individuals were contacted, the IfA's LRDP, and the NSF's role in educational outreach specifically for women and Native Hawaiians. Documentation addressing all of these concerns was posted to the ATST web site within the week following the meeting. A stenographer from Iwado Court Reporters was employed to record the proceedings of the meeting for inclusion in the Administrative Record.

DEIS Notification and Section 106 Resolution Proposals Status Update – June 5, 2006

On behalf of the NSF, KC Environmental, Inc. (KCE) sent information postcards (Fig. 5-17) to agencies, organizations, and members of the community (Table 5-12) with information announcing the anticipated publication of the DEIS and the subsequent public meetings to comment on the DEIS. It also announced that scheduled meetings with interested individuals and groups who submit resolution proposals for the Section 106 process would be held during the week of the DEIS public meetings. A copy of the postcard and mailing distribution list was sent to SHPD and OHA.

The information on the postcard was also published in the Maui News on April 21, 2006, the Haleakalā Times in the April 26 to May 9, 2006 issue, the Maui Weekly-South in the April 27 to May 3, 2006 issue, and posted to the ATST web site.

The National Science Foundation (NSF) is continuing to accept resolution proposals pursuant to the National Historic Preservation Act (NHPA) and the National Environmental Policy Act (NEPA) for the proposed Advanced Technology Solar Telescope (ATST) Project.
You are encouraged to submit resolution proposals to <u>KC Environmental Inc., PO Box 1208, Makawao, HI 96768</u> <u>that would assist NSF in directing appropriate consideration to</u> <u>Native Hawaiian cultural and historic interests in connection with this project.</u>
It is anticipated that a Draft Environmental Impact Statement (DEIS) will be published this summer, after which time, NSF and the University of Hawai'i will hold public meetings to receive comments on the DEIS.
During NSF's trip to Maui, scheduled meetings will also be held with interested individuals and groups who submit resolution proposals for the Section 106 process. All resolution proposals will be fully considered. The deadline for submitting Section 106 resolution proposals will be announced with public notification of the DEIS release and in the ATST historic properties web site: <u>http://atst.nso.edu/library/EIS.shtml.</u>
June 5, 2006

Figure 5-17. Section 106 Resolution Proposals Status Update Postcard, June 5, 2006.

	Affiliation	Last Name	First Name
1	A'o A'o O Na Loko I'a O Maui	Ople	Sheila
2	Alu Like, Inc.	Duey	Rose Marie
3	Dept. of Hawaiian Homelands	Medeiros	Vanessa
4	Dept. of Land and Natural Resources, Island Burial Council		
5	Fishpond Ohana	Ryan	Patrick
6	Friends of Moku'ula, Executive Director	Akana	Akoni
7	Hawaiian Community Assets, Inc.	Wagele	Jim
8	Hawaiian Homes Waiehu Kou 1	Ishizaka	Kekealani
9	Hui Kakoʻo ʻAina Hoʻopulapula and Na Poʻe Kokua	Feiteira	Blossom
10	Hui No Ke Ola Pono	Chang	Mei-Ling
11	Hui of Hawaiians	Filimoe 'atu	Kehaulani
12	Ka Imi Na'auao 'O Hawai'i Nei	Bailey	Roselle
13	Kamehameha Schools	Chamberlain	Rod
14	Kamehameha Schools Alumni	Takahashi	Dancine
15	Keokea Hawaiian Homes	Newhouse	Robin
16	Lokahi Pacific	Ridao	Joann
17	Maui Community College	Hokoana	Lui
18	Maui Community College – Kuʻina Program		
19	Maui Community College, Cooperative Education Program Coordinator	Pelegrino	Wallette
20	Na Kupuna O Maui	Nishiyama	Patty
21	Na Leo Pulama	Ishikawa	Lei

Table 5-12. DEIS and Resolution Proposals	
Status Update Distribution List, June 5, 2006 (cont.).	

	Affiliation	Last Name	First Name
22	Na Pua No'eau	Morando	Ohua
23	Native Hawaiian Educational Council	Keala	David
24	Office of Hawaiian Affairs, Administrator	Nāmu'o	Clyde
25	Office of Hawaiian Affairs, Community Resource Coordinator	Shimaoka	Thelma
26	Paukūkalo Hawaiian Homestead Community Association	Mariano	Velma
27	Punana Leo O Maui	Namauu	Kili
28	Queen Lilioukalani Children's Center	Mountcastle	Iris
29	Royal Order of Kamehameha I, Kahu Po'o Iki	Solomon	Clarence
30	Royal Order of Kamehameha I, Office of the Ku'auhau Nui	Garcia, Jr.	William
31	State Historic Preservation Division, Branch Chief	Brown	David
32	State Historic Preservation Division, Maui Archaeologist	Kirkendall	Melissa
33		Awana	Nadine, Chanelle
34		Bailey	Timmy
35		Barros	Jake
36		Burns (e-mail)	Suzanne
37		Bustamente	Keahi
38		Dias	Pohai
39		Dizon	Toni
40		Eldredge	Carl
41		Garcia	Don
42		Helm	Mikahala, Rusty
43		Hoffman	Mark
44		Holt-Padilla	Hokulani
45		Kaeo	Kalei
46		Kahoohanohano	George
47		Kamai	David
48		Kanamu	Walter
49		Kaohu	Kathy
50		Kekahuna	Ashley
51		Kong	Leinoa
52		Kuailani	Kapena
53		Lehuanani	Princess
54		Lindsey	Ed, Puanani
55		Maxwell	Kahu Charles
56		McLean	Luke
57		Medeiros	Bill
58		Park	Pua' ōlena
59		Raymond	Ki'ope
60		Roback	Billy
61		Shito	Georgina
62		Souza	Keoki
63		Tassill	Kalani
64		Tomoso	John

OHA Formal Consultation Meeting – September 27, 2006

On September 27, 2006, NSF met again with OHA following issuance of the DEIS. That meeting took place in Honolulu with OHA Administrator, Clyde Nāmu'o. At that meeting, Mr. Nāmu'o said he was

glad NSF engaged OHA early on in its Section 106 process, and he indicated that NSF was taking the right steps and engaging the right people.

Supplemental Cultural Impact Assessment Distribution – July 4, 2007

Extensive comments were received on the DEIS and during the Section 106 consultations concerning effects on historic and cultural resources. In view of these comments, NSF decided that it would be necessary to have a supplemental cultural impact evaluation prepared to assist in both its NEPA process and its ongoing Section 106 consultations. The Supplemental Cultural Impact Assessment (SCIA) provided by Cultural Surveys Hawai'i, Inc. substantially addressed the comments received on the DEIS and reflects additional consultative interactions requested in those comments. It is also exhaustive in its review and often-verbatim recitation of the numerous comments, consultations, and proposals that have **been submitted**. This report can be found in Vol. II, Appendix F(2)-Supplemental Cultural Impact Assessment. The SCIA was sent to the ACHP as well as to the Section 106 consulting parties (see Table 5-11) and posted to the ATST website.

ACHP Letter and Maui Community College Mitigation Proposal – November 8, 2007

On November 8, 2007, NSF sent a letter from NSF to the ACHP summarizing the NSF's Section 106 process as of that date, including consultations with interested parties. The November 8th letter also expressed NSF's desire to hold a meeting with the consulting parties to discuss all mitigation proposals **that had been received** and allow for submission of additional proposals. Finally, the letter notified ACHP of the receipt of a Mitigation Proposal from MCC, and requested a meeting with the ACHP to discuss a path forward in the consultation process. A copy of both the November 8, 2007 ACHP letter and the MCC Mitigation Proposal were sent to the consulting parties (Table 5-13).

	Affiliation	Last Name	First Name
1	County of Maui, Dept. of Planning	Hunt	Jeff
	Cultural Resource Commission, AICP, Staff Planner		
2	Dept. of Land and Natural Resources, Island Burial Council	Maxwell	Kahu Charles
3	Dept. of Land and Natural Resources, SHPD Officer	Smith	Allan
4	Haleakalā National Park, Superintendent	Parris	Marilyn
5	Na Kupuna O Maui	Nishiyama	Patty
6	Office of Hawaiian Affairs, Administrator	Nāmu'o	Clyde
7	Office of Hawaiian Affairs, Community Resource Coordinator	Shimaoka	Thelma
8	Royal Order of Kamehameha I, Ali'i Ku'auhau	Kaho'ohanhano	George
9	Royal Order of Kamehameha I, Kahu Po'o Iki	Solomon	Clarence
10	Royal Order of Kamehameha I, Office of the Ku'auhau Nui	Garcia, Jr. CK	William
12	State Historic Preservation Division, Administrator	Chinen	Melanie
11	State Historic Preservation Division, Maui Archaeologist	Pickett	Jenny
13	U.S. Dept. of the Interior, Office of the Secretary	Sanderson Port	Patricia
	Office of Environmental Policy and Compliance		
	Pacific West Region, Regional Environmental Officer		
14		Helm	Mikahala
15		Maxwell	Kahu Charles
16		Nahulu	Verna
17		Raymond	Ki'ope
18		Shibuya	Warren

Table 5-13. SCIA (July 4, 2007) andMCC Mitigation Proposal (November 8, 2007) Distribution List.

Formal Consultation Meeting – June 16 and 17, 2008

An invitation to attend formal Section 106 consultation meetings on June 16 and 17, 2008, was sent to all consulting parties. Those meetings were held at the University of Hawai'i Institute for Astronomy Maikalani Facility. A meeting facilitator was present as well as a court reporter.

While several consulting parties who attended the June 2008 meetings expressed concerns about and objections to the location of the proposed ATST Project, other consulting parties provided creative suggestions for mitigation provisions that could be included in a Memorandum of Agreement **or Programmatic Agreement (PA)**. Some of these suggestions included providing educational programs for Native Hawaiians, at both the University and K through 12 levels; placing a "Hawaiian Star Compass" on the summit in recognition of the role navigation has played in Native Hawaiian culture; having the Native Hawaiian community identify a person with appropriate kuleana who could serve in a capacity similar to that of a Konohiki to work with the University of Hawai'i to facilitate traditional cultural practices at the Haleakalā High Altitude Observatory Site and to provide interpretation of the summit; removing the concrete remnants of the Reber Circle and cleaning up other areas on the summit; and putting a 50 year limit on the life of the proposed ATST Project. All of these suggestions and other comments by the consulting parties in attendance are set forth in the transcripts of both meetings; those transcripts, the notes of the facilitator, and other important information containing NSF's Section 106 compliance efforts to date were posted on the ATST project website following those meetings. The transcripts of those meetings can be found in Vol. III, Appendix C(3) and C(4) of this FEIS.

During the June 2008 meetings, one of the consulting parties expressed a concern that there were people/entities previously interested in participating in the Section 106 process, but who did not appear on the then-current list of consulting parties. After the meetings, the records were reviewed and individuals and entities were identified who initially expressed an interest in participating in the ATST Section 106 process, but were ultimately not included in the list of consulting parties due to inactivity or a subsequent apparent lack of interest. At the June 2008, meetings, the SHPD also recommended that NSF host two additional consultation meetings. NSF agreed to do so.

Follow-up from June 16 and 17, 2008 Consultation Meetings

Following the June, 2008 consultation meetings, NSF engaged in extensive conversations with the ACHP, the SHPD, HALE, and the Dept. of Interior (DOI) regarding an appropriate path to move forward in its Section 106 consultation process. Concerns were expressed by the ACHP, the SHPD, and HALE regarding the outreach efforts NSF had made to include members from the Native Hawaiian Community.

The ACHP wrote a letter to NSF on July 17, 2008, requesting further information regarding NSF's outreach efforts. In response to specific questions raised by the ACHP, NSF responded:

"In your July 17th letter, you raise a concern about NSF's outreach efforts to involve Native Hawaiian Organizations ("NHOs"). Specifically, you ask whether NSF looked beyond Maui to identify NHOs. You also asked whether NSF invited the Office of Hawaiian Affairs ("OHA") to participate in our Section 106 process. As reflected in several letters recently sent to all consulting parties, including the ACHP, it is clear that several consulting parties are located outside of Maui. With regard to NSF's outreach efforts with OHA, NSF indeed reached out to OHA early on in its process. In September of 2005, NSF contacted OHA, and received a letter in return setting forth the authorities requiring the respectful treatment of the ceded lands of the summit, and requesting that part of the proposed ATST Project, if it goes forward, "include a guarantee of training and education for Hawaiians . . . to allow them the opportunity to gain jobs at the Haleakalā High Altitude Observatories site." *See* DEIS at pp. 3-7 to 3-8. NSF invited OHA to be a consulting party in this process, and that invitation was accepted. (Please note that OHA's consulting party status is reflected on all of the correspondence addressed to consulting parties.)

In addition, as I explained to you [and other ACHP personnel] during our telecon last week -- and as set forth on page 5-16 of the DEIS -- NSF met with Retired Judge Boyd Mossman of OHA on March 28, 2006, to discuss NSF's Section 106 process. During that meeting, NSF was given a list of additional NHOs that OHA recommended be invited to participate in our Section 106 process. The meeting and the OHA-recommended list are documented in the DEIS on pages 5-16 and 5-17. Letters were sent to those on the OHA-recommended list on March 31, 2006 inviting them to participate in the process. Copies of those letters can be located on the website setting forth NSF's Section 106 compliance efforts to date: http://atst.nso.edu/library/36CFR800. On September 27, 2006, NSF met again with OHA following issuance of the DEIS. That meeting took place in Honolulu with OHA Administrator, Clyde Nāmu'o. At that meeting, Mr. Nāmu'o said he was glad NSF engaged OHA early on in its Section 106 process, and he indicated that NSF was taking the right steps and engaging the right people.

Further involvement of NHOs is reflected in the testimony on behalf of the Association of Hawaiian Civic Clubs, which was received during NSF's formal Section 106 meeting for the proposed ATST Project on May 1, 2006. Mr. Lui Hokoana, president of the Central Maui Hawaiian Civic Club, testified on behalf of his civic club, the Lahaina Hawaiian Civic Club, and the Hoolehua Hawaiian Civic Club in conjunction with the Association of the Hawaiian Civic Clubs, which represents 51 clubs from throughout Hawai'i and seven mainland states. Mr. Hokoana's testimony strongly urged that the telescope not be built on Haleakalā. In addition, a letter dated May 1, 2006, containing the written testimony of Antoinette L. Lee, President of the Association of Hawaiian Civic Clubs, was also submitted. This written testimony can be found in Appendix K to the DEIS at page 116."

NSF further discussed its outreach efforts through the date of issuance of the DEIS, as outlined **earlier** in this section. Specifically, NSF explained:

"These efforts include public hearings, formal and informal consultation meetings, media outreach to inform the public of the proposed ATST Project, ensuring that the DEIS was provided to all public libraries in the State of Hawai'i, and Federal Register notices published to notify the public of opportunities to participate in the NEPA and Section 106 processes. In fact, a total of 23 consultation meetings, both formal and informal, have taken place since July of 2005. [The outreach efforts for the proposed ATST Project have indeed been taken very seriously by NSF, which is evidenced by the fact that the current list of consulting parties includes 29 individuals and entities]. Moreover, on July 24, 2008, NSF sent out a letter to all consulting parties inviting them to the upcoming consultation meetings scheduled for next month (on August 27th and 28th). That invitation letter was also sent to an additional 87 individuals/entities who NSF considers to be potentially interested parties. These parties expressed an interest in participating in the Section 106 process at some point over the past three years, but were ultimately not included in the list of consulting parties due to inactivity and/or an apparent lack of interest. Nevertheless, NSF decided to reach out to them to provide them with one more opportunity to participate in the process."

Discussions also ensued regarding expanding the Area of Potential Effects to include the Park road corridor. NSF agreed to do so. NSF continued to work closely, primarily with the ACHP, to structure the format for additional consultation meetings scheduled for August 27 and 28, 2008. In structuring the August meetings, NSF also consulted closely with HALE and reached out to the SHPD.

Formal Consultation Meetings – August 27, 2008

An invitation letter announcing the next consultation meetings, which took place on August 27, 2008 at the University of Hawai'i Institute for Astronomy Maikalani Facility – was sent to all persons listed as consulting parties and those from the NHO list that had not previously been included in the process. In addition, an invitation letter was sent to those persons/entities who previously expressed an interest in NSF's Section 106 process, but who became inactive and/or demonstrated an apparent lack of interest in participating further in the process. A Public Notice announcing the August 27, 2008 consultation meetings was published in the Maui News, the Honolulu Advertiser, and the Honolulu Star Bulletin on August 24, 2008 (Fig. 5- 18). A meeting facilitator and a court reporter were present at the meeting on August 27, 2008. The transcripts for both meetings and the notes of the facilitator were posted on the

ATST Project website. The transcripts for both meetings can be found in Vol. III, Appendix C(5) and C(6) of this FEIS.

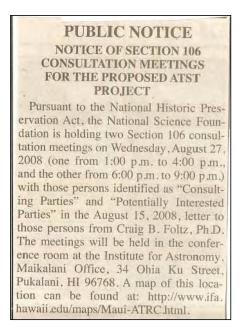


Figure 5-18. Section 106 Meeting Notification, Public Notice: Maui News, Honolulu Advertiser, Honolulu Star Bulletin, August 24, 2008.

Both meetings on August 27, 2008, were intended to provide opportunities for consulting parties to meet with NSF to discuss ways in which to address adverse effects to historic properties associated with the proposed ATST Project through avoidance, minimization, and mitigation. At the meetings, there were no suggestions provided by the consulting parties regarding ways in which to minimize or mitigate any adverse effects associated with the proposed ATST Project; most of the people present stated that they were against the proposed ATST Project and that they were in favor of avoiding the effects. NSF explained that, due to the scientific criteria required to build the proposed ATST Project, adverse effects resulting from the color, size, and location of the proposed Project could not be avoided unless NSF were to select the no-action alternative and issue a decision to not fund the proposed Project's construction.

An additional meeting was held on August 28, 2008, attended only by representatives of NSF, the ATST project team, the ACHP, HALE, and the SHPD, to discuss next steps in the process. It was agreed upon that NSF would host another consultation meeting to address potential effects to the Park road corridor once a road condition survey was completed. (As noted earlier, that survey was completed in January, 2009, by the FHWA, and the final report was issued on March 2, 2009, revised April 2009.) Due to the very small attendance of consulting parties at both the June and August 2008 consultation meetings, the NSF, ACHP, HALE, SHPD and ATST project team representatives discussed, again, ways in which to improve outreach efforts to include more participation by Native Hawaiians. That discussion continued up until the next formal consultation meetings were held, June 8, 9, and 10, 2009.

It should be noted that, as a cumulative result of the response to all Section 106 consultation meetings, the consulting party list comprised of agencies, Native Hawaiian organizations and individuals, and other interested individuals and community groups had grown from 64 in June 5, 2006 to 118 as of August 27, 2008.

HALE Newsletter – May 2009

The NPS published a Newsletter on behalf of NPS and NSF prior to the June Section 106 consultation meetings. The Newsletter contained information about HALE's participation in the EIS process and the proposed ATST Project's need for a Special Use Permit, information

about both the NEPA SDEIS Public Comment Hearings and the Section 106 consultation meetings held in June 2009. Also provided were articles about mitigation (including a discussion about what is meant by a "community benefits package"), the HALE road, the project status, as well as contact information for both NSF and HALE. The newsletter was sent to all Section 106 consulting parties and was posted to the ATST and NPS websites.

Formal Consultation Meetings – June 8, 9, and 10, 2009

Consultation meetings to solicit public input under Section 106 of the NHPA were held jointly by the NSF and HALE at the Kula Community Center (June 8th), the Ha'iku Community Center (June 9th), and at Maui Community College (June 10th). The consulting parties and members of the interested public were invited to participate in these meetings to provide feedback and comments regarding the APE, the identification and evaluation of cultural, historic and archeological resources, and measures to avoid, minimize, and/or mitigate potential adverse impacts to these resources. Identical Public Notices were published over a three week period in the Maui News, the Honolulu Advertiser, and the Honolulu Star Bulletin newspapers. Pursuant to a prior agreement with NSF, HALE also provided information for public service announcements through local radio stations. Each meeting was conducted by a meeting facilitator.

At the meetings, many of the consulting parties present expressed their position that the mountain is sacred and that spirituality cannot be mitigated. Those people and entities favored avoiding adverse effects through exercising a decision not to fund the proposed ATST Project. Several others voiced their position in favor of the proposed project. They acknowledged the cultural significance of the mountain, but specifically advocated for the inclusion of an educational program designed to address the intersection between Native Hawaiian culture and science as a mitigation measure. An additional group of consulting parties recognized the cultural significance of the mountain, but argued that adverse effects could be mitigated through a workforce development program. One individual recommended a mitigation measure that would require NSF to acquire a piece of private property on which significant cultural sites are known to be located.

As of the publication of this FEIS, the Section 106 meeting notes being prepared by HALE were not finalized, and, thus, they could not be included as an appendix. As soon as the notes are finalized, they will be posted to the ATST website. The meeting facilitator's notes, however, were posted to the ATST project website and are included in Vol. IV, Appendix D.

Before, during, and after the June 2009 meetings, NSF received many letters from consulting parties suggesting mitigation measures. Nearly all of those letters included support for mitigating the adverse effects to cultural resources through an educational program designed to address the intersection between Native Hawaiian culture and science. Many of those letters also suggested that the adverse effects can be mitigated through a workforce development plan. Among several other items suggested for mitigation, the Maui Native Hawaiian Chamber of Commerce advocated for "a well thought out and culturally attractive representation via artwork such as carvings of Maui and the Sun as well as any other appropriate scenes" which are to be included on the observatory exterior. All of these letters were posted to the ATST project website.

At the conclusion of the June 2009 consultation meetings, the consulting party list had grown to over 130 (Table 5-14).

Table 5-14. Section	106 Consultation	List as of June 2009.
---------------------	------------------	-----------------------

1	Advisory Council on Historic Preservation, Office of Federal Agency Programs
	Martha Catlin, Program Analyst
2	Aha Ali'i O Kapu'aiwa O Kamehameha V, Ali'i Sir and Grand Master Clifford Hashimoto
3	Central Maui Hawaiian Civic Club, Leone Purugganan
4	Clare Apana
5	Thomas Cannon
6	Joyclynn Costa
7	County of Maui, Dept. of Planning, Jeff Hunt, Director
8	County of Maui, Council Member Sol Kaho'ohalahala
9	County of Maui Cultural Resource Commission, Sam Kalalau III, Chairperson
10	Jamie Fernandez
11	Haleakalā National Park, Sarah Creachbaum, Superintendent
12	Historic Hawai'i Foundation, Kiersten Faulkner, AICP, Executive Director
13	Mikahala Helm
14	Liana Horovitz
15	International Brotherhood of Electrical Workers Local Union 1186
	Brian Lee, Research & Communications Director
16	Brian Jenkins, President, Friends of Polipoli
17	Daniel Kanahele
18	Shad Kane
19	Kathy Kaohu
20	Kilakila o Haleakalā, Ki'ope Raymond, President
21	Thomas F. King, Ph.D.
22	Laborers' International Union of North America, Local 368
	Al Lardizabal, Director Government Relations
23	Laborers' International Union of North America, Local 368
	George Aikala, Maui Field Representative/Organizer
24	Judy Mancini
25	Maui Community College, Chancellor Clyde Sakamoto
26	Maui Community College, Vice-Chancellor Suzette Robinson
27	Maui Community College, Kaleikoa Ka'eo
28	Maui Economic Development Board, Jeanne Unemori Skog, President and CEO
29	Maui Hotel & Lodging Association, Carol Reimann, Executive Director
30	Maui Native Hawaiian Chamber of Commerce, Howard S. Kihune, President
31	Kahu Charles Maxwell
32	Mike Minn, President, The Kipahulu Ohana
33	Ohua Morando
34	Na Kupuna O Maui, Patty Nishiyama
35	Verna Nahulu
36	National Parks Conservation Association, Pacific Regional Office, Kari Kiser
37	National Solar Observatory, Steve Keil, Ph.D., Director,
	National Solar Observatory and ATST Project Director

Table 5-14. Sec	tion 106 Consul	ltation List as of Ju	ine 2009 (cont.).
-----------------	-----------------	-----------------------	-------------------

38 39 40 41 42	Office of Hawaiian Affairs, Clyde N		lizabeth S. Merritt, Deputy General Counsel			
40 41						
41		Office of Hawaiian Affairs, Clyde Namu o, Administrator Office of Hawaiian Affairs, Thelma Shimaoka, Community Resource Coordinator				
	Melissa Prince	Siiiiia	oka, Community Resource Coordinator			
42	Ki'ope Raymond					
43		Sir W	/illiam Garcia, Jr., CK, Office of the Ku'auhau Nui			
43						
	Royal Order of Kamehameha I, Ali'i					
45	Royal Order of Kamehameha I, Kah	u Po o	IKI Clarence Solomon			
	Leiohu Ryder					
47	Warren Shibuya	D 4	· • • • • • • • •			
48	State Historic Preservation Division,					
49	State Historic Preservation Division,					
	Archaeology and Historic Preservation					
50	State Historic Preservation Division,					
51	State Historic Preservation Division,					
52			Thielen, State Historic Preservation Officer			
53			l Burial Council, Kahu Charles Maxwell			
54			omy, Michael Maberry, Assistant Director			
55	U. S. Dept. of the Interior, Office of					
	Office of the Secretary, Pacific West					
	Patricia Sanderson Port, Regional Er	nvironi				
56	Cliff Pali Ahue	80	Margaret Karratti			
57	Foster Ampong	81	Alesa, Buzzy, and Robyn Kneubuhl			
59	Paulette "Leihua" Ampong	82	Gordon Lee			
60	Gordean Bailey	83	Attwood M. Makanani			
61	Chris Baker	84	Ane Miller			
62	Christy Barnard Ki`inani o`Kalani	85	Chuck and Terry Miller			
63	Ron Bass	86	Sincerity Mirkovich			
64	Rose Boteilho	87	Heather Ku`ulei Makamae Murray			
65	Mary Frances M. Bulawan	88	Maile Orme			
66	Bernard Bulawan, Sr.	89	Jeanne Rabold			
67	April Chock	90	Lena Rasmussen			
68	Kaulana Delapinia	91	Rina Sampson			
69	Dylan Edwards	92	David Kea Subiono			
70	Aaron and Fausto Escobar, Jr.	93	Leimomi Thongtrakul			
71	Sheila Gerard	94	Jacquelynn Thyne			
72	Lehua Gibson	95	Jamie Moanikeala Whittle-Wagner			
73	Heather Heintz	96	Annette Wong			
74	Lui Hokoana	97	Kerry Wong			
	Lei Ishikawa	98	Newton and Jodean Wong			
76	Kristen Ka`auwai	99	Roselle Bailey			
77	DeAnn Kaina 100 Ka Imi Na'auao 'O Hawai'i Nei					
78	Beverly-Ann Kanoa100Ka Inii Na adao O Hawai i Nei101Lee Ann DeLima, Headmaster, Kamehameha Schools					
79	Uilani and Keeaumoku Kapu101Lee Ann DeLinia, Headinaster, Kamenamena SchoolsUilani and Keeaumoku Kapu102Rose Marie Duey, Alu Like, Inc.					

Table 5-14	. Section	106 C	onsultation	List as	of June	2009 (cont.).
------------	-----------	-------	-------------	---------	---------	---------------

103	Blossom Feiteira, Hui Kako'o 'Aina Ho'opulapula and Na Po'e Kokua					
104		tu, Hui of Hawaiians				
105	Lei Ishikawa, Na Le					
106		Hawaiian Homes Waiehu I				
107	,	Hawaiian Educational Cou				
108			Grants Review Advisory Com	mittee		
109			ad Community Association			
110	Dept. of Hawaiian H					
111		een Liliuokalani Children's	s Center			
112	Kili Namauu, Punan					
113		eokea Hawaiian Homes				
114		o O Na Loko I'a O Maui				
115	0		gram Coordinator, Maui Com	munity College		
116	Joann Ridao, Lokah					
117	Patrick Ryan, Fishpo					
118	,	Kamehameha Schools Alu				
119		an Community Assets, Inc.				
120		ollege – Kuʻina Program				
121	Thomas T. Shirai, Jr	., Kawaihapai Ohana				
122	Hui Kakoʻo 'Aina H	loʻopulapula				
123	Hawai'i Maoli					
124	Royal Hawaiian Aca	ademy of Traditional Arts				
125	Na Ku'auhau'o Kah	iwakaneikopolei				
126	Malu'ohai Residents	s Association, Ms. Shirley S	S. Swinney			
127	The Friends Of 'Iola	nni Palace, Kippen de lba C	hu			
128	Kathy McDuff, Sier					
129	Hawaiian Civic Clul	b of Hilo, Mr. Arthur Hoke				
130	Papa Ola Lokahi					
131	Kanu o ke 'Aina Lea	arning 'Ohana, Ms. Taffi W	Vise			
132	The I Mua Group					
133	Council for Native H	Hawaiian Advancement				
134		Haleakalā Nationa	al Park Kupuna Groups	-		
	hulu Kupuna Group		Summit Kupuna Group			
	ander & Angie Aina		Charlie Aki	Lyons Naone		
	Shelia Agnitsch Eddie Pu		Gordean Bailey	Francis Poouahi		
	ord Hashimoto	Caroline	Robert Garcia	Leone Pugrugganan		
	enry Sr. & Annie Smith		Dana Hall	William Roback		
	hula-Rahl Nani Smith		Clifford Hashimoto	Leiohu Ryder		
	and Kanuha Angela Tavares		Kaleikoa Ka'eo	Maano Smith		
	Ed Lincoln Sam Ka'ai Kalei Tsuha					
	aisy Lind George Kahoʻohanohano John Belles					
	Weetie Lind Geraldine Kaiwi Ki'ope Raymond					
	Sharon Mynar Les Kuloloio Makaala Yates					
	Lyons Naone Florence Lani					
	Ida & Raymond Oliveria Charlie Lindsey					
Valer	Valerie Park Charles Maxwell, Sr.					

5.2.2 Addressing Adverse Effects

Mitigation for resolving adverse effects is described in Section 4.2-Cultural, Historic, and Archeological Resources. Following the June 2009 consultation meetings and the close of the public comment period, NSF considered which proposals for minimization and mitigation were feasible and within NSF's authority to adopt. All proposals for minimization and mitigation from interested groups and individuals have been and continue to be considered and several have been incorporated into both this FEIS and a draft PA that is currently under review by all consulting parties.

Written proposals for mitigating adverse effects were submitted during the consultation processes between 2006 and 2009, as follows:

- Figure 5-19 Mr. Warren Shibuya
- Figure 5-20 Maui Community College
- Figure 5-21 International Brotherhood of Electrical workers Local 1186
- Figure 5-22 Maui Hotel & Lodging Association
- Figure 5-23 Maui Native Hawaiian Chamber of Commerce
- Figure 5-24 Laborers International Union of North America, Local 368
- Figure 5-25 Aha Ali'i O Kapu'aiwa O Kamehameha V,
 - Ali'i Sir and Grand Master Clifford Hashimoto
- Figure 5-26 Hawai'i Carpenter's Union
- Figure 5-27 Maui Economic Development Board, Inc.
- Figure 5-28Office of Hawaiian Affairs

The mitigation proposal submitted by Kahu Charles Maxwell, Sr. on March 28, 2006 was formally withdrawn at the NHPA Section 106 Consultation Meeting held at Maui Community College on June 10, 2009.)

The Maui Community College proposal and subsequent new proposals from the June 2009 meetings appears to be consistent with proposed mitigation received in September 2005 from OHA (OHA, 2005). Specifically, a letter was received from Mr. Clyde Nāmu'o, OHA Administrator, which acknowledges that the HO "may be used for educational purposes and for the betterment of Hawaiians" and states, in pertinent part,

"OHA therefore requests that should the proposed project go forward, part of the project include a guarantee of training and education for Hawaiians, perhaps through the Maui Community College, University of Hawai'i Institute of Astronomy, to allow them the opportunity to gain jobs at the Haleakalā High Altitude Observatories site."

Testimony on Advance Technology Solar Telescope proposed to be housed on UH Institute of Astromony, Haleakala High Altitude Observatories, Haleakala, Maui.

Good evening members of this panel and audience. I am Warren Shibuya. I am a returning Maui resident after retiring from the Space & Missile Systems Center in El Segundo, California. Mahalo for allowing me to present my testimony.

I support basic and applied research and proposed housing of Advanced Technology Solar Telescope (ATST) systems, a project within the 18.166-acre University of Hawaii Institute for Astronomy (IfA), Haleakala High Altitude Observatories (HO) site at the summit of Mt. Haleakala, Maui, Hawaii.

I ask you and all project members to behave respectfully and malama mau ka lá a, preserve the sacredness of Haleakala, specifically the summit area. Proper cultural respect should be demonstrated by ATST project and other projects housed at Haleakala High Altitude Observatories site, especially while sharing very sacred summit grounds.

As you well know, Haleakala is home to all 40,000 Hawaiian gods and goddesses. Haleakala is spiritual power and home of inspired Hawaiian beliefs, besides being physically inspiring. Haleakala's summit, or Kolekole, is near wao akua, a level of earth stratosphere where gods and goddesses are believed to reside and culturally guide everyday living. Ala Hea Ka La, "the path to calling the sun," presents basic rhythms of night and day and establishes the sun being source of life for Kanaka Maoli, Hawaiians, and citizens of Maui and Hawaii.

In ancient days, Kolekole was site where Kahuna Pó o, High Priests, consulted with gods and goddesses to answer difficult questions and delve tough issues. Astronomy, aerospace and solar study efforts at Kolekole should be respectful of wao akua, sacred area above the summit and lava, the essence of Goddess Pele, despite her current home at Kilauea caldera. Special care should be exercised in digging, saving lava and restoring earlier pù u, hills and wahi pana, and minimizing invading airspace, all Sacred places.

To demonstrate proper respect, let us all do it right, as kapó e kahiko, or ancient people respected and admired Kolekole. Recommend Institute for Astronomy immediately remove intrusive, unused or excess facilities; poles, antenna, lines, signs and roads; immediately begin respectfully restoring Kolekole to it's ancient topology and it's historic

 $\ ATST-HI/3/27/2006//$ Page 1 of 2.

Testimony on Advance Technology Solar Telescope proposed to be housed on UH Institute of Astromony, Haleakala High Altitude Observatories, Haleakala, Maui.

and highly sacred configuration. Further, rename summit roadways to more appropriate kapó e kahiko names, thus demonstrating sacred wahi pana, respect of Kolekole.

Today, ATST nobly seeks to observe and carefully study turbulent forces of our Sun, which affects life on Earth from a sacred site. As mentioned, Kolekole wahi pana was used by Kahuna Pó o, High Priests, who consulted with gods and goddesses to answer difficult questions, delve and resolve tough issues. Today, inaddition to consulting gods and goddesses and accommodating visitors, the scientific community is permitted to seek answers to heavenly questions through use of high technology telescopes and systems, computerized instruments, all housed in large structures. As Kahuna Pó o shared gained insights with Maui residents, I ask ATST technology and other Haleakala IfA investigations and gained knowledge be regularly shared with host Maui and Hawaii State's people, to include keiki, kapuna, Kamaaina and malama aina groups.

Shared knowledge and expressions of appreciation be given to Mauians, such as support for Hawaiian education, culture, arts, soveign rights and law, language programs and scholarships to pursue learning at higher institutes, centers and universities. Of course, Mauians should be employed with all projects on Haleakala.

I remind you and other agencies operating in sacred wahi pana of Demi God Maui and other gods and goddesses, that your viewing or looking through Wao Akua, where gods reside, is invasive and not polite etiquette or behavior of a guest. Peeping through a neighbor's home is privacy-invasive and by our laws could be a misdemeanor crime.

Western culture dictates, "It is most proper for a guest visiting a home, to express appreciation to the host with fists filled with gifts." In no case should guests visit with closed fists, especially when visiting the sacred "House of the Sun." I am embarrassed to remind you of proper etiquette. I truly trust you know and will do the right things to demonstrate your most honored respect of the host's customs and beliefs. Maui kanaka maoli and kamaaina should not need to tell terms to you more succinctly and emphatically.

I am no expert on Hawaii's culture, but simple analogies mentioned should be more than adequate for respectful understanding and behavior of Hawaiian and visiting non-Hawaiian members. Hawaiian culture is founded on love and respect for each other,

\\WARREN\\ATST-HI/3/27/2006// Page 2 of 2.

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 2.

Testimony on Advance Technology Solar Telescope proposed to be housed on UH Institute of Astromony, Haleakala High Altitude Observatories, Haleakala, Maui.

family ohana, the aina which provides life sustenance, the importance of the sun and the deep felt reverence for wao akua.

Mahalo for allowing me to express my support for scientific pursuits for knowledge, expressing my thoughts and trust you and other visiting agencies will demonstrate your appreciation to Maui's citizens.

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 3.

TESTIMONY: Advanced Technology Solar Telescope Project for Haleakala Summit, 27 August 2008.

Aloha members of National Science Foundation, National Solar Observatory, University of Hawaii Institute for Astronomy, KC Environmental, Inc., and fellow Maui residents.

Mahalo for this opportunity to testify on the Advanced Technology Solar Telescope (ATST) project proposed for sighting on the summit of Haleakala Mt, Maui. I am Warren Shibuya, a retired employee of the Space & Missile Systems Center.

I listened carefully to numerous testimonies and testified on the sacred grounds and worked with representatives of the National Science Foundation (NSF), National Solar Observatories (NSO), UH Institute for Astronomy (UH IfA), Maui Community College, KC Environmental, Inc. and various groups to reach a workable arrangement amongst various very valid community interests and concerns, as reflected in ATST EIS.

I am encouraged to believe a working agreement can be attained, based on mutual respect and trust. I do not represent any interest group or agency. I am a Maui resident who worked in leading edge technology for most of my 32 working and learning years. I want Maui and Hawaii residents having a similar window of opportunity to invest and develop their lives in a new industry in Hawaii; knowledge-based on studies of science, technologies, engineering, math, English, law and Man's cultures.

The sacredness of Haleakala summit can be respected and shared for a while. Kahuna Po'o, High Priests consult with gods and goddesses seeking answers on difficult and tough issues at Kolekole, so should solar scientists seeking answers on an important heavenly body, our sun. Basic knowledge on our sun, obtained by scientists will be shared openly with residents, visitors and the world!

Further, if ATST project permitted to study and share information at Haleakala, the ATST project will be for four sun-cycles. At conclusion of study, all ATST facilities and structures removed and Pu'u restored. This is a landmark project contract, first to be initiated anywhere on Earth! This is an awesome precedence, demonstrating significant project respect and working together, sharing and maintaining sacred Kolekole, together seeking answers on difficult issues and understanding our life-giving sun.

Remember today, everyone, including Kahuna Po'o and Kanaka Maoli, residents and visitors visit Haleakala Summit, except for set-aside areas. Each respectfully observing in their caring way Ala Hea Ka La, "the path to calling the sun."

Other features in proposed ATST project include the following agencies NSF, NSO, UH IfA, State, Maui Community College contributing to workforce development programs on Maui developing workers to work with the ATST project. This workforce development program exceeds OJT (on-job-training) to include funds supporting studies of mathematics, physical and gaseous sciences, solar physics, thermo and plasma dynamics, engineering, and Hawaiian Culture. I want MCC establishing a 4-year University of Hawaii College of Sciences, Technology and Engineering on Maui, emphasizing the close partnership with ATST project, NSF, NSO and UH IfA. This is a rare opportunity to mentor and bootstrap interested and talented students into solar sciences and engineering.

//WARREN\\Shibuya mitigation proposal 08-27-08//27Aug08\\

1

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 4.

TESTIMONY: Advanced Technology Solar Telescope Project for Haleakala Summit, 27 August 2008.

Unfortunately, current state-of-the-art technology limits studies of our sun from Earthbound or a ground observatory. Perhaps, through ATST project's four sun-cycle studies, advanced developments in engineering and space technology could lead to a space-based solar observing platform. NSF and NSO thoroughly researched world sites and Haleakala is the best site to support such an expensive and 'glass breaking' research project. I feel solar breakthrough knowledge will result from proposed ATST project!

As initially suggested by Uncle Charlie K. Maxwell, I support ATST project helping establish a Maui Solar and Hawaiian Culture Center, featuring staff, multimedia facilities and systems to share information, educate and ignite passions and encourage Maui students getting needed skills and seek ATST employment. This cultural center informs Hawaiian Polynesian Culture through programs. This Center would display and explain on-line solar images and solar disturbances and relate associated impacts on Earth and satellite communications, our Earth environment and even Astronauts in space. The Center would present customized curriculum or presentations for residents, students, educators and visitors. Maui Solar and Cultural Center would proudly integrate ancient Polynesian navigational skills, share Ohana concept, and Malama Aina skills, accomplishments and beliefs.

ATST project adopting in written contract, a "Sunset" for all ATST structures and program at Kolekole is respectful. This precedent setting "Sunset clause" directs removal of ATST structures and restoring used summit grounds to original Sacred configuration. This respectful concept is resulting in UH Institute for Astronomy discussing plans to remove historical radio telescope structure, used in early 1950's by UH Professor Dr. Grote Reber and working toward renaming service roadways and facilities with Hawaiian designations or names currently posted at the Haleakala Summit.

From 2005, I continue supporting implementing the Advanced Technology Solar Telescope project at the Haleakala Summit and ATST concluding following four suncycles. I support this rare opportunity for Maui residents learning first-hand and gaining knowledge while growing with this leading edge, basic scientific and engineering research project. I look forward getting more knowledge on our sun for our following generations!

Mahalo for your patience, understanding and support!

Mahalo nui loa. Warren S. Shibuya 35 Kulamanu Circle, Kula Maui, HI 96790-8273

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 5.

2009 Testimony Supporting Advanced Technology Solar Telescope Project

Aloha decision makers for National Science Foundation and National Solar Observatory. I urge your approving the proposed Advanced Technology Solar Telescope (ATST) Project for the Summit of Haleakala, situated on Island of Maui, Hawaii. The ATST Project could be approved considering the following historical facts and proposed mitigations.

I am not a lawyer, but through my readings, I conclude, Kanaka Maoli holdings of Haleakala Summit land is valid. This Sacred Land was illegally obtained from a rightful Sovereign Nation, during the reign of an internationally recognized Monarch. On January 17, 1893, the illegally imprisoned Queen Lili'uokalani was deposed by an illegal entity composed of non-Native US military, overzealous politicians and ambitious businessmen.

As predominant fact, the US government lacks any land documentation confirming federal and State Land Titles. US government cannot demonstrate proper transfer of Monarchy lands, either through a Title of Dominium, a mutually agreed foreign land transfer, or any treaty. The closest US Government owning (taking) of Sovereign lands of the Hawaii Nation was implied through a joint Congressional Resolution, lacking US Law or Statute status!

Proposed site of ATST Project is based on an Executive Order executed by a questionable US government appointed Governor to the Territory of Hawaii. Executive Order permits University of Hawaii Institute for Astronomy (UH IfA) use of 18.166 Summit acres for astronomy and scientific research.

King Kamehameha III supported and encouraged the infusion of Western science, English language and religions for public good. Use of Hawaiian Lands promoting Public Good and Benefit goals are employed practice today, despite the initial taking of a foreign Nation's lands resulted from illegal acts.

Today, Summit includes UH IfA and adjacent lands hosting the Haleakala National Park, roadway improvements and facilities. Kanaka Maoli are permitted using Sacred Lands to perform Cultural practices and worship at the Summit, where 'wao akua,' a level of Earth stratosphere resides all 40,000 Hawaiian Gods and Goddesses are believed to reside and Culturally guide Kanaka Maoli decisions relating to everyday living. Vehicles commute on Haleakala National Park roadways to access Park sites and UH IfA facilities, today's land housing astronomy and space surveillance facilities.

"Examination of the historic events will find evidence to support both arguments, albeit the evidence is largely writings by opposing sides expressing their version of the events."

"Eyewitnesses to history can have divergent views. Those who prevail in achieving power usually get to promote their version, but history has a way of proceeding, whatever interpretation might be placed on it." (Edwin Tanji, "Haku Mo'olelo," Maui News, 19 June 2009)

Legislating corrective actions today will be difficult, adversely impact land entitlements and transactions and complicate achieving justice on issues; solutions seem lacking of any equitable resolution. Absent resolving rightful ownership, I am hoping for temporarily shared land uses and all parties sharing in benefits through various mitigations, not limited to the following six requested mitigations.

First mitigation point. The UH IfA has been exceptionally sensitive and responsible land stewards for Kanaka Maoli, respectfully accommodating their Cultural and worshipping

//Warren\\20090622-WShibuya//22June2009ws

1

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 6.

2009 Testimony Supporting Advanced Technology Solar Telescope Project

needs. The UH IfA removed unused towers, buildings, cesspools, fencing, antennas, microwave dishes, parking lots and hundreds of yards of cable resulting from earlier scientific projects and public communications. As requested, the UH IfA is taking steps renaming roadways to Hawaiian nomenclature. Incorporating landmark ATST Project's "Sunset Clause" is consistent with patiently co-existing in harmony, using Sacred Lands for respectful mutual practices and shared benefits.

The UH IfA recently received permission to remove historical Reber Circle, a concrete and rock platform used for 1950's radio telescope studies. After removing this platform, as an additional accommodation, the site may be restored with much of ATST surcharge as available to "a reasonable simulation" of pu'u (hill) landform appearance (Ref p39, Appendix F, Cultural Evaluation).

Following Cultural protocol E Malama Mau Ka La'a (Preserve the Sacredness) two ahus were constructed and dedicated. Hinala'anui, West facing ahu is Hina of immense Sacredness, July 17, 2005. The second ahu is Pa'ele Ku Ai I Ka Moku, East facing ahu refers to Pi'ilani's warriors, literally meaning to acquire the island (Ref pp43-45, Appendix F, Cultural Resource Evaluation).

Second mitigation is ATST's minimal size totaling 21,605 sqft footprint on Sacred grounds. Proposed ATST facilities would use less than 2.7% of the total 18.166 acres for UH IfA and use less than 50% as much land as the Maui Space Surveillance System (MSSS) facilities, the largest user on approximately 44,304 sqft. Co-locating proposed ATST facility adjacent to the Mees Observatory facility shares approximately 20% of the ATST Utility Building's generator, domestic water distribution system and possibly a small amount of chilled water and instrument utility systems. The footprint of ATST is small and comparatively smaller than the 57,000 sqft currently configured to manage UH IfA storm water.

The third group of mitigations are technology and site selection related. The visual height and color of ATST reflect today's technical limitations. Perhaps during proposed 50-year contract, technical reassessment could result in materials breakthroughs permitting higher cooling efficiencies and reduced thermal turbulence. Isolating ATST project at least 2,500 miles from populated cities and natural air pollutions adds to image clarity, minimal distortion, visual-acuity and limited vehicular traffic near telescope are strong values of the Maui's site.

The fourth mitigation is developing and constructing a Cultural and Solar Science Institute, similar to earlier proposed "E Malama Mau Ka La'a," *Preserve the Sacredness*. If initial submitter withdraws this proposal, I propose this mitigation, whereby NSF, NSO and international ATST users assist establishing an institute showcasing the Hawaiian Culture, Values and astronomy and global sailing skills section, flanked with building wings featuring Astronomy and Solar Science (ATST live, near real-time telescope data fed images). Architectural center features a statue of Demi God Maui capturing the Sun at Halekala Summit, surrounded with displays and interactive systems educating on Hawaiian Culture, Values, proud achievements, historical photographs of Hawaiian Monarchs and leaders and the "Ahupua'a" land managing concept. Value of the institute is two-fold:

1) Connects significance of the Sun with Demi-God Maui and today's Maui shared studying of our Sun, linking to Cultural practices and values and

//Warren\\20090622-WShibuya//22June2009ws

2

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 7.

2) Permits educating residents and visitors on the Sun, dynamic forces impacting Earth and study of our Sun relating to Cosmology theories and Astronomy.

The fifth mitigation is providing educational aid promoting Science, Technology, Engineering and Mathematics (STEM) curriculum and staff, in addition to employing and providing on-the-job training and staff development trainings to Native and local employees. This ensures Maui and Hawaii students develop aspirations and have an opportunity working with leading edge research and learning and understanding the Sun and its energy impacts. I hope their opportunities with Sun studies leads to their contributing and benefiting from technology spin-offs.

The sixth and final mitigation relates to why Kanaka Maoli are staunchly opposed to this and other US agency proposed initiatives. Historically, the US government and their representatives lacked integrity, especially with Native residents. The Creek Indians who bravely and loyally supported General Jackson's army in defeating the British and Spaniards were ordered by President elected Jackson to give-up their Native Lands and "move to lands West of the Mississippi" after Native Lands comprising today's Mississippi, Alabama and Florida were federated into the US! Today, Natives see Jackson's image on US \$20 bill, an insulting example of US "double-crossing" and lack of respect for Natives!

Developing Kanaka Maoli trust with guaranteed sharing of Sun knowledge, good project jobs and keiki generational opportunities through firm documented contracts, continued demonstrated good will of the US government and international agencies, and locally managed escrow for employing and removing the ATST facilities per Sunset Clause. Fiscal interests earned or generated from the ATST-escrow account could fund various mentioned mitigation investments.

Mahalo to National Science Foundation, National Solar Observatory, University of Hawaii Institute for Astronomy and State of Hawaii for studying project impacts and minimizing Cultural and environmental impacts to constructing and operating the Advanced Technology Solar Telescope Project at the Summit of Haleakala.

Respectfully submitted,

Warren S. Shibuya 22 June 2009

Retired 2002, Space & Missile Systems Center

Maui County Volunteer: Vice Chairman, Board of Variance & Appeals (2004-2009); Member, General Plan Advisory Committee (2006-2009); Member Renewable Energy Working Group (2007-2009); Member, Maui Planning Commission (2009-2014); and helps Auwahi Restoration (restores high-elevation ancient native forests 2003-2009) and provides free designing of photovoltaic systems (convert radiant energy to electricity 2004-2009, systems producing power on four major islands).

//Warren\\20090622-WShibuya//22June2009ws

3

Figure 5-19. Proposal Submitted by Warren Shibuya, Page 8.

University of Hawai'i MAUI COMMUNITY COLLEGE Office of the Chancellor May 14, 2007 Dr. Charlie Fein P.O. Box 1208 Makawao, HI 96768 Dear Dr. Fein: In the interest of the possibility of the Advanced Technology Solar Telescope materializing, we are submitting a mitigation proposal on behalf of the interest of the future of Native Hawaiians. The proposal addresses their historical and continuing relationship with Haleakala and the substantial career development opportunities that will integrate and fully appreciate the potential positive outcomes between science and culture. Should you have any questions please feel free to contact me on behalf of the Native Hawaiian interest in fulfilling careers in science and technology that may be connected to Haleakala. Sincerely, Clyde M. Sakamoto Chancellor 310 W. Ka'ahumanu Avenue, Kahului, HI 96732-1617 Telephone: (808) 984-3636, Facsimile: (808) 984-3546, http://mauicc.hawaii.edu An Equal Opportunity/Affirmative Action Institution

Figure 5-20. Proposal Submitted by Maui Community College, Page 1.

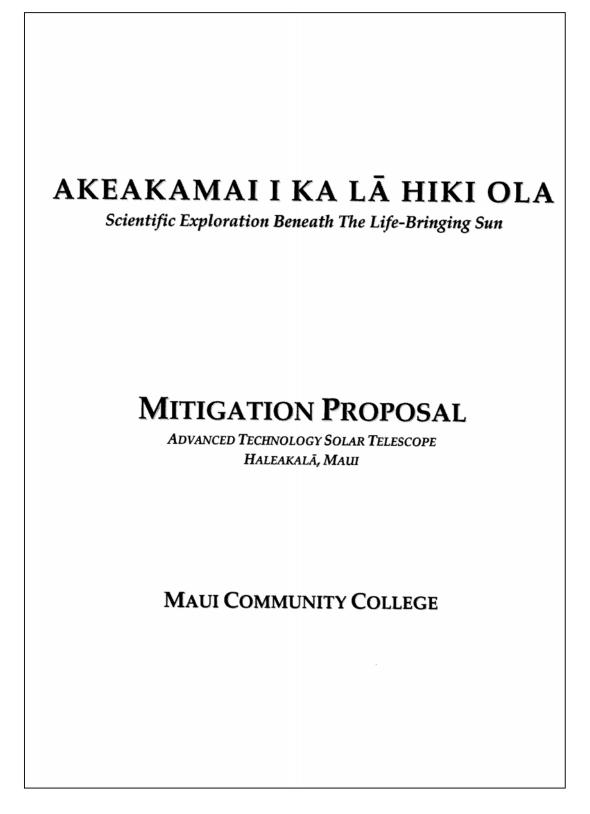


Figure 5-20. Proposal Submitted by Maui Community College, Page 2.

PROJECT OVERVIEW

Maui Community College (MCC), in Kahului, Hawai'i, is presenting a mitigation proposal in response to the National Science Foundation's (NFS) application to erect the Advanced Technology Solar Telescope (ATST) upon the summit of Haleakalā. With the submission of this draft plan, MCC offers to mitigate the hurtful and harmful impacts troubling the Native Hawaiian community in respect to the NSF's request to construct and manage the ATST.

We propose to request funding to establish *Akeakamai I Ka Lā Hiki Ola* (AIK) as a mitigation initiative. The main goal of AIK will be to improve the achievement success of Native Hawaiians in math and science. Thus, the outcome will be an improvement in the social and economic well being of Native Hawaiians. In essence, AIK will endeavor to raise the academic success of Native Hawaiians in Science, Technology, Engineering, and Math (STEM) whereby growing workforce advancement and job opportunities for Native Hawaiians in high-technology trades and industry.

AIK will enhance the institutional, instructional, and curriculum effectiveness in serving the Native Hawaiian Community via the integration of the most up-todate technology, pedagogy, and research into classrooms. In addition to the curriculum, STEM teachers will be offered the chance to receive proper training to implement this dynamic and innovative teaching initiative.

Another facet of this program will be to offer culturally responsive student cohorts—model to complement the Native Hawaiian students' values and responsibilities—as a means to elevate the retention and achievement rates of Native Hawaiians in STEM programs at MCC. Additionally, AIK will strive to strengthen MCC's existing partnerships with the Native Hawaiian Community, Private Industry, and the Public Sector in teaming up with students to assist them in increasing their workforce potential and job placement.

To advance the feasibility of this collaboration, more resources than may be available from one or another source may be required. A ten-year period would be the time within which a generation of young Native Hawaiians would have experienced the full cycle of the proposed development. In addition to a National Science Foundation leadership investment, other public and private resources would be collaboratively approached. The intent of this exploration is

Figure 5-20. Proposal Submitted by Maui Community College, Page 3.

to characterize the overall architecture of a future that must be cooperatively designed.

BACKGROUND

The intention of this mitigation proposal is to explore the potential for mitigating the impact of the proposed ATST on Haleakalā. As the history and record of testimony of Haleakalā as a holy site and a *wahi pana*, or celebrated, noted, or legendary place, of the Native Hawaiian people are recognized and can be further detailed in a subsequent submission, this exploration attempts to present an opportunity to uncover support for a new relationship between the celestial, solar, astrophysical and other scientific and technological fields of knowledge and the depths of the Native Hawaiian cultural, spiritual, and historical resources to restore a more appropriate balance between science and the host Native Hawaiian culture.

This overture recognizes the reality of Haleakalā having been historically ignored as a significant and cherished spiritual icon in Hawaii. It additionally acknowledges that while there have been initiatives correct this desecration, the opportunity to elevate the contribution and importance of the Hawaiian culture and people in forging a constructive and leadership role in pursuing the cultural and scientific knowledge afforded by the Haleakalā site has never before materialized, been supported or seriously considered. The basis for this attempt acknowledges the limitations of past discussions and experiences. This exploration seeks to understand the authenticity of a response to mitigate the impact of a physical and scientific presence atop the Haleakalā summit that would further compromise the spiritual integrity of the site.

This proposal stems from an underlying assumption of the value of the sun as a primary source of energy and life itself ... a recognition shared by our $k\bar{u}puna$ and scientist alike. Some of the principles offered for mutual consideration include:

- That the future impact of Haleakalā as a spiritual place will be irretrievably and irreversibly affected by a significant and obtrusive structure;
- That the further physical and spiritual intrusion on the summit could possibly diminish the relationship between science and the Hawaiian culture;

Figure 5-20. Proposal Submitted by Maui Community College, Page 4.

- That the promise of a potential initiative related to the Haleakala Summit that must accept the co—responsible roles of culture and science and prospect of significant contributions from each realm;
- That the balance between the place of the Hawaiian culture and science must be righted by the appropriate elevation of Native Hawaiians to leadership roles in the education, research, and interpretation roles of the future of Haleakala;
- That the process of preparing the next generation of Native Hawaiians must begin at all levels simultaneously but especially to build and restore the confidence and performance of Native Hawaiian elementary students in math and science through affording access to mentors who can provide meaningful contexts and curricula in math and science related to the work atop Haleakala;
- That the continuation of a strong foundation leverage the Hawaiian communities, schools, and college programs in the community to enlist all who may be committed and willing to support a vital cultural and scientific leadership role for Native Hawaiians and eventually other minorities as well who would adopt the principles, education and research that would sustain this initiative;
- That middle, high school, college bridge programs, internships, associate/bachelor/graduate degrees must be part of a long-term investment strategy that will require many partners, employers, political leaders, and all sectors of government and educational leadership;
- That existing partnerships among the UH Institute for Astronomy, Center for Adaptive Optics at UCSC, the Maui District Department of Education; Hawaii, Kauai, and Leeward Community Colleges; the Women in Technology Program; and the Polynesian Voyaging Society;
- That out of profound respect and appreciation for Kahu Charles Maxwell's leadership, that the education, training and research programs would seek to utilize his proposed facilities and expertise;
- That the value of the constructive inter-relationship between the Hawaiian culture and astronomy, astrophysics, adaptive optics/photonics and other sciences will return sustainable careers for the considerable investment and launch a more broadly supported important sector of the Maui Economy;
- That as UH-Maui Community College represents, at the moment, the largest adult and higher education facility on Maui; and that although all may not agree with this initiative, there is a sufficient cross-section among faculty, staff and administration who support the exploration of a project that may place Native Hawaiian students, faculty, staff, and ultimately

Figure 5-20. Proposal Submitted by Maui Community College, Page 5.

technicians and scientists at the forefront of leaders who would research and apply the findings of the ATST for the local, national and global benefit;

- That as the education, training, research, analysis, and interpretation related to Haleakala materialize with Native Hawaiian involvement and leadership that other scientific and technological alternatives (health, alternative energy, waste management, etc.) will emerge to offer Native Hawaiians and others in our community with opportunities and exemplary paths for success;
- That the complement of a science and technologically based curricula grounded in the context of a Hawaiian culture would be a teacher preparation initiative offering added career paths and addressing a local, statewide, and national need for science educators;
- That the prominence of the Native Hawaiian cultural influence on science will have a positive impact on other fields including the arts, social sciences, etc. to suggest other creative solutions that connect culture and discipline content with new possibilities and solutions;
- That this document is offered as a draft to invite insights and principles that would further strengthen the future for Native Hawaiians;
- And that finally, more than resources, a spirit of collaboration at higher level and a commitment to a broader purpose that will make a sustainable difference for Native Hawaiians and for the science of solar astronomy are the essence of this exploration.

GOALS

Goal 1. - Grow the capacity and number of Native Hawaiians majoring in Science, Technology, Engineering, and Math

Goal 2. - Increase the proficiency and skills of pre-college and post-secondary Native Hawaiian students in Science, Technology, Engineering, and Math

Goal 3. - Cultivate and reinforce the intersection of Hawaiian culture and knowledge with Science, Technology, Engineering, and Math courses, programs, certifications, and degrees.

Goal 4. - Expand the job opportunities of Native Hawaiians for employment in Science, Technology, Engineering, and Math related careers

Figure 5-20. Proposal Submitted by Maui Community College, Page 6.

METHODS

Activity I - Develop and implement an innovative Math and Science curriculum and program based on Hawaiian cultural knowledge and worldview.

A team of MCC instructors, educational specialists, scientists, engineers, and technical staff will collaborate to frame a specialized curriculum using the framework of Hawaii's distinctive physical environment, technological assets, and cultural heritage. An intersection of Hawaiian Studies, Science, and Math in the curriculum will promote academic success for Native Hawaiian students.

The activity will target the development of a pioneering Algebra I and Introduction to Physical Science. All curriculums will be bi-lingual—Hawaiian and English—and meeting the Hawaii Content Standards. Classroom testing and Teacher training workshops will be included.

Curriculum will be accessible to all via Internet. It will be multi-media based, disseminating from the AIK Website; text, PowerPoint, streaming, DVD, video, pod casting, and Poly COM video-conferencing.

Activity II - Build up relevant coursework and dedicated programs at Maui Community College

This activity will support the role that MCC plays to increase the success of Native Hawaiian students by establishing and expanding the offering of relevant STEM coursework and job opportunities.

AIK will expand MCC programs to increase specialized training, certification, & training opportunities. In addition, AIK will strive to improve MCC's A.A.S. STEM programs and its community and industry relationships. Also, AIK will expand academic opportunities for Native Hawaiians to earn B.S degrees in STEM and related career pathways at MCC.

AIK will labor to increase STEM majors and interest by offering for credit STEM courses in high schools. These courses will articulate for credit at MCC and hence attempt to increase the matriculation number of Native Hawaiians into STEM programs.

Figure 5-20. Proposal Submitted by Maui Community College, Page 7.

This activity will concentrate on building bridges into STEM careers by integrating Hawaiian Studies, Science, and Math. Programs may focus on; Cultural and Natural Resource Management, Biology, Environmental Restoration, Adaptive Optics, Engineering, and Astronomy.

Activity III – Significantly increase the number and retention of Native Hawaiian students in STEM courses and programs at Maui Community College

This activity will develop and administer cultural based student support services that will include the coordination and support for Native Hawaiian STEM student cohorts at MCC. This activity will endeavor to improve the achievement and retention rates of Native Hawaiian students in STEM programs at MCC.

Cohorts:

- High School Cohort
 - 40 Native Hawaiian students
 - Bridge Programs
- STEM Internships
 - 40 Native Hawaiian students
 - MCC/4-year/Advanced degrees
- STEM Cohort
 - 40 Native Hawaiian students
 - MCC/4-year/Advanced degrees
- Teacher Cohort
 - 40 awards
 - Teachers/instructors/professors

AIK will put together and manage a Hawaiian Science Lab to offer computer access, technology training, tutorial services, workshops, and to serve as the academic hub to supply meaningful academic support services to Native Hawaiian students.

Activity IV- Cultivate and develop an experienced, highly skilled, and wellfavored Native Hawaiian workforce for STEM related industries and careers.

This activity will focus on directing student internships, training, and skills so that they will successfully find employment in the high-technology industry on Maui. AIK will manage an internship program that will provide necessary

Figure 5-20. Proposal Submitted by Maui Community College, Page 8.

certification, training, and experience in order for students to gain field experience, job requirement, and skills to land highly desired internships.

AIK will establish and strengthen partnerships with high-tech industries in the public and private sector to open opportunities for internships, workforce practicum, and job placement.

BUDGET

	SUMMARY OF CATEGORIES	Budget Request
1	SALARIES	\$650,000.00
2	FRINGE BENEFITS	\$226,100.00
3	EQUIPMENT	\$165,000.00
4	TRAVEL	\$116,000.00
5	CONSUMABLE SUPPLIES	\$48,000.00
6	CONTRACTUAL SERVICE	\$225,000.00
7	OTHER DIRECT EXPENSES	\$87,500.00
8	TOTAL, DIRECT COSTS (1-7)	\$1,517,600.00
9	TOTAL, INDIRECT COSTS	\$414,305.00
10	PARTICIPANTS SUPPORT COSTS	\$560,000.00
	TOTAL: Fed. Funds Requested	\$2,491,905.00
	(8+9+10)	<i>φ</i> 2 / 1 /203.00

PERSONNEL

- Project Director
- Administration and Fiscal Support
- Academic Specialist
- Program Support Specialist
- Cohort Support Specialist
- Cohort Counselor

Figure 5-20. Proposal Submitted by Maui Community College, Page 9.

- Curriculum Specialist
- Hawaiian Studies Instructor
- Math Instructor
- Science Instructor
- Hawaiian Science Lab Coordinator

FUNDING

In order to successfully mitigate the ATST project, MCC proposes that <u>ten</u> <u>percent (10%) of all funds allocated and utilized in the construction and for the</u> <u>operation of the ATST</u> be set aside to generate an endowment to administer AIK at MCC. As such, we anticipate that a sum of \$ 250 million will be spent to construct and run the ATST. Using that figure, we propose that an estimated \$25 million should be allocated to MCC for the next 10 years. Thus, MCC is putting forward a budget of \$2.5 million for the initial year of the project.

PROPOSED PARTNERS

- Hui 'Ai Pōhaku (H'AP)
- The Pookela Project (PP)
- The Hookahua Project (HP)
- Leeward Haleakala Watershed Partnership (LHWP)
- University of Hawaii, Center for Hawaiian Studies (CHS)
- University of Hawaii, Hawaiian & Indo-Pacific Languages and Literatures (HPILL)
- University of Hawaii, Institute for Astronomy (IFA)
- University of California, Santa Cruz, Center for Adaptive Optics (CfAO)
- Maui Economic Development Board (MEDB)
- Department of Education, Maui District (DOE)
- Office of Hawaiian Affairs (OHA)
- County of Maui (CM)

Figure 5-20. Proposal Submitted by Maui Community College, Page 10.

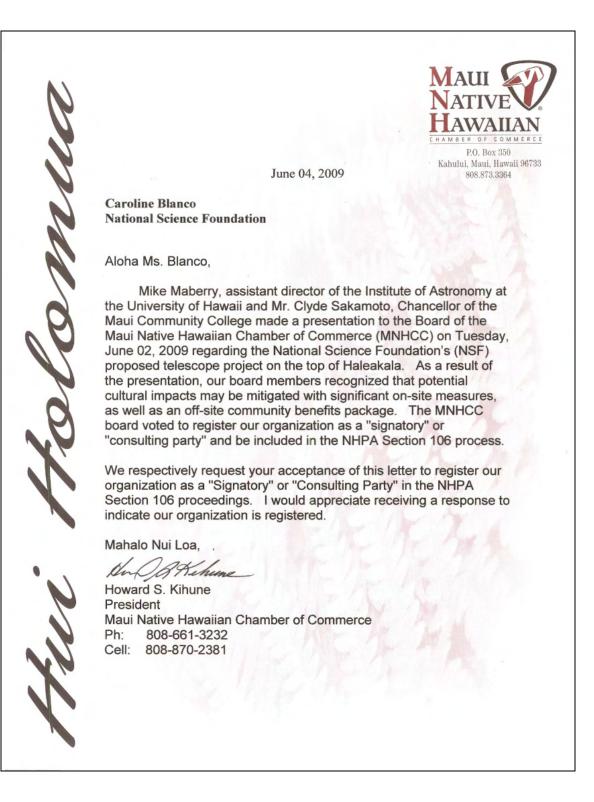
SUMMARY OF CATEGORIES	Budget Request		
SALARIES	\$650,000.00	Project Name:	NFS Mitigation Proposal for Na Lau A Hoohokukalani
FRINGE BENEFITS	\$226,100.00	Organization:	Maui Community College
EQUIPMENT	\$165,000.00	Date:	04/02/07
TRAVEL	\$116,000.00	Program Year:	
CONSUMABLE SUPPLIES	\$48,000.00		
CONTRACTUAL SERVICE	\$225,000.00		
OTHER DIRECT EXPENSES	\$87,500.00]	
TOTAL, DIRECT COSTS (1-7)	\$1,517,600.00		
TOTAL, INDIRECT COSTS	\$414,305.00		
PARTICIPANTS SUPPORT COSTS	\$560,000.00]	
TOTAL: Fed. Funds Requested (8+9+10)	\$2,491,905.00		
BUDGET DETAILS		COMPUTATION	JUSTIFICATION
SALARIES: Total	\$650,000.00	Control of the total	
Project Director	\$75,000.00	1.0 FTE Instructor	Coordinate Program: to develop courses at MCC and in high schools with emphasis on HW Math, and Science. Develop Bi-lingual curriculum for MCC and high schools. Internship program for MCC and high school Native Hawaiian students. Hawaiian Studies Lab and support services; recruitment and retention of Native Hawaiian students.
Administration and Fiscal Support	\$55,000.00	1.0 FTE APT	Fiscal mangement and record maintenance
Academic Specialist	\$55,000.00	1.0 FTE Instructor	Coordinate academic and tutorial Programs
Program Support Specialist	\$55,000.00	1.0 FTE Counselor	Supports Project Director
Cohort Support Specialist	\$55,000.00	1.0 FTE Counselor	Recruitment and Retention and cohort coordinator
Cohort Counselor	\$60,000.00	1.0 FTE Counselor	Provide academic and career conseling to cohort participants
Curriculum Specialist	\$60,000.00	1.0 FTE Instructor	Development of MCC courses and High School Bridges, Articulate MCC courses and curriculum to DOE standards
Hawaiian Studies Instructor	\$60,000.00	1.0 FTE Instructor	To provide instruction: 1 course HWST (Ethno-astronomy/Malama Aina), Curriculum Development, High School Bridge
Math Instructor	\$60,000.00	1.0 FTE Instructor	To provide instruction: 1 course MATH (IMP), Curriculum Development, High School Brid
Science Instructor	\$60,000.00	1.0 FTE Instructor	To provide instruction: 1 course Science (), Curriculum Development, High School Bridge
Hawaiian Science Lab Coordinator	\$55,000.00	1.0 FTE Instructor	Coordinates activities, workshops, trainings and management of Hawaiian Science Lab
FRINGE BENEFITS: Total	\$226,100.00		
Program Coordinator	\$28,500.00	\$75,000 X 38%	
Administration and Fiscal Support	\$20,900.00	\$55,000 X 38%	
Program Support Specialist	\$20,900.00	\$55,000 X 38%	
Cohort Support Specialist	\$20,900.00	\$55,000 X 38%	
Cohort Counselor	\$22,800.00	\$60,000 X 38%	Fringe Benefits per UH
Curriculum Specialist	\$22,800.00	\$60,000 X 38%	
Hawaiian Studies Instructor	\$22,800.00	\$60,000 X 38%	
Math Instructor	\$22,800.00	\$60,000 X 38%	
Science Instructor	\$22,800.00	\$60,000 X 38%	
Hawaiian Science Lab Coordinator	\$20,900.00	\$55,000 X 38%	

Figure 5-20. Proposal Submitted by Maui Community College, Page 11.

3	EQUIPMENT > 5,000: Total	\$165,000.00		
	Hawaiian Science Lab Equipment	\$75,000.00		Computers, notebooks, computer programs
	Cohort(s) Equipment	\$20,000.00		Computers, notebooks, computer programs
	Instructional Equipment	\$20,000.00		Computers, notebooks, computer programs
	Curriculum Development Equipment	\$20,000.00		Computers, notebooks, computer programs
	Video Conferencing Equipment	\$30,000.00	\$5,000 X 6 systems	Distance Education support
	TRAVEL: Total	\$116,000.00		
	Out of state airfare	\$40,000.00	\$1,000 x 25 trips	
	Inter island airfare	\$40,000.00	\$250 x 100 trips	
	Per diem	\$16,000.00	\$80 x 200	
	Lodging	\$15,000.00	\$150 x 100	
	Transportation	\$5,000.00	\$50 x 100	
	Transportation	35,000.00	350 X 100	
	CONSUMABLE SUPPLIES: Total	\$48,000.00		
				Paper, Printer Cartridges, Desk Supplies, File Folders, Binders, Reproducing Costs, MCC
	Administrative Supplies	\$7,200.00	\$600 per month X 12 months	Media Center
		\$7,200.00	\$600 per month X 12 months	Internship Cohort: reproducing costs, computer supplies, portfolio supplies
		\$7,200.00	\$600 per month X 12 months	High School Internship Program
	Instructional Supplies	\$7,200.00	\$600 per month X 12 months	Curriculum Development
		\$7,200.00	\$600 per month X 12 months	Instructor Support
		\$12,000.00	\$1000 per month X 12 months	Hawaiian Science Lab Support
	CONTRACTUAL SERVICES: Total	\$225,000.00		
	Curriculum & Education Development and	01 00 000 00		
	Dessemination	\$100,000.00		Consultants, translators, editors, web design and maintenance
	Internship and Workforce Development	\$50,000.00		Internships, job-placment, training, certifications
	Data Collection and Research	\$25,000.00		
	Professional development	\$25,000.00		Training and workshops for teachers, faculty, staff, and students
	Student Development	\$25,000.00		rianning and working of revenues, accurry, shari, and stadents
	bludent bereiopinent	020,000.00		
	OTHER: Operating Expenses: Total	\$87,500.00		
		\$1,800.00	\$150 per month X 12 months	Cost for office, cohort and summer bridge mail outs
	Postage	\$1,200.00	\$100 per month X 12 months	Long distance costs for office and administrative purposes
	Phone	\$7,200.00	\$120/day X 60	Long distance costs for office and administrative purposes
	Inter Island Van Rental			
	Inter Island Bus Fare	\$4,800.00	\$200/day X 24	Paulas Painta (Printa Car
	Printing and Publication Fees	\$12,500.00		Brochure Design and Printing Cost
	Conference Fees	\$25,000.00	\$500 X 50	Attend and participate in Conferences
	Training workshops and camps	\$25,000.00		
	Facility Rentals	\$10,000.00		
	TOTAL: DIRECT Costs	\$1,517,600.00		
	INDIRECT COSTS (if applicable):	\$414,305.00	Direct Costs X 27.3%	
•	PARTICIPANTS SUPPORT COSTS	\$560,000.00		
-	Stipends (STEM Internships)	\$240,000.00	3,000 X 40 students X 2 semesters	Stipends to STEM students for completing internship requirements
	Stipends (MCC/4-year/Graduate STEM Cohort)	\$240,000.00	\$3,000 X 40 students X 2 semesters	Stipends to students for completing STEM cohort requirements
		640.000.00		
	Stipends (High School Bridges Cohort)	\$40,000.00	\$1,000 X 40 awards	Stipends to students for completing high school cohort requirements
	Stipends (Teacher Cohort)	\$40,000.00	\$1,000 X 40 awards	Stipends to participants of teacher training workshops
11	TOTAL: Budget Requested	\$2,491,905.00	1	1

Figure 5-20. Proposal Submitted by Maui Community College, Page 12.

-----Original Message-----From: Brian Lee [mailto:ibewblee@hawaii.rr.com] Sent: Thursday, May 28, 20098:02 PM To: Blanco, Caroline M Subject: Proposed Advanced Technology Solar Telescope (ATST), Haleakala High Altitude Observatory Site Ms. Caroline Blanco, Our organization, the International Brotherhood of Electrical workers Local 1186 in Hawaii believes that the potential cultural impact of the solar telescope project being proposed for the Haleakala High Altitude Observatory Site, which is managed by the University of Hawaii, may be mitigated and we would like to be a "Consulting Party" in the NHPA Section 106 process. Aloha, Brian Lee, Research & Communications Director International Brotherhood of Electrical Workers Local Union 1186 1935 Hau Street Honolulu, HI 96819 okokokokokokok Hello, Mr. Lee - Thank you for your message, and for your interest in the Section 106 consultation process. NSF will add your organization to the list of consulting parties. Please note that I am copying, among others, two folks from the National Park Service on this message because the National Science Foundation is working with the National Park Service to fulfill both agencies' Section 106 consultation responsibilities associated with the proposed ATST Project. We look forward to having you join us during our Section 106 consultation meetings on June 8, 9, and 10th in Maui. Please also note that NSF will be holding two public hearings pursuant to the National Environmental Policy Act on NSF's recently issued Supplemental Draft Environmental Impact Statement on June 3rd and 4th in Maui. For your information, I am attaching a newsletter prepared by the National Park Service that has some background information on the proposed ATST Project, a summary of compliance efforts with the National Historic Preservation Act and the National Environmental Policy Act made to date. and details on the up coming meetings. Please let me know if you would like to have any additional information. Bestregards. Caroline M. Blanco Assistant General Counsel National Science Foundation


Figure 5-21. Proposal Submitted by International Brotherhood of Electrical Workers Local 1186, Page 1.

IOCAL 1186 International Brotherhood of Electrical Workers LOCAL UNION 1186 Affiliated with AFL-CIO 291 HOOKAHI ST, SUITE 108 WAILUKU, MAUI, HI. 96793 TELEPHONE (808) 244-8002 FAX (808)244-8009 HAWAI June 17, 2009 Mr. Craig Foltz ATST Program Director National Science Foundation Division of Astronomical Sciences 4201 Wilson Blvd., Room 1045 Arlington, VA. 22230 Re: ATST, Haleakala Telescope Dear Mr. Foltz, As a supporter of the ATST atop the summit of Haleakala, I would like to submit testimony regarding this project. I believe that this scientific project proposed here on the Island of Maui can be of many benefits to our Island home. It would be an asset in our economic status, creating new employment, and having the opportunity to explore in new technology, just to name a few. This project would fall under the laws regarding the Davis-Bacon Act, Prevailing Wages regulation. Our NJATC apprenticeship program is a qualified program that is recognized by this law. It would be a tremendous experience for our apprentices to be able to be a part of building a one of a kind facility right here on Maui. Our Apprenticeship program is a five year program which includes schooling and on the job training. A project of this magnitude might not be available again in our lifetime, so why not take advantage of this and give our young men and women an opportunity to have an incredible experience. Respectfully Submitted, Ray Shimabuku **Business Representative** IBEW, LU 1186-Maui

Figure 5-21. Proposal Submitted by International Brotherhood of Electrical Workers Local 1186, Page 2.

Maui Hotel & Lodging
Position Statement SOLAR TELESCOPE
The National Science Foundation's proposed solar telescope will enhance our island's offerings by providing yet another feather in Maui's cap – home of the world's largest optical solar telescope, providing the sharpest views of the sun and crucial to determining & predicting the sun's affect on the earth. It is an honor to be selected as "the best location to study the sun" out of over 70 sites considered throughout the world.
Additionally, the solar telescope will provide an opportunity for scientists to visit our island. Visiting scientists and conferences will occupy our hotels, dine and shop at our businesses.
Maui County's strength as a top tourism destination and successful business model depends upon our ability to showcase a diverse array of industries. Enhancing the science technology industry in our mix will complement our island's reputation for excellence.
#
BOD approved 6/2/09
5.

Figure 5-22. Proposal Submitted by Maui Hotel & Lodging Association.

1.01 His 150 June 4, 2009 Earth Anna Lo i 1678 Craig Foltz, ATST Program Manager National Science Foundation. Division of Astronomical Sciences 4201 Wilson Boulevard, Rm 1045 Ailington, VA 22230 Email: Re: Mitigation Proposals for the Advanced Technology Solar Telescope Dear Sir: The Maui Native Hawai an Chamber of Commerce Board of Directors, having been apprised of the desire of the National Science Foundation to ascertain the feasibility of constructing another telescope on Haleakala on the island of Maui, Hawaii, would like to recommend what we believe are legifimate, reasonable, and persuasive mitigation steps that would, it adopted, fulfill not only the purpose of the telescope but also address past, present, and future needs of the Native Hawaiian people as relates to their 'aina and this wahi pana, sacred place. We acknowledge the opposition to any further construction on Haleakala and the reasons therefore. We concur that there is a sacredness to Haleakaia that isolated its use to only special persons anciently and understand that respect for the 'aina should continue till today. A 143 foot telescope is a substantial intrusion into this puu honua. sanctuary, and cannot be taken lightly. We believe that meaningful mitigation can help in resolution of the disparate interests between the two primary sides. In considering mitigation Native Hawaiians must be able to assure a future for their people and their sovereignly as well as a deep respect for their past and a firm foundation for the continuity of their culture and identity. Accordingly, we believe the following, if accepted, could lead to some agreement and strongly urge that these recommendations be adopted as part of the mitigation for the Advanced Technology Solar Telescope: 1

Figure 5-23. Proposal Submitted by Maui Native Hawaiian Chamber of Commerce, Page 2.

1. Maui Community College has submitted a proposal for the Akeakamai I Ka La Hiki Ola program which recommends \$2 million per year from NSF sources to educate Native Hawaiian students from elementary through college utilizing MCC resources and expertise. This amount does not nearly compensate for the direct thrust into the Hawaiian na'au, the center of the Hawaiian psyche. The MCC proposal should be extended to not only cover ten years but continue for the life of the use of Haleakala for the telescope. 2. The MCC proposal should be modified further to provide a portion of the funding received by this mitigation for college and post graduate full scholarships to Native Hawaiian students statewide who are either entering or in a US colleges and who can demonstrate a high degree of academic success and a willingness to complement their education with Hawaiian studies. In this way Native Hawaiians could soon be available to enter the solar, astronomical, and science fields in Hawaii as may be agreed to for the scholarships. MCC could still continue to work with local notive Hawaiian students on Maui and prepare them for the variety of fields of work that could be associated with the solar telescope including weather, environment, health, food supply, water resources, energy, exploration, communications, housing, transportation, manufacturing, and scientific knowledge to include not only astronomy but oceanography, physics, biology, and also Hawaiian culture. 3. Since it is our understanding that astronomy contracts do not result in profits to the UH but do guarantee a per cent of usage, approximately 5%, we recommend that an additional 2% usage time be guaranteed to Native Hawaiian scholars associated with this project via scholarships, employment, or other to be agreed upon qualifications. 4. Though the land upon which the telescope is to be built may not be within the kuleana, responsibility, of NSF, nevertheless, it is recommended that NSF, as an important step in reaching resolution in this matter, immediately request of the State of Hawaii, the University of Hawaii, and the Office of Hawaiian Affairs that they all initiate steps to transfer the land upon which the telescope is to be built to the Office of Hawaiian Affairs for future transfer to the new Native Hawaiian governing entity. Any 2

Figure 5-23. Proposal Submitted by Maui Native Hawaiian Chamber of Commerce, Page 3.

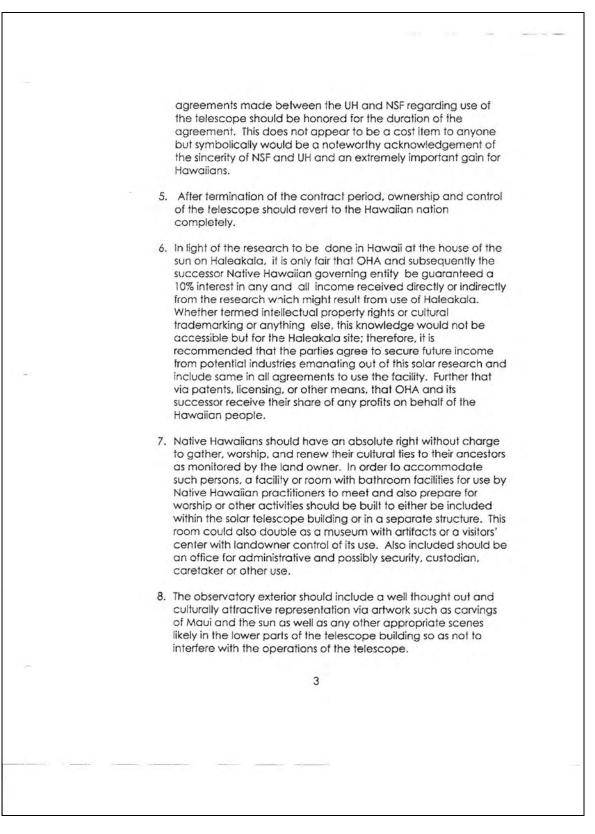


Figure 5-23. Proposal Submitted by Maui Native Hawaiian Chamber of Commerce, Page 4.

The above are submitted in good faith as our recommendations for mitigation. We believe these should be adopted in the spirit of cooperation and understanding as a commitment to the future and our children and acknowledgement of our past and our ancestors. Mahalo for your attention to this matter. Sincerely, Martan Sinune Howard Kihune President, Maui Native Hawaiian Chamber of Commerce 4

Figure 5-23. Proposal Submitted by Maui Native Hawaiian Chamber of Commerce, Page 5.

Comments on the Supplemental Environmental Impact Statement For the Proposed Advanced Technology Solar Telescope Project June 4, 2009, Thursday Hannibal Tavares (Pukalani) Community Center Pukalani, Maui
National Science Foundation Division of Astronomical Sciences
By Al Lardizabal, Director Government Relations Laborers' International Union of North America Local 368
The Advanced Technology Solar Telescope is a scientific project by the National Science Foundation within the University of Hawaii Institute for Astronomy Haleakala High Altitude Observatories site at the summit of Haleakala, County of Maui. It is a proposal by the National Solar Observatory (NSO).
It is proposed that the construction include an observatory facility including a telescope (world largest optical solar telescope), its piers and rotating platforms, telescope enclosures, support building, parking facilities and modifications to the existing facility. If approved, it is estimated that the site will be fully operational by 2017 with the estimated construction schedule about 7 years.
The ATST Project is a welcome investment not only for the scientific and educational community but to the local economy as well. It is no secret that the entire state economy is depressed. Indeed, Maui County's economic momentum brought about by construction has largely disappeared over the last two years. Construction is a primary driver for employment. Today, Maui's unemployment rate is 8.1% nearly double that of 2008 at 4.5%; more than 6,450 civilians are unemployed today compared to 3,600 unemployed in 2008. Clearly, there is economic hardship in practically many communities on Maui and it is projected to get worse before it gets better. The ATST Project and other job creating opportunities are needed.
We are cognizant however, of the concerns of our native Hawaiian brethrens and persons concerned with the environment. Their views must be heard and appreciated for cultural and religious values and practices as well as the need to protect the environment. We also believe that the ATST project can be built respecting these values with attention to mitigation actions. The National Solar Observatory is developing a management plan to ensure implementation of mitigation measures with the associated ATST Project. Mitigation measures would include a cultural specialist to provide oversight for construction activities and training. Furthermore, a variety of best management practices would be implemented during construction to prevent damage to the natural environment.
The proposed ATST Project would be located in the area of the Conservation District that has been set aside for astronomical research. The objective of the Conservation District is to conserve, protect, and preserve the important natural resources of the State through appropriate management and use in order to promote their long-term sustainability and the public health, safety and welfare. Additionally, it is the policy of the Makawao-Pukalani-Kula Community Plan to: "Encourage Federal, State and County cooperation in the preparation of a comprehensive Haleakala summit plan to promote orderly and sensitive development which is compatible with the natural and Native Hawaiian cultural environment of Haleakala National Park." We believe that the ATST Project would comply with these requirements.
Effects ES 31 The ATST would have minor adverse, long-term effects on current land use designated as Conservation District. No mitigation is needed.
ES45 Beneficial effects would be to the economy and education.

Figure 5-24. Proposal Submitted by Laborers' International Union of North America, Local 368, Page 1.

June 9, 2009

George Aikala

Wailuku, Hi. 96793

Aloha

My name is George Aikala, I'm here as a concern Hawaiian, most of you know that I work for the Laborers Union as a Field Representative, the last meeting at Hannibal Tavares Community Center that I attended a lot of my fellow Hawaiians spoke against the Solar Telescope on Haleakala because they felt the mountain is sacred. I'm responsible 300 working man and some woman here on Maui. My out of work list today shows 82, but it does not show the twenty plus workers that had not work from the middle of 2008 and are no longer collecting unemployment which means they can't pay their dues, which means the union had to drop them from the out of work list, if this continues families will lose their home and today you can't live on the beaches, cause DLNR compliance officer's will be there to evict any and all homeless persons or even jail you for breaking the law.

A brother spoke that we should go back to the Aina and grow our food, if any one knows where this Aina is that is free, where a family can live with out prosecution or paying any Land Taxes, Mortgage, Rents, then please put up your sign so those that are in need can go and enjoy the Kanaka Ma'oli way of life. Another Brother spoke of sovereignty and I'm for that, but until America recognizes the independents of the Hawaiian Nation, we need to survive. I know some of you will say I'm working for the Haole, and that I'm looking for the money, well I can't stop you from feeling that way. And if you say I have an agenda, because I want to see my brothers and sisters go back to work on this project or any other project so they can keep their families together; then I'm guilty. We're saying the mountain is sacred but what about our young Native Hawaiians that have no jobs and are struggling to make ends meet aren't they more sacred then the land. We must come together to understand why we in the Union Trades are always fighting to preserve equality living for all our brothers and sisters.

Mahalo

Figure 5-24. Proposal Submitted by Laborers' International Union of North America, Local 368, Page 2.

AHA	ALI'I O KAPU'AIWA O KAMEHAMEHA V.
	P. O. Box 836
	Hana, Hawaii 96713
June 18, 2009	
5 une 10, 2005	
Caroline Blanco	
National Science Found	
4201 Wilson Boulevard Arlington, Virginia 222	
Re: Consultation Mee	tings to mitigate the impacts of the Haleakala Development;
Aloha Caroline;	
	y Mike Mabry to contact you with our interest to participate or the proposed ATST project on Haleakala.
Haleakala through a Co employment opportunit	a Consulting Party to minimize the negative impacts to the ommunity Benefits Package that provide educational and ties for NATIVE HAWAIIAN children and potential adverse and natural assets throughout the proposed area.
Consulting party for the	opportunity to address our desire to be a member of the e proposed project on Haleakala. If you have further questions ne Clifford Hashimoto (808) 248-8827 or e-mail om.
O wau iho no me ka 'oi	
Clifford Hashimoto Alii Nui & Grand Mast	ler

Figure 5-25. Proposal Submitted by Aha Ali'i O Kapu'aiwa O Kamehameha V, Clifford Hashimoto, Ali'i Sir and Grand Master.

To Mr. Craig Foltz:

on Maui but ancestors a Hula, she ta My mother v schools. So project will b sun will be o understandi I support au to make two	s Ivan Lay and I am a representative Hawaii Carpenters Union here more importantly I was born and raised here in Hawaii. My mother's re from Maui. Her mother was pure Hawaiian. My mom was a Kumu aught Hawaiian dance. I was one of her students for over ten years. was also a Kupuna (teacher of Hawaiiana) at the Maui up-country as you can see my up-bringing was filled with Hawaiian culture. This benefit cultures worldwide. The positive effects from ATST's study the countless. With Global worming already affecting us, a better ing of the sun is a must. Ind ask that you move it forward as fast as possible. I would also like b recommendations for this project. I've verbally stated these ations at public meetings previously, and now in writing.
1 st Recomn	nendation
2 nd Recom	They employ a local workforce for the construction of this project.
2 Accom	Education is the key issue, be it the scientific or spiritual.
	But let's take it one step further and include education on the
	construction site.
	Our Apprentice Training Program is an accredited carpenter's apprentice program that is accepted under the Davis Bacon, Prevailing Wages regulations, which this project falls under. Our apprentices are all residents of this island, with a very high percentage of them native Hawaiian. Shouldn't the construction of this project include the training of our local apprentices? We have a young work force willing and able to take the challenges that will come with this project. Our apprentice program is a four year schooling program that covers all aspects of carpentry including framing, layout, and concrete form work and finishing. They are taught at schools and more importantly, hands on in the field. A state of the art faculty like this ATST project will further enhance their education and abilities in the carpentry field. Go that one that step further and help these young adults in securing a foot-hold on their island home. Support their apprentice program.
Sincerely,	Home: Ivan Lay Office: Hawaii Carpenters Union 330 Hookahi St. Haiku HI. 96708 Wailuku, HI. 96793 Ph# 808-242-6891

Figure 5-26. Proposal Submitted by Hawai'i Carpenter's Union.

maul economic development board, inc.	
	June 22, 2009
	Dr. Craig Foltz, Acting Director of Astronomy Division National Science Foundation
	RE: Section 106 Recommendations for ATST Project
	Dear Dr. Foltz:
	We are writing to convey some recommendations under the Section 106 relating to the ATST project.
	MEDB is prepared to assist in programs to mitigate the effects of ATST on cultural and natural resources. Toward that end, we would recommend that the National Science Foundation build on existing programs within the County of Maui and the State of Hawaii that are designed to integrate culture and science, such as the MEDB's nationally renowned Women in Technology programs for STEM education and workforce development. MEDB has established its role in supporting the expanded educational component with internships and grants for Hawaii students who may be drawn to studies STEM disciplines including astronomy and optical sciences. Similarly, the business development component of MEDB which works under the banner of High Tech Maui builds awareness in prospects about the cultural and environmental values of Maui County and promotes measures to address these values as businesses establish roots or expand in our community.
	MEDB also recommends the NSF consider support for programs in Maui County that would enhance opportunities for apprenticeships for local residents in construction, design and engineering related to the development of the observatory and the evolving ATST technology. This will capitalize on a unique, historic opportunity to build local capacity in these fields.
	Sincerely,
	Jeanne Unemori Skog President & CEO
1305 N. Holopono Street, Suite 1 Kihei, Maui, Hawai'i 96753	
telephone: 1.808.875.2300 facsimile: 1.808.879.0011	

Figure 5-27. Proposal Submitted by Maui Economic Development Board.

	ONE (808) 594-1888		FAX (808) 594-1865
		STATE OF HAWAI'I OFFICE OF HAWAIIAN AFFAIRS 711 KAPI'OLANI BOULEVARD, SUITE 500 HONOLULU, HAWAI'I 96813	
			HRD09/1918/2048 O
Jur	e 22, 2009		
Div Na 420	tig B. Foltz, Ph.D., ATST vision of Astronomical Sc tional Science Foundation 11 Wilson Boulevard, Ro- ington, VA 22230	ciences	
RI	Technology Solar T	t Environmental Impact Statement °elescope at Haleakalā High Altitud ua'a of Papaanuio, Moku of Honua	e Observatory site, TMK (2)
Ale	oha e Craig B. Foltz,		
		ian Affairs (OHA) is in receipt of the National Science Foundation (NSF),	KC Environmental has
pro Ad	wided the Supplemental I vanced Technology Solar	Draft Environmental Impact Statemen r Telescope (ATST) at Haleakalā Higi is reviewed the document and offers t	h Altitude Observatory site
pro Ad (H the to	wided the Supplemental I vanced Technology Solar O) to our office. OHA ha The proposed projec HO. The trigger for this	r Telescope (ATST) at Haleakalā Hig	h Altitude Observatory site he following comments. n, and operation of the ATST at e National Park Service (NPS)
pro Ad (H the to the att	wided the Supplemental I vanced Technology Solar O) to our office. OHA ha The proposed projec HO. The trigger for this issue a Special Use Permi park. Unfortunately, staff end the recent National E Maui on June 3 and 4. In	r Telescope (ATST) at Ĥaleakalā Higi as reviewed the document and offers t t includes the construction, installatio SDEIS is based upon the need for the	h Altitude Observatory site he following comments. n, and operation of the ATST at e National Park Service (NPS) cial vehicles on the road with Culture staff were not able to EIS Public Comment Hearings the National Historic

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 1.

from the Native Hawaiian community regarding the consultation process for this proposed project. The opinions expressed by the Native Hawaiian community members during the public review process indicate that the project has very little possibility of properly mitigating negative impacts to the traditional cultural landscape of the Haleakalā summit.

Proposed Construction Activities

The entire proposed facility would include an area of 43,980 square feet of new building space, within a site footprint of 0.74 acres. According to the submission, the dimensions of the telescope need to be 43.5 meters (142.7 feet) in height and 25.6 meters (84.0 feet) in diameter. (SEIS 2-19)

The project proposes to remove 2,500 cubic yards of soil and rock in order to level the site in preparation for construction at the Mees Solar Observatory facility site. An additional 2,150 cubic yards of soil is also estimated to be excavated for construction purposes at that site for a total of 4,650 cubic yards of soil. (SDEIS 2-21) The disturbance and removal of the 'āina creates severe impact upon the landscape of Haleakalā and will forever have an impact.

Figure 2-12 proposes that the foundation of the proposed project would include ground disturbing activities for the installation of pad and strip footings for the building columns and walls at a depth of approximately 1 meter deep. A utility tunnel with an anticipated depth of 3 meters (10 feet) would be necessary to connect the telescope to the utility building. Also, other utilities would need to be buried approximately 2 meters (6 feet) deep. (SDEIS 2-24) Concrete caissons (underground columns) extending from underneath the mat down would be required to be 1 meter (3 feet 3 inches) in diameter and of lengths varying from 2 meters (6 feet 6 inches) to a maximum of approximately 6 meters (20 feet). (SDEIS 2-24).

On-site staging areas for the project have been proposed on a leased Federal Aviation Administration (FAA) property at the open area southwest of the Faulkes Telescope. In addition to the proposed project's footprint of construction, it is noted that an off-site staging area on private ranching lands in the Upcountry (Kula) area is being considered. (SDEIS 2-26) OHA asks whether this potential area has been included as part of the project area of this proposed project and whether it has been included in the evaluation during this SDEIS as it should have been.

Haleakalā is a Traditional Cultural Property

According to the SDEIS, the summit of Haleakalā is a cultural resource and is eligible as a Traditional Cultural Property (TCP) under the National Park Service's Criteria for eligibility to the National Register of Historic Places. It has been determined that the summit of Haleakalā is eligible for inclusion on the National Register because of its association with cultural practice or beliefs of a living community that are (Criterion A) rooted in that community's history, and (Criterion B) are important in maintaining the continued cultural identity of the community. It is

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 2.

also eligible under Criterion C because it is an example of a resource type, a natural summit, and a source for both traditional materials and sacred uses. (SDEIS 3-8)

The summits areas of mauna, such as Haleakalā, are the most sacred wao (regions) in the Hawaiian understanding of the 'āina. It is in the realm of the akua, where people would frequent for ceremonial and religious purposes. The recognition of Haleakalā as a TCP is great; however, it seems that this recognition will have no weight on the decision to proceed with the project, to which OHA objects.

Mitigation of Cultural Effects

As the summit of Haleakalā has been evaluated and determined to be a TCP during Section 106 consultation, this designation has still allowed the NSF and its contactors to proceed with the proposed project by continuing to propose strategies in order to mitigate adverse effects to Haleakalā. Three mitigation strategies have been offered to diminish the adverse effects of the construction of the proposed project.

The first mitigation strategy includes a program which will include the preservation of cultural resources the proposed ATST Project construction. According to the submission, "Sense of Place" training for everyone working at HO would be implemented and carried out by a Cultural Specialist. This Cultural Specialist would also be utilized as a Cultural Monitor during construction activities. According to the SDEIS, the Cultural Specialist must be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has personal knowledge of the spiritual and cultural significance and protocol of Haleakalā. (SDEIS 4-180) The Cultural Specialist's knowledge should be concentrated in traditional and cultural practices and protocols and chosen through consultation with appropriate organizations and individuals with knowledge of such practices and protocols. OHA offers to assist in this effort and suggest organizations and individuals to consult with.

The second mitigation strategy offered is the development of a Memorandum of Agreement, within the guidance of Section 106 of the NHPA. A "public benefit package" was suggested in our office's 2005 response to the DEIS. These programs were suggested because the proposed project area is on Ceded Lands which are Public Trust Lands, held in trust for our Native Hawaiian beneficiaries. OHA has a fiduciary duty to our beneficiaries to assure that these lands are used and treated properly. In addition, Public Trust Lands may be used for educational purposes and for the betterment of Hawaiians; therefore, OHA has requested that if the proposed project goes forward, part of the project should include a guarantee of training and education for Hawaiians.

A third mitigation strategy offered is the removal of the proposed ATST facility after its operational lifetime. This proposed "sunset" of the telescopes will ensure that there would be no long term adverse impacts to the summit of Haleakalā. After the lifetime of the telescope is completed, the facility would be taken down. If a "sunset" clause were to be implemented, this would need to be written in an enforceable legal document to ensure its compliance. According

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 3.

to the submission, the lifetime of the proposed project would be at least 45 years once the telescope is operational. It states that NSF is "seriously considering decommissioning, deconstructing, or divestment of the proposed ATST project at the end of its productive lifetime." The fear of this mitigation strategy is that this will not be followed through and other scientists could potentially have interest in using the facility. Assurances should be made, through a Memorandum of Agreement (MOA) for the disposition of the proposed project at the end of its life or a date set through consultation.

Lease for the project

As noted earlier, the subject land is designated as Section 5(b) Ceded Lands, which hold a considerable amount of sentimental, historical and legal significance for Native Hawaiians and OHA. These lands were illegally taken from the Hawaiian Kingdom after the 1893 overthrow and later transferred ("ceded") by the United States government to the State of Hawai'i upon statehood. Today, the state holds the Ceded Lands corpus in trust for Native Hawaiians and the general public. OHA is supposed to receive a portion of all revenues generated on these lands. As such, we request that the state charge the applicant fair market value for the lease of the subject property for the project. OHA also requests that we receive our portion of the revenues derived from this project. In addition, we ask that the state Board of Land and Natural Resources' consideration of the lease for this project be subject to Chapter 91 and Chapter 92, Hawaii Revised Statutes.

Consultation

To date, consultation with our office has been through letters notifying us of opportunities to provide comment and attend NEPA and Section 106 consultation meetings. The comments our office have raised have been addressed through various drafts in the environmental process; however, no specific concern has been addressed directly by the lead federal agency or any of its contractors. Our office would appreciate any level of increased effort to directly consult with our office. This would include addressing any concerns we may have and also notifying our office of upcoming consultation meetings via mail, email, and telephone contact.

Haleakalä qualifies as a TCP in accordance with the NHPA and Section 106 regulations. It is not only considered an extremely important resource to Kanaka Maoli, but it remains one of the most sacred places in all of Hawai'i. OHA's position remains in opposition of the ATST telescope being built. However, our office will continue to participate in any future consultation towards the development of any future potential MOA or Programmatic Agreement.

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 4.

Thank you for the opportunity to comment. If you have further questions, please contact Jason Jeremiah (808) 594-1816 or e-mail him at jasonj@oha.org.

'O wau iho no me ka 'oia'i'o,

your 10

Clyde W. Nāmu'o Administrator

C: OHA Maui CRC Office

Katherine Puaana Kealoha, Director Office of Environmental Quality Control Department of Health REF: ATST 235 South Beretania Street, Room 702 Honolulu, HI 96813

Mike Maberry, Associate Director University of Hawai'i Institute for Astronomy 34 Ohia Ku Street Pukalani, HI 96768

Charlie Fein, Ph.D KC Environmental, Inc. P.O. Box 1208 Makawao, HI 96768

Laura Thielen State Historic Preservation Officer Department of Land and Natural Resources 601 Kamokila Boulevard, Room 555 Kapolei, Hawai'i 96707

Elizabeth Gordon Cultural Resources Program Manger Haleakalā National Park National Park Service P.O. Box 369 Makawao, Hawai'i 96768

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 5.

PHONE	808) 594-1888		FAX (808) 594-1865
		STATE OF HAV OFFICE OF HAWAIIAN 711 KAPI'OLANI BOULEVAR HONOLULU, HAWAI'I	AFFAIRS D, SUITE 500
			HRD09/1918/2048 F
June 2	9, 2009		
Caroli	ne M. Blanco		
	ant General Counse		
	al Science Foundat Wilson Boulevard, S		
	ton, VA 22230	Suite 1205	
RE:	and the Determin Foundation's Pro Technology Solar	nation of Adverse Effects R oposed Funding for Constru- r Telescope at Haleakalā H	the Expanded Area of Potential Effects elated to the National Science uction and Operation of the Advanced igh Altitude Observatory site, TMK (2) 1 of Honua'ula, Island of Maui
Aloha	e Caroline M. Blan	ico,	
Histori	9, 2009. The Natio ic Preservation Offi	onal Science Foundation (NS	ceipt of the above-mentioned letter dated F) is seeking concurrence from the State Area of Potential Effect (APE). OHA has ments.
staff m recent the pro	may change as a re nembers from OHA Section 106 consul	esult of the June 8, 9, and 10, 's Native Rights, Land and C tation meeting on Maui. If a	he expanded APE and the determination of 2009 meetings on Maui. Unfortunately, Culture division were not able to attend the ny changes have been made to the APE of occur with our office and any other
Haleal	kalā is a Tradition	al Cultural Property	
	According to the S itional Cultural Pro	perty (TCP) under the Nation	talā is a cultural resource and is eligible as nal Park Service's Criteria for eligibility to etermined that the summit of Haleakalā is

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 6.

Caroline Blanco June 29, 2009 Page 2

eligible for inclusion on the National Register because of its association with cultural practice or beliefs of a living community that are (Criterion A) rooted in that community's history, and (Criterion B) are important in maintaining the continued cultural identity of the community. It is also eligible under Criterion C because it is an example of a resource type, a natural summit, and a source for both traditional materials and sacred uses. (SDEIS 3-8)

The summits areas of mauna, such as Haleakalā, are the most sacred wao (regions) in the Hawaiian understanding of the 'āina. It is in the realm of the akua, where people would frequent for ceremonial and religious purposes. The recognition of Haleakalā as a TCP is great; however, it seems that this recognition will have no weight on the decision to proceed with the project, to which OHA objects.

Expanded Area of Potential Effect

The concerns from our office are centered on the impact to Haleakalā, as a traditional cultural property. We do recognize the historic nature of the Reber site (State Site 50-50-11-5443) and the historic road corridor within the Haleakalā National Park (HALE). The NSF has found that the proposed project will not adversely affect (no adverse effect) the historic cultural landscape based upon mitigation measures required by HALE for the issuance with the Special Use Permit (SUP).

Preservation of Archeological Sites within "Science City"

According to the Archaeological Preservation Plan for an 18.1-acre parcel known as "Science City" (SDEIS Volume II, Appendix B2). 11 sites have been slated for preservation within the subject area. It has been recommended, through consultation with the project's Cultural Specialist, that no signage will be used to identify the cultural sites. "Passive as-is preservation" has been proposed for the preservation of these archeological sites. OHA insists that these sites be preserved.

The potential impact of archeological sites from any proposed construction within "Science City" is also a concern of our office. The preservation of the two ahu constructed by the project's Cultural Specialist and the known archeological sites must be preserved and protected during construction activities. We recommend measure be taken in order to ensure the preservation of these cultural sites if any construction activities were to take place.

Mitigation of Cultural Effects

As the summit of Haleakalā has been evaluated and determined to be a TCP during Section 106 consultation, this designation has still allowed the NSF and its contactors to proceed with the proposed project by continuing to propose strategies in order to mitigate adverse effects to Haleakalā. Three mitigation strategies have been offered to diminish the adverse effects of the construction of the proposed project.

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 7.

Caroline Blanco June 29, 2009 Page 3

The first mitigation strategy includes a program which will include the preservation of cultural resources the proposed ATST Project construction. According to the submission, "Sense of Place" training for everyone working at HO would be implemented and carried out by a Cultural Specialist. This Cultural Specialist would also be utilized as a Cultural Monitor during construction activities. According to the SDEIS, the Cultural Specialist must be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has personal knowledge of the spiritual and cultural significance and protocol of Haleakalā. (SDEIS 4-180) The Cultural Specialist's knowledge should be concentrated in traditional and cultural practices and protocols and chosen through consultation with appropriate organizations and individuals with knowledge of such practices and protocols. OHA offers to assist in this effort and suggest organizations and individuals to consult with.

The second mitigation strategy offered is the development of a Memorandum of Agreement, within the guidance of Section 106 of the NHPA. A "public benefit package" was suggested in our office's 2005 response to the DEIS. These programs were suggested because the proposed project area is on Ceded Lands which are Public Trust Lands, held in trust for our Native Hawaiian beneficiaries. OHA has a fiduciary duty to our beneficiaries to assure that these lands are used and treated properly. In addition, Public Trust Lands may be used for educational purposes and for the betterment of Hawaiians; therefore, OHA has requested that if the proposed project goes forward, part of the project should include a guarantee of training and education for Hawaiians.

A third mitigation strategy offered is the removal of the proposed ATST facility after its operational lifetime. This proposed "sunset" of the telescopes will ensure that there would be no long term adverse impacts to the summit of Haleakalā. After the lifetime of the telescope is completed, the facility would be taken down. If a "sunset" clause were to be implemented, this would need to be written in an enforceable legal document to ensure its compliance. According to the submission, the lifetime of the proposed project would be at least 45 years once the telescope is operational. It states that NSF is "seriously considering decommissioning, deconstructing, or divestment of the proposed ATST project at the end of its productive lifetime." The fear of this mitigation strategy is that this will not be followed through and other scientists could potentially have interest in using the facility. Assurances should be made, through a Memorandum of Agreement (MOA) for the disposition of the proposed project at the end of its life or a date set through consultation.

Consultation

To date, consultation with our office has been through letters notifying us of opportunities to provide comment and attend NEPA and Section 106 consultation meetings. The comments our office have raised have been addressed through various drafts in the environmental process; however, no specific concern has been addressed directly by the lead federal agency or any of its contractors. Our office would appreciate any level of increased effort to directly consult with our office. This would include addressing any concerns we may

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 8.

Caroline Blanco June 29, 2009 Page 4

have and also notifying our office of upcoming consultation meetings via mail, email, and telephone contact.

Haleakalā qualifics as a TCP in accordance with the NHPA and Section 106 regulations. It is not only considered an extremely important resource to Kanaka Maoli, but it remains one of the most sacred places in all of Hawai'i. OHA's position remains in opposition of the ATST telescope being built. However, our office will continue to participate in any future consultation towards the development of any future potential MOA or Programmatic Agreement.

Thank you for the opportunity to comment. If you have further questions, please contact Jason Jeremiah (808) 594-1816 or e-mail him at jasonj@oha.org.

'O wau iho no me ka 'oia'i'o,

liden.

Clyde W. Nāmu'o Administrator

C: OHA Maui CRC Office

Laura Thielen State Historic Preservation Officer Department of Land and Natural Resources 601 Kamokila Boulevard, Room 555 Kapolei, Hawai'i 96707

Elizabeth Gordon Cultural Resources Program Manger Haleakalā National Park National Park Service P.O. Box 369 Makawao, Hawai'i 96768

Figure 5-28. Proposal Submitted by Office of Hawaiian Affairs, Page 9.

Pursuant to the regulations implementing the Section 106 process, 36 CFR. Part 800, NSF has engaged in numerous formal and informal consultations with the consulting parties, including the Hawai'i SHPD, ACHP, NHO and individuals, NPS, and other individuals and groups regarding how to address adverse effects to historic properties, including the summit as a traditional cultural property. Those consultation efforts have resulted in the preparation of a draft PA, which is now under review by the consulting parties. If a final PA can be agreed upon and executed by the ACHP, the SHPD, AURA/NSO, NSF, and any other consulting party that has a responsibility under the PA, the Section 106 process will be completed. If a PA cannot be reached, then consultation may be terminated by NSF, ACHP, or SHPD, and the regulations set forth at 36 CFR §800.7 must be followed. If the ACHP provides advisory comments on the proposed ATST Project, NSF must consider and address any such comments in its final decision regarding whether to go forward with the proposed ATST Project.

As discussed above, after the June 2009 Section 106 consultation meetings, and after receiving many letters containing mitigation measures (including those set forth in the figures above), NSF began developing a draft PA to address adverse effects. A draft was prepared with input from the Hawai'i SHPD, ACHP, and HALE. It contains on-site and off-site mitigation measures, as well as mitigation measures designed to protect and preserve HALE resources as part of the SUP. The specific mitigation measures now under consideration by the consulting parties include the following:

* * *

I. ON-SITE MITIGATION MEASURES

- A. ATST Site-Specific Mitigation Measures
 - **1.** UH IfA [University of Hawai'i Institute for Astronomy] will work with appropriate authorities to consider naming the roads on the summit.
 - 2. AURA/NSO will hire a Cultural Specialist to ensure protection of existing traditional cultural resources during construction. The Cultural Specialist will be a Kanaka Maoli, preferably a kupuna (elder) and if possible a kahu (clergyman) as well, and one who has knowledge of the spiritual and cultural significance and protocol of Haleakalā. The Cultural Specialist's knowledge should be concentrated in traditional and cultural practices and protocols. The Cultural Specialist will be chosen in consultation with OHA and other appropriate organizations and individuals with knowledge of such traditions and protocols.
 - 3. NSF will decommission and deconstruct the proposed ATST Project fifty (50) years from the date operations commence, unless decided otherwise in consultation with the Native Hawaiian community; in that case, NSF will take steps to divest and relinquish itself of all responsibility associated with the ATST Project.
 - 4. During the 50-year lifetime of the proposed ATST Project, AURA/NSO, or its assigns, will periodically reassess technological options for new types of coatings, more efficient cooling methods, or improved compensation for thermal turbulence, which may allow the ATST enclosure and buildings to be painted a color other than white. If such future technology is determined to be an effective, reliable, and affordable solution that meets the scientific requirements of the ATST Project, NSF will consider funding the repainting of the exterior structures of the ATST with a more neutral color.

- 5. UH IfA, will remove unused or excess facilities, poles, antennae, and lines at HO.
- 6. NSF, AURA/NSO, and UH IfA, in consultation with the Native Hawaiian community, will use best efforts to locate a Hawaiian star compass at the summit.
- 7. All employees, including scientists/researchers who engage in any on-site activities associated with the proposed ATST Project, shall undergo UH IfA-approved "Sense of Place" training.
- 8. If there are Native Hawaiian scientists among the pool of scientists qualified to conduct research at the proposed ATST Project, NSO will reserve up to 2percent of total ATST usage time for those Native Hawaiian scientists. Usage time will be provided through the Telescope Allocation Committee process similar to other scientists' requests based on technical feasibility and scientific merit. Unused time will not be carried forward to the next allocation period. Qualifications for usage will be based on established NSO guidelines.
- 9. The exterior design for the lower portion of the ATST building will include a well thought-out representation of traditional Hawaiian culture suitable to the Haleakalā setting, such as artwork depicting Maui and the Sun or other appropriate motifs. These depictions will be developed in consultation with Native Hawaiian artists.
- **10.** NSF, IfA, and AURA/NSO will use best efforts to determine the feasibility of a shelter at HO, with access to restroom facilities, for use by Native Hawaiian cultural practitioners.
- **B.** Protection and Preservation of HALE Historic Resources
 - 1. Prior to construction, AURA/NSO, in coordination and consultation with the NPS, will ensure that all historic/cultural features and other areas susceptible to potential impact along the Park road corridor are photographed and documented.
 - 2. Construction of the proposed ATST Project will require use of the HALE road. To address effects to the Park road corridor, AURA/NSO will prepare a traffic plan that will describe the measures that will be followed. The traffic plan, which must be approved by NPS prior to the start of work, shall address such items as timing for moving large loads, staging/parking areas, prior notification for wide loads, signage, press releases, pilot cars, coordination with Park staff, etc. Specific, more detailed, traffic plans will be prepared as the details become known and available. The traffic plan will also include the following provisions: 1) a restriction stating that no loads heavier than the current load rating for the historic bridge shall be allowed on the HALE road (these loads will be certified); 2) a restriction stating that the number of wide loads will not exceed 25; 3) an assurance that the loads will not exceed the clearances along the Park road corridor; 4) a restriction stating that driving on the edges of the road will be avoided; 5) an established time period during which construction-related traffic can traverse the HALE road designed to avoid impacts to visitors and nesting petrels - for example, the use of the HALE road during one of HALE's peak visitation periods, which is approximately between the hours of 11:00 a.m. and 2:00 p.m., shall be precluded for especially slow moving and/or class 5 or larger vehicles; and 6) a commitment by AURA/NSO to repair any damage to the road caused by construction-related traffic. Additional temporary restrictions for heavy loads may be imposed by the NPS due to weather conditions.

- 3. AURA/NSO will temporarily improve the shoulder of the in-bound lane at the HALE entrance to accommodate wide loads. All utilities in the area of the entrance (i.e. septic tank) will be protected and/or relocated. A gate or barricade installed to keep visitors from driving in that area when the temporarily improved shoulder is not in use. The areas of the entrance that include the native plants and nēnē habitat will be protected. After the improved shoulder is no longer needed, it will be restored, outside of nesting season, to its original condition.
- 4. AURA/NSO will develop methods to avoid direct wheel loading to manhole covers; replace existing covers with heavier gauge steel, and use heavy gauge metal plates over existing covers for protection.
- 5. To minimize impacts the visitor experience, AURA/NSO will ensure that outside, onsite, construction activities will be limited daily to between 30 minutes after sunrise and 30 minutes prior to sunset.
- 6. AURA/NSO will submit a SUP application to the NPS prior to the construction phase of the proposed ATST Project. The environmental and historic/cultural resources documentation requirements, associated impacts and mitigation developed in the ATST Final Environmental Impact Statement and in this PA will be used to prepare the SUP. As a condition of the permit, AURA/NSO will fund a project monitor to ensure that all mitigation measures and stipulations in the SUP are followed. If situations occur that may warrant reasonable deviation from the mitigation measures in the SUP, these will be worked out on a case-by-case basis between AURA/NSO and the Park Superintendent.

II. OFF-SITE MITIGATION MEASURES

Community Outreach

The community outreach efforts set forth below will address the community public benefits program raised during the NEPA process and the Section 106 consultation meetings.

1. NSF will establish and consult with an advisory group of up to 20 individuals/entities that includes Native Hawaiians, educators, local practitioners, cultural resource specialists, and scientists (collectively referred to as the "Advisory Group") to advise NSF on cultural programs and educational pursuits that respond to the Native Hawaiian community's interest in developing a relationship that fosters the intersection between traditional cultural practices and science. Recommendations for participation on the Advisory Group will be received by NSF beginning on the date of final execution of this PA. Recommendations will continue to be received by NSF up until the date that all federal and state approvals and required permits necessary to initiate project construction have been issued. NSF will consider the recommendations for participation in the Advisory Group and select members within 15 days following the closing date for receiving recommendations. Within 90 days thereafter, the Advisory Group will submit a proposal to OHA, the SHPO, ACHP, NSF, MCC and AURA/NSO (collectively referred to as the "Signatories") that includes proposed educational programs at Maui Community College (MCC) designed to cultivate and reinforce the intersection of Hawaiian culture and knowledge with science technology, engineering, and math courses, programs, certifications, and degrees. The proposal may also include recommendations for staffing, potential participants, and program performance

measures. A 60 day review period by the Signatories shall follow receipt of the proposal, during which a telecon with the Advisory Group shall take place. At the close of the 60 day review period, NSF, in consultation with the other Signatories, shall issue a decision regarding the MCC program that best addresses the proposal by the Advisory Group, the recommendations by the Signatories, and is consistent with its commitment to fund such a program at MCC as set forth in Section 4.2-Cultural, Historic, and Archeological Resources.

- 2. NSF will fund an assessment of historic/cultural resources for State Road 378 similar to the assessment, "Historic American Engineering Record Haleakala Highway HAER No. HI-52" that was done for the HALE road. The scope of work for this assessment shall be developed in consultation with the Hawai'i SHPO.
- **3.** Prior to construction of the proposed ATST Project (if approved), AURA/NSO will ensure that all historic/cultural features and other areas susceptible to potential impact along State Road 378 are photographed and documented.
- 4. At any time during the implementation of the measures stipulated to in this PA, any member of the public and any consulting party who has decided not to sign this PA as a Concurring Party, may continue to participate in this process by raising an objection to NSF, the Hawai'i SHPO, and the Council pertaining to the treatment of an historic property associated with the construction or operation of the proposed ATST Project (if approved). In the event such an objection is raised, NSF, the Hawai'i SHPO, and the Council shall consult regarding how to resolve the objection. If an objection is made, AURA/NSO will not be required to cease work while the objection is being reviewed.

III. OPERATIONS

AURA/NSO will ensure that all persons involved with the operations of the proposed ATST Project shall be required, within a thirty (30) day period of commencing their job, to view as part of worker orientation, attend UH IfA approved "Sense of Place" training videotape which addresses the historic/cultural significance of Haleakalā to Native Hawaiians. AURA/NSO will maintain a list, subject to reasonable and periodic review by the Signatories and Concurring Parties, setting forth the status of worker compliance with the viewing of the training videotape.

It should be emphasized that these mitigation measures have not been fully agreed to among the consulting parties. They are included in a draft PA that is currently under review by the consulting parties; the review and comment period for the draft PA closes on July 23, 2009.

* * *

It should be noted that, regardless of whether a final PA is reached among the consulting parties, NSF has committed -- if the proposed ATST Project is approved for construction funding -- to implementing the mitigation measures set forth in the draft PA for which NSF has an obligation therein. (Please note that if a final PA cannot be agreed upon, the mechanism for developing the educational program at MCC, however, may differ from that set forth in the draft PA, since it obligates a role for other entities such as the ACHP and the SHPD.) To support the educational program initiative at MCC referenced in the draft PA, NSF shall, if the proposed ATST Project is approved, make available \$20 million (\$2 million per fiscal year, commencing in FY 2011), subject to applicable Federal law. Independent from Section 106 mitigation, NEPA, provides for such

mitigation measures to be implemented as a way of compensating for the impact. See 40 CFR § 1508.20.

5.3 Consultation Under the Endangered Species Act

In July 2005, NSF began its consultation with the U.S. Fish & Wildlife Service (USFWS), and a site visit to the preferred and alternate sites for the proposed ATST Project was arranged for September 2005. Onsite discussions with an avian biologist from the USFWS included representatives from HALE, NSO/NOAO, IfA, and KCE. At that time, the USFWS and HALE biologists suggested that preconstruction video monitoring of the 'u'au (Hawaiian petrel) burrow colony adjacent to the preferred site would be a useful tool to characterize the behavior of the 'u'au prior to the proposed ATST Project, so that potential effects during construction, if any, could be recognized. They also suggested that monitoring of a "control" 'u'au colony in HALE during construction would provide a better understanding of potential effects, if any, during construction, by comparing the behavior of 'u'au much further away from construction activities.

In response to that suggestion, NSF initiated a day/night, motion activated, video monitoring program of 30 'u'au burrows at HO in February 2006, with video data collected during the entire nesting season. In addition, video monitoring was established for correlating activities in and around HO. The data was shared with HALE personnel via the internet throughout the nesting season. The video monitoring system has operated throughout each nesting season subsequent to 2006, to build a database of 'u'au behavior during non-construction years.

On June 15th, 2006, NSF requested initiation of formal consultation for the construction and use of the proposed ATST Project, pursuant to Section 7 of the Federal Endangered Species Act of 1973, as amended (16 USC, 1531, et seq.). At that time, NSF determined that the construction of ATST could adversely affect the endangered 'u'au. NSF also determined that the construction would not adversely affect the nēnē (Hawaiian goose), 'ope'ape'a (Hawaiian Hoary bat), or 'ahinahina (Haleakalā silversword). During the pre-consultation and formal consultation process, NSF and USFWS worked cooperatively to develop avoidance and minimization measures to reduce effects to listed species, specifically for the 'u'au occupying burrows in the vicinity of the proposed ATST Project.

In a February 2007 conference call between USFWS and NSF, the USFWS concurred with the NSF determination "...that the inclusion of avoidance and minimization measures had reduced project effects to the level of insignificance" (Vol. II, Appendix M-USFWS **Section 7** Informal Consultation Document). Although not anticipated, it was agreed that if a nēnē or 'u'au was harmed or killed as a result of ATST construction activities, work action would cease and formal consultations would be initiated with USFWS at that time.

USFWS further considered the potential effects on the 'u'au in March 2007, e.g., the unlikely prospect of "incidental take" of 'u'au during construction, and ultimately issued an Informal Section 7 Consultation document rather than a Formal Biological Opinion. The Informal Consultation Document concurred that the proposed ATST Project is not likely to adversely affect the endangered species in question. It also circumscribed the Action Area not likely to be adversely affected by the proposed ATST Project to include the HALE summit area and Park road corridor (Fig. 3-5).

As a result of discussions with HALE regarding the issuance of a Special Use Permit to traverse the Park road, it was determined that the shoulder of the road by the entrance gate would need to be temporarily widened. As a result of this development and its questionable impact on endangered species, HALE and NSF contacted the USFWS. The response from the USFWS was that no further

consultation was required. Accordingly, a statement was added to Section 4.3.2-Evaluation of Potential Effects at the Preferred Mees Site specifying that if a Hawaiian petrel or $n\bar{e}n\bar{e}$ is harmed or killed as a result of ATST construction activities, the USFWS would be contacted immediately and any work action would cease until the cause for the take is formally addressed.

6.0 UNRESOLVED ISSUES

At this juncture, there are three issues that remain unresolved, but are in a significant stage of development. These issues are identified below and are accompanied by a short description of the status of each.

Section 106 consultation process pursuant to the National Historic Preservation Act (NHPA)

As further outlined in Section 5-Notification, Public Involvement, and Consulted Parties, NSF has been involved in a Section 106 consultation process for the proposed ATST Project since 2005. Over 30 formal and informal consultation meetings have been held with consulting parties; the **most recent** consultation meetings were held on June 8, 9, and 10, 2009. NSF has been working with the consulting parties, including the Hawai'i State Historic Preservation Division (SHPD), the Advisory Council on Historic Preservation (ACHP), the National park Service (NPS), and Native Hawaiian Organizations (NHO) and individuals to develop a Programmatic Agreement (PA) to address the adverse effects related to the proposed ATST Project. A draft PA has been prepared pursuant to 36 CFR § 800.14(b) and is currently under review by the consulting parties. A two-week comment period closed on July 23, 2009, and a telecon was held on July 24, 2009, during which responses to comments were explained and efforts made to finalize the draft PA.

If a final PA can be agreed upon and executed by the ACHP, the SHPD, AURA/NSO, NSF, and any other consulting party that has a responsibility under the PA, the Section 106 process will be completed. If a PA cannot be reached, then consultation may be terminated by NSF, the ACHP, or SHPD, and the regulations set forth at 36 CFR. § 800.7 must be followed. If the ACHP provides advisory comments on the proposed ATST Project, NSF must consider and address any such comments in its final decision regarding whether to go forward with the proposed ATST Project.

It should be noted that, regardless of whether a final PA is reached among the consulting parties, NSF has committed -- if the proposed ATST Project is approved for construction funding -- to implementing the mitigation measures set forth in the draft PA for which NSF has an obligation therein. (Please note that if a final PA cannot be agreed upon, the mechanism for developing the educational program at MCC may differ from that set forth in the draft PA since it obligates a role for other entities such as the ACHP and the SHPD.) To support the educational program initiative at MCC referenced in the draft PA, NSF shall, if the proposed ATST Project is approved, make available \$20 million (\$2 million per fiscal year, commencing in FY 2011), subject to applicable Federal law. Independent from Section 106 mitigation, NEPA, provides for such mitigation measures to be implemented as a way of compensating for the impact. *See* 40 CFR § 1508.20.

Finally, it should be noted that NSF's Section 106 process is also intended to serve as the Section 106 process for the NPS in support of its consideration of the issuance of the Special Use Permit (SUP) required by the NPS to operate commercial vehicles on the Haleakalā National Park Road (HALE) during the construction and operation of the proposed ATST Project.

<u>Special Use Permit</u>

Since August of 2008, NSF has been working with the ATST Project team and the NPS on a proposed SUP to allow ATST-related commercial vehicles to traverse along the Park road during the construction and operations phases of the proposed ATST Project. The environmental compliance efforts required in support of the SUP are underway; the NPS has been working with NSF with the goal of using NSF's environmental compliance efforts under NEPA and Section 106 of the NHPA to satisfy its obligations under those statutes. While the parties have agreed to several items in concept, which are included in the analysis contained in this FEIS, details of those items and additional SUP provisions are currently being negotiated.

Federal Aviation Administration Mitigation

The National Science Foundation and the Federal Aviation Administration (FAA) have been working together to address any potential issue involving a degradation of signal as a result of the proposed ATST Project. The FAA recently informed NSF that, "[t]he signal interference can be mitigated by replacing the existing antennas with high gain antennas and replacing/modifying the existing antenna towers to provide increased tower platform size to accommodate the new antennas. Further modifications to the site and relocation of the antennas may be needed to restore signal propagation to pre-construction values." The FAA informed NSF that any further modifications to the site and relocation of the antennas are not anticipated to result in significant effects to the environment. The FAA and NSF are currently working out the details of implementing this mitigation should the proposed ATST Project be approved for funding.

7.0 REFERENCES

- 11 CFR Part 77.35, FAA Obstruction Evaluation and Spectrum Management
- 36 CFR (Code of Federal Regulations) Part 800, Protection of Historic Properties.
- 36 CFR § 5.6, Commercial Vehicles
- 36 CFR § 800 Protection of Historic Properties
- 40 CFR 262.30 Packaging
- 40 CFR 262.31 Labeling
- 40 CFR 262.32 Marking
- 40 CFR 262.33 Placarding
- 40 CFR Parts 1500-1508, NEPA [National Environmental Policy Act] of 1969, as amended, Title 42, United States Code §4321 et seq., the implementing regulations of the Council on Environmental Quality (CEQ)
- 45 CFR Parts 640, National Science Foundation (NSF), Office of the General Counsel, Compliance with NEPA; Environmental Assessment Procedures NEPA.
- ABR, Inc. 2005. "Movements of Hawaiian Petrels Near USAF Facilities Near the Summit of Haleakalā, Maui Island, Fall 2004 and Spring 2005". Prepared for USAF AFRL. September 2005.
- ACE. [Dept. of the Army, Army Corps of Engineers], Honolulu District, Letter from George P. Young, P. E., Chief, Regulatory Branch. March 24, 2009, File No.: POH-2008-296.
- ACHP [Advisory Council on Historic Preservation] Code of Federal Regulations, 36 CFR Part 800, Protecting Historic Properties. Web site: http://www.achp.gov/regs.html.
 - 2006. Letter to Mr. Donald Kima, Director, Office of Federal Agency Programs from Bijan Gilanshah, Assistant General Counsel, National Science Foundation, July 6, 2006.
- AFRL [U. S. Air Force Research Laboratory]. April 2005.
 "Draft Environmental Assessment: Proposed Advanced Electro-Optical System (AEOS) Mirror Coating Facility at the Maui Space Surveillance Complex (MSSC), Haleakalā, Maui, Hawai'i". Prepared by Belt Collins.
- AMEL Technologies, Inc. December 20, 2005. "Energy Efficiency Design Assistance Study for Advanced Technology Solar Telescope Enclosure and Support and Operations Facilities, Haleakalā, Maui". Submitted to Maui Electric Co., Inc.
- APA [American Planners Association]. 2002. "The Language of Traffic: Definitions and Their Applications". Web site: http://www.planning.org/thecommissioner/spring02.htm. Web site accessed December 7, 2005.

- ATST [Advanced Technology Solar Telescope]: "Site Feasibility Report: Big Bear Lake", Web site: http://atst.nso.edu/projbook/fac/reports/bigbear.html. "Site Feasibility Report: La Palma", Web site: http://atst.nso.edu/projbook/fac/reports/lapalma.html. Section 106 public information: Web site: http://atst.nso.edu/library/EIS.shtml. 2006. "Cultural Resource Evaluation and Traditional Practices Report, January 2006". Link to "E Malama Mau Ka La'a: Preserve the Sacredness". Web site: http://atst.nso.edu/library/EIS.shtml. 2004. "Site Survey Working Group Final Report, October 6, 2004", Report #0021, Rev. A. Web site: http://atst.nso.edu/site/reports_final.html. 2002. "ATST Site Requirement Goals, Project Document Specification 0006 Rev. A, October 16, 2002", Web site: http://atst.nso.edu/library/docs/SPEC-0006.pdf. Baker, Elaine. 2005. Solid Waste Engineer, County of Maui, Solid Waste Division. Personal communication with Andrew Gentile of Tetra Tech, Inc. December 7, 2005. BEA [Bureau of Economic Analysis] 2007a. Regional Economic Accounts. Personal Income by Major Source and Earnings by NAICS Industry. Hawaii and Maui County. Web site: http://www.bea.gov/regional/reis/action.cfm. Web site accessed July 17, 2009. 2007b. Per Capita Personal Income for Hawaii and Maui County. Web site: http://www.bea.gov/regional/reis/action.cfm. Web site accessed February 15, 2008. 2007c. Per Capita Personal Income for Hawaii and Maui County between 2001 and 2005. Web site: http://www.bea.gov/regional/reis/action.cfm. Web site accessed February 15, 2008. Bergmanis, E.C., J. M. Sinton and F. A. Trusdell, 2000. "Rejuvenated Volcanism Along the Southwest Rift Zone, East Maui, Hawai'I", Bull. Volcanol., 62, 239-255. Bhattacharji, S. 2005. "Geological Survey of the University of Hawai'i Haleakalā Observatories and Haleakalā Summit Region, East Maui, Hawai'i." App. A, UH IfA Haleakalā Long Range Development Plan (LRDP), 2005. Bishop, Janice L.; Schiffman, Peter; Murad, Enver; Dyar, M. Darby; Drief, Ahmed; and Lane, Melissa D. "Characterization of Alternation Products in Tephra from Haleakalā, Maui: A Visible-Infrared Spectroscopy, Mössbauer Spectroscopy, XRD, EMPA and TEM Study" in, Clays and Clay Minerals; February 2007; v. 55; no. 1; p. 1-17. Bird, Isabella L. 1890. "The Hawaiian Archipelago. Six months among the palm groves, coral reefs, and volcanoes of The Sandwich Islands". Web site: http://ebooks.adelaide.edu.au/b/bird/isabella/hawaii/hawaii.html.
 - 7 2

Web site accessed March 26, 2009.

Boeing, LTS.

- 2005a. "Hazardous Waste Management Plan for Maui Space Surveillance Complex, Haleakalā Summit, Maui, Hawai'i, Revision 9, July 19, 2005", LIB11792. Prepared by Boeing LTS.
- 2005b. The Boeing Company. "Hazardous Material Emergency Response Plan for the Maui Space Surveillance Complex, LIB11796. Haleakalā, Maui, Hawai'i Revision 9. July 19, 2005".
- 2004. "HazMat Plan, Hazardous Material Emergency Response Plan for the Maui Space Surveillance Complex, LIB11796, Haleakalā, Maui, Hawai'i, Revision 6, June 4, 2004".
- Bushnell, K.W. and H.H. Hammatt. 2002. "An Archaeological Inventory Survey of 1.5 Acres of the University of Hawai'i Facility at Haleakalā, Papa`anui Ahupua`a, Makawao District, East Maui (TMK: 2-2-07: 8)", for KC Environmental, Inc., by Cultural Surveys Hawai'i.
- Carney-Nunes, Charisse. 2006. Assistant General Counsel, National Science Foundation, April 25, 2006. Record of Contact documentation with David Brown, Branch Chief, State Historic Preservation Division.
- Carson, M. and Mintmier, M. "Archeological Survey of Previously Recorded Sites in Front Country Areas in the Summit District of Haleakalā National Park, Maui Island, Hawai'i. December 2007". For Official NPS Use Only.
- Cavell, 2008. Cavell, Mertz & Associates, Inc. "Advanced Technology Solar Telescope FAA Interference Mitigation Engineering Statement, August 14, 2008".

CEQ [Council of Environmental Quality]. Code of Federal Regulations, 1997. Considering Cumulative Effects Under the National Environmental Policy Act.

- CfAO [Center for Adaptive Optics]. Web site: http://cfao.ucolick.org/. Akamai Internship Program, Web site: http://cfao.ucolick.org/EO/internshipsnew/akamai/index.php. Professional Development Workshop, Web site: http://cfao.ucolick.org/EO/PDWorkshop/.
- Chatters, J. C. July 1991. "Cultural Resources Inventory and Evaluation for Science City, Conducted for Expansion of the Maui Space Surveillance Site, Haleakalā, Maui, Hawai'i". Prepared for the U. S. Air Force Headquarters Space Division Air Systems Command, Los Angeles Air Force Base. Prepared by the Pacific Northwest Laboratory (Batelle Memorial Institute).
- CKM Cultural Resources, "Cultural Resources Evaluation for the Summit of Haleakalā. Kū I Ka Mauna Upright at the Mountain". March 2003.
- Cole, F. R. et. al., 1992. "Effects of the Argentine Ant Arthropod Fauna on Hawaiian High Elevation Shrublands".
- Conant, S. and Stemmermann Kjargaard, M., Western Birds, Volume 15, Number 3, 1984. "Annotated Checklist of Birds of Haleakalā National Park, Maui, Hawai'i.

County of Maui.

Department of Water Supply. Monthly Water Production.
 Web site: http://mauiwater.org/water.html. Web site accessed July 31, 2006.

	Property. GIS TMK maps. Web site: http://www.mauipropertytax.com/Forms/ Datalet.aspx?sIndex=0&idx=1&LMparent=20. Web site accessed April 17, 2009.
Subs	e 16, Buildings and Construction, Chapter 16.26 (Building Code), Subsection 16.26.101.3 section 101.3 amended. Web site: http://ordlink.com/cgi-bin/hilite.pl/codes/maui/_DATA/ LE16/Chapter_16_26BUILDING_CODE.html#4. Web site accessed July 24, 2006.
	9. Draft Maui Island Plan. Web site:http://www.co.maui.hi.us/index.asp?NID=1120. 9 site accessed April 2009.
Web	8a. Landfill Information. osite: http://www.co.maui.hi.us/departments/EnvironmentalMgt/landfill.htm o site accessed May 19, 2008.
	8b. Draft Maui Island Plan. Volume I, Background. Website: http://www.co.maui.hi.us/ x.asp?NID=934. Web site accessed March 29, 2008.
Sma http	6. Maui County Office of Economic Development, Maui County Data Book, 2006. Hawai'i Il Business Development Center Network. Business Research Library. December 2006. :://hawaii.gov/dbedt/info/economic/data_reports/info/economic/data_reports/mei. o site accessed June 19, 2009.
	5. Landfill Information. Web site: http://www.co.maui.hi.us/departments/Public/ fill.htm. Web site accessed December 14, 2005.
	6. Makawao-Pukalani-Kula Community Plan. July 23, 1996. 9 site: http://www.co.maui.hi.us/departments/Planning/pdf/makawao.pdf.
	D. The General Plan of the County of Maui 1990 Update. June 22, 1990. o site: http://www.co.maui.hi.us/departments/Planning/generalPlan1990.htm.
	r to Protect Worker's Rights]. 2003. Construction Noise Hazard Alert. o site: http://www.cpwr.com/hazpdfs/kfnoise.PDF. Web site accessed December 6, 2005.
	Cultural Resources, LLC] March 2003. "Cultural Resources Evaluation for the Summit of eakalā".
fede	rch. Cambridge Scientific Abstracts launched MultiSearch in 2005. CSA MultiSearch is a rated searching solution that provides integrated access to more than 2,000 electronic rmation resources.
	pore. Dec. 1991. "Report – Preliminary Foundation and Geophysical Investigation Site ction Study, Proposed 4-meter Telescope, Haleakalā, Maui, Hawai'i".
	e of Hawai'i, Hawai'i Department of Business, Economic Development and Tourism]. 9. County Economic Conditions. 3 rd Quarter 2009.

Web site: <u>http://hawaii.gov/dbedt/info/economic/data_reports/qser/county</u>. Web site accessed July 17, 2009.

2007. County Economic Conditions. 4 th Quarter 2007.	
Web site: http://hawaii.gov/dbedt/info/economic/data_reports/qser/co	unty.
Web site accessed February 15, 2008.	
Visitor Report. "2007 Annual Visitor Research Report". Web Site: http://hawaii.gov/dbedt/info/visitor-stats/visitor-research/2 Web site accessed April 15, 2009.	007-annual-research.pdf.
DLNR [State of Hawai'i, Department of Land and Natural Resources] Conservation Lands. Web site: http://hawaii.gov/dlnr/occl/conser Web site accessed June 17, 2009.	vation.
Hawai'i State Parks, Polipoli Spring State Recreation Area. Web site: http://www.hawaiistateparks.org/parks/maui/Index.cfm?par Web site accessed February 26, 2008.	rk_id=39
Maui Watershed. Website: http://www.state.hi.us/dlnr/dofaw/wmp/m Web site accessed March 26, 2009.	aui_part.htm.
2006. Letter to Erik Fredericksen, Xamanek Researches, from Peter X National Historic Preservation Act (NHPA) Section 106 Review – Pr Sites at Science City, Haleakalā, Papaanui-Ahupua'a, Makawao, Islav 007:por. 008.	eservation Plan for 11
2003. Doc. No. 0307MK03, Log No. 2003.1138, Letter from P. Holly Acting Administrator, to Erik Fredericksen, Xamanek Researches, da	
DOH [State of Hawai'i, Department of Health]. 2005. Hawai'i Administrative l http://hawaii.gov/health/about/rules/admrules.html. Web site accessed	
DOI [U. S. Department of the Interior]. 2007. Web site: http://www.doi.gov/ohr/nativehawaiians/list.html. Web site accessed January 16, 2008.	
2006. "Interior Office of Hawaiian Relations Invites Public to Gather Web site: http://www.doi.gov/news/06_News_Releases/060804.htm.	ings on August 14-17."
1994. "Guidelines for Evaluating and Documenting Traditional Cultural Properties", National Register Bulletin 38.	
DOT [State of Hawai'i, Department of Transportation]. 2007a http://www.state.hi.us/dot/highways/maui/mauiroad.htm. Web site accessed April 2007.	
 2007b . Hawai'i DOT Traffic Station Maps, Final.	
2003. Highways Planning Branch 24-hour Traffic Count Station Sun	nmary. April 2003.
East Maui Watershed Partnership: Management and Research. Web site:	

http://ice.ucdavis.edu/~robyn/emhome.html. Web site accessed April 11, 2009.

EPA [U. S. Environmental Protection Agency], Code of Federal Regulations (CFR), Chapter 1, Subchapter I-Solid Wastes, Part 261-299. Web site: http://www.epa.gov/epahome/cfr40.htm.

Executive Order (EO)

- EO 1987, December 12, 1961, State of Hawai'i, Setting Aside Land for Public Purposes.
- EO 12898, February 11, 1994, Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations.
- _____ EO 13045, April 21, 1997, Protection of Children from Environmental Health Risks and Safety Risks.
- FAA [Federal Aviation Administration]
 - 2009. Personal communication with A. Walker-Jack, FAA, Western Service Area, Technical Operations and Dr. Charlie Fein, KC Environmental, Inc.
- 2007. "Determination of No Hazard to Air Navigation, Aeronautical Study No. 2007-AWP-1760-OE", issued to Pete Figgis, Boeing LTS for U. S. Air Force Telescope, May 11, 2007.

Federal Register. Web site: http://www.archives.gov/federal-register/the-federal-register/about.html.

- Vol. 72, No. 186/Wednesday, September 26, 2007 / Notices, Department of the Interior, Office of the Secretary Native Hawaiian Organization Notification List.
- FHWA [U.S. Department of Transportation] Federal Highway Administration]. Web site: http://www.fhwa.dot.gov/environment/conformity/ref_guid/glossary.htm#vmt. Web site accessed December 7, 2005.
- 2008. Marquez, H. R., Trip Report, Report #HALA 3-2-2009, March 2, 2008. Federal Highway Administration, Haleakalā Highway, Haleakalā National Park, Pavement/Drainage Condition Investigation, Distress Identification and Recommendations.
- FTF EA [Faulkes Telescope Facility Environmental Assessment]. May 2001."Final Environmental Assessment/Negative Declaration for the Faulkes Telescope Facility at Haleakalā, Maui, Hawai'i'. Prepared by KC Environmental, Inc.
- Foote, D., Hill, Elmer H., Nakamura, Sakuichi, and Stephens, Floyd, Soil Conservation Service. Website: http://www.ctahr.hawaii.edu/soilsurvey/5is/maui.htm. Web site accessed March 29, 2009
- Frasher, Heather, V. Parker-Geisman and G. R. Parish. 2007. "Hawaiian Hoary Bat Inventory in National Park on the Island of Hawai'i, Maui and Moloka'i." Technical Report 140. Pacific Cooperative Studies Unit, University of Hawai'i, Honolulu, Hawaii. 25 pp. (unpublished data).
- Fredericksen, Erik and Fredericksen, Demaris. 2003. "Archaeological Inventory Survey of 18.1-acre parcel at Science City, Haleakalā Crater, Papa`anui ahupua`a, Makawao District, Maui Island (TMK: 2-2-07: por. 8)", Prepared for Mr. Charles Fein, KC Environmental, Inc., Makawao, Maui.

- Fornander, Abraham,1812-1887, An account of the Polynesian race; its origin and migrations and the ancient history of the Hawaiian people to the times of Kamehameha I. Website: http://books.google.com/books?id=xOVPm_o8bW8C&dq=An+account+of+the+Polynesian+ra ce%3B+its+origin+and+migrations+and+the+ancient+history+of+the+Hawaiian+people+to+th e+times+of+Kamehameha+I.&printsec=frontcover&source=bl&ots=FlaEYrnOKn&sig=tWm2r jczpdccLfCckjEYG2cmSIA&hl=en&ei=rd3gSeKEKIeItAPdm7inCQ&sa=X&oi=book_result& ct=resu lt&resnum=1#PPR7,M1. Web site accessed March 25, 2009.
- Fukunaga and Associates. 2003. "State Water Project Plans, Hawai'i Water Plan". Volume 4, SWPPP for Islands of Lanai/Maui/Molokai. February 2003.
- Fullard, J.H., 1989. "'Ope'ape'a: Hawaii's Elusive Native Bat." Bats Magazine Vol: 17(3).
- Gambino, Parker, et. al. 1990. "Invasion and Colonization of Upper Elevations on East Maui (Hawai'i) by Vespula pensylvanica".
- Gambino, Parker, 1992. "Yellow-Jacket (*Vespula pensylvanica*) Predation at Hawai'i Volcanoes and Haleakalā National Park's: Identity of Prey Items".
- HALE [Haleakalā National Park].
- 2009. E-mail from Cathleen Natividad Bailey to KC Environmental, Inc. stating "Bats have been detected near Park Headquarters and Hosmer Grove (Frasher et al. 2007, HALE unpubl. data), but there has been no effort made to determine if bats occur along the Park road."
- 2008. Internal HALE Memorandum from Raina Kaholoa'a to Cathleen Bailey, November 2008. Subject: Review of Appendix C(2), Supplemental Arthropod Sampling at the Haleakalā High Altitude Observatories Maui, Hawai'i
- _____ 2006. DEIS comment letter from HALE regarding 1.7 million annual visitors to HALE, Marilyn Parris, Park Superintendent, October 19, 2006.
- 2005a. Haleakalā National Park Air Quality Information. Web site: http://www2.nature.nps.gov/air/Permits/ARIS/HALE/. Web site accessed December 1, 2005.
- 2005b. Haleakalā National Park Official Web site. Planning your Visit: Weather. Web site: http://www.nps.gov/hale/pages/tier_two/weather.htm. Web site accessed December 1, 2005.
- 2003. "Hawaiian Petrels Near the Haleakalā Observatories: A Report to KC Environmental, Inc. for Preparation of a Long-Range Development Plan", Prepared by Cathleen Natividad Bailey, HALE Wildlife Biologist, Endangered Species Management.
- _____ 1994 and 2000. Haleakalā National Park Visitor Study.
- _____ 197? Stet.
 - HAER [Historic American Engineering Record], Haleakalā Highway, HAER No. HI-52.

HAR [State of Hawai'i, Hawai'i Administrative Rules]:

- 11-46-3. HAR Title 11, Chapter 46. Community Noise Control (Department of Health).
 Web site: http://gen.doh.hawaii.gov/sites/har/admrules/default.aspx.
 Web site accessed May 19, 2008.
- _____ HAR Title 11, Chapter 60, Air Pollution Control.
- _____ HAR, Title 11, Chapter 200, Environmental Impact Statement Rules.
- _____ HAR, Title 13, Chapter 5, Conservation District, Subtitle 14, General Subzone.
- HAR, Title 13, Department of Land and Natural Resources, Subtitle 13, State Historic Preservation Division Rules, Chapter 277, Rules Governing Requirements for Archaeological Site Preservation and Development.

Hawaiian Historical Society, 1997. "The Hawaiian Journal of History", Vol. 31, 1997.

_____ §291-34 to 36, Traffic Violations.

- IAC [Instituto de Astrofísica de Canarias]. Gallería de Imágenes. Web site:http://www.iac.es/gabinete/difus/ruta/observatorios/roque.htm.
- Island Geotechnical Engineering, Inc. 2005. "Report, Soils Investigation, Proposed Advanced Technology Solar Telescope, Haleakalā Observatory, May 5, 2005". Web site: http://atst.nso.edu/contracts/Reports/CON-0014_IslandGeotech.pdf.
- Iwado Court Reporters. 2006. Transcripts for the National Science Foundation, Section 106 Formal Meetings for the Advanced Technology Solar Telescope, March 28, 2006 and May 1, 2006.
- Jackson, Frances. University of Hawai'i Archivist. "Military Use of Haleakalā National Park". Hawaiian Journal of History, Vol. 6, 1972.
- Jensen, Robert. 2005. Retired U.S. Air Force and Boeing LTS, Personal communication with Dr. Charlie Fein (KC Environmental, Inc.).

Kauhi, Greg. 2005. Email to Mike Maberry, UH IfA. August 11, 2005.

KCE [KC Environmental, Inc.].

- 2009. Follow-up phone calls to agencies with facilities at Haleakalā summit, regarding "Cumulative Impact Analysis for Project on Haleakalā, Maui, HI", February 2009.
- 2006, February. "Proposal for Implementation of an 'Ua'u Monitoring System at Haleakalā Observatories and Haleakalā National Park", submitted to U. S. Fish & Wildlife Service.
 - 2005. Letter from KCE sent to agencies with facilities at Haleakalā summit, regarding "Cumulative Impact Analysis for Project on Haleakalā, Maui, HI", November 9, 2005.

- KHNL, 2007. KHNL News Archives, September 27, 2007. "Woman Killed in Downhill Bicycle Accident Identified". Website: http://www.khnl.com/Global/story.asp?S=7139939 Web site accessed April 10, 2009.
- Klaeboe, R. Turunen-Riseb, I.H. Hårvikc, L. and Madshusc, C. 2003. "Vibration in dwellings from road and rail traffic-Part II: exposure-effect relationships based on ordinal logit and logistic regression models. Applied Acoustics 64, 89–109. Web site: http://www.defra.gov.uk/ENVIRONMENT/noise/research/pdf/human-response-vibrationresidential-environments.pdf. Accessed on April 20, 2009.
- Lawson, S., B. Kiser, K. Hockett, A. Ingram. 2008. "Research to Support Backcountry Visitor Use Management and Resource Protection in Haleakalā National Park Final Report". Department of Forestry, College of Natural Resources, Virginia Polytechnic Institute and State University.
- Lopate, Cliff. 2005. University of Chicago Neutron Monitor. Personal communication with Daniel O'Gara of the Institute for Astronomy at the University of Hawai'i. November 15, 2005.
- Maxwell, Charles K. 2006. "Hālau 'Imi 'Ike Hōkū, Center for Traditional Hawaiian Navigation and Astronomy", mitigation proposal submitted to National Science Foundation. March 28, 2006.
- McKee and Taylor. 2001. National Research Council, "Astronomy and Astrophysics Survey Committee Decadal Survey: Astronomy and Astrophysics in the New Millennium".
- Medeiros, A. C., L. L. Loope and C. G. Chimera, 1998. Technical Report 120, "Flowering plants and Gymnosperms of Haleakalā National Park". June 1998.
- Medeiros, A.C., F.R. Cole, and L.L. Loope. 1994. Impacts of biological invasions on the management and recovery of rare plants in Haleakala National Park, Maui, Hawaiian Islands. In Restoration of Endangered Species, M. Bowles and C.J. Whelan (eds.).
- MichiganTech. 2004. Geological & Mining Engineering & Sciences Department. UPSeis. Web site: http://www.geo.mtu.edu/UPSeis/index.html.

NASA [National Aeronautics and Space Administration].

- 2006. Hathaway, Dr. David H., The Sunspot Cycle. Solar Physics web site: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml.
- _____ 2005. Final Environmental Impact Statement for the Outrigger Telescope Project, February 2005.
- Natividad Bailey. 2009. Technical Report 164. "Seabird Inventory at Haleakalā National Park, Maui, Hawai'i. February 2009".
- Natividad Hodges, C. S N. and R. J. Nagata. 2001. "Effects of Predator Control on the Survival and Breeding Success of the Endangered Hawaiian Dark-rumped Petrel". Studies in Avian Biology 22:308–318.
- NSO [National Solar Observatory], 2007. Preliminary Seismic Design Analysis: Advanced Technology Solar Telescope. December 18, 2007.

NPCA [National Park Conservation Association] Press Release January 14, 2003.

NPS/USI	DOI [National Park Service/U.S. Dept. of the Interior] NPS-28: "Cultural Resource Management Guidelines", June 11, 1998.
	2009. Haleakalā National Park website: http://www.nps.gov/hale. Web site accessed March 19, 2009.
	2008a. HALE News Advisory. Bicycle Tours Moratorium to Continue at Haleakalā National Park. M. Parris, Superintendent, March 18, 2008.
	2008b. CLI. NPS "Cultural Landscapes Inventory", May 28, 2008.
	NPS Stats. National Park Service Public Use Statistics Office, 2007 and 2008.
	2001. NPS Director's Order 12 Conservation Planning, Environmental Impact Analysis and Decision Making.
	2000. "Haleakalā National Park Visitor Study, Report, and Report Summary".
	1959. Hawai'i Nature Notes, The Publication of the Naturalist Division, Hawai'i National Park and the Hawai'i Natural History Association, June 1959.
	Ethnographic Study. "An Ethnographic Overview and Study of the Cultural Impacts of Commercial Air Tours Over Haleakalā National Park, Island of Maui". Prasad, U., Ph.D., Tomonari-Tuggle, M.J., M.A., International Archaeological Research Institute, Inc., June 2008
	Nagata, 2001. Letter from Ron Nagata, sr. HALE Chief of Resources Management to Paul Henson, Field Supervisor, USFWS Pacific Islands Ecoregion. "Subject: Update on Mitigation Measures for Road Resurfacing at Haleakalā National Park". July 5, 2001.
OCCL [S	State of Hawai'i, Office of Conservation and Coastal Lands]. Web site: http://www.hawaii.gov/dlnr/occl/conservation.php
	Subzone maps. Web site: http://www.hawaii.gov/dlnr/occl/subzone.php.
	2006. Reference letter MA 06-47 from Mr. Sam Lemmo, Administrator, OCCL to Dr. Charlie Fein, Vice President, KC Environmental, Inc. September 23, 2006.
Odenwal	d, Sten. 1999. "Solar Storms". Special to the Washington Post, Wednesday, March 10, 1999; Page H01. Web site: http://solar.physics.montana.edu/press/WashPost/Horizon/196l-031099- idx.html.
OEQC. [Hawai'i State Department of Health Office of Environmental Quality Control] 2005. Letter from Genevieve Salmonson (OEQC) to Mike Maberry (University of Hawai'i Institute for Astronomy), Subject: Environmental Impact Statement (EIS) Preparation Notice, Advanced Technology Solar Telescope at Haleakalā September 12, 2005.
	1997] Guidelines for Assessing Cultural Impacts. Electronic Document, http://www.state.hi.us/health/oeqc/guidance/cultural.htm. Web site accessed April 2007.

OHA [Office of Hawaiian Affairs]. 2005. Letter to Dr. Charlie Fein, KC Environmental, Inc. from Mr. Clyde Nāmu'o, OHA Administrator. October 17, 2005.

OMB [Office of Management and Budget]. 2008. E-mail correspondence from Amanda Lee, OMB (November 13, 2008) to Tony Gibson, NSF Senior Legislative Policy Analyst (November 12, 2008), regarding use of 2007 Visitor Survey conducted outside HALE. OMB "determined that the survey that was conducted is outside the scope of the PRA [paperwork reduction act]."

- OSHA [Occupational Safety and Health Administration. 29 CFR part 1910, subpart Z (Toxic and Hazardous Substances). Website:http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9991&p_text_version=FALSE. Web site accessed on April 17, 2009.
- Pacific Disaster Center, Stearns, Harold T. 1967. Department of Geography, University of Hawai'i. "Atlas of Hawai'i." "Geology of the Hawaiian Islands." Natural Hazard information. Web site: http://www.pdc.org/iweb/hazard_info.jsp.
- Parker and Canizares. 1998. National Research Council, "Ground-based Solar Research: An Assessment and Strategy for the Future".

L. Phelps. "Evaluation of thermal control coatings exposed to ambient weather conditions at Haleakalā High Altitude Observatory." In *Ground-based and Airborne Telescopes II*. Edited by Stepp, Larry M.; Gilmozzi, Roberto. *Proc SPIE* 7012, 701230 (2008).

_____ 2005. "Acoustic Evaluation of ATST Mechanical Equipment Building". ATST Mechanical Engineering Group. July 2005.

- RCRA [U. S. Environmental Protection Agency, Resource Conservation and Recovery Act]. Web sites: http://www.epa.gov/region5/defs/html/rcra.htm and http://www.eh.doe.gov/oepa/laws/rcra.html.
- Resource Systems Group, Inc. 2006. The RSG Noise Primer. 12pp. Web site: <u>http://www.rsginc.com/pdf/RSGNoisePrimer.pdf</u>. Web site accessed April 2009.
- Rocketdyne. 2003. Rocketdyne Technical Services, A Boeing Company. "Spill Prevention Control and Countermeasure Plan For Maui Space Surveillance Complex", LIB11796. February 2003.
- Scholl, Martha A., Stephen B. Gingerich, and Gordon W. Tribble. 2002. "The Influence of Microclimates and Fog on Stable Isotope Signatures Used in Interpretation of Regional Hydrology: East Maui, Hawai'i". Journal of Hydrology 2002, v. 264, no 1-4, p. 170-184.
 - Sherrod D.R., Nishimitsu, Y., and Tagami, T., New K-Ar Ages and the Geologic Evidence Against Rejuvenated-stage Volcanism at Haleakaleā, East Maui, A Postshield-stage Volcano of the Hawaiian Island Chain, *GSA Bulletin*; June 2003; v. 115; no. 6; p. 683-694.
- Shimko, S. 2005. Personal communication between S. Shimko (Boeing) and Sharon Loando-Monro (KC Environmental, Inc.), December 6, 2005.
 - 2004. FY04 Hazardous Waste Report for MSSC. September 30, 2004.

- Simons, T. R., and C. Natividad Hodges. 1998. "Dark-rumped Petrel". The Birds of North America, No. 13 (A. Poole and F. Gill, eds.). Academy Natural Sci., Philadelphia, and Amer. Ornith. Union, Washington, D. C.
- Sinton, J. 2003. University of Hawai'i School of Ocean and Earth Science and Technology (SOEST), personal communication with Dr. Charlie Fein (KC Environmental, Inc.).
- Starr, Forest and Starr, Kim. 2002. "Botanical Survey, University of Hawai'i, Haleakalā Observatories", Island o Maui, Hawai'i, November, 2002.
- Tele Atlas Map, 2009. Google Earth. Web site accessed April 13, 2009.
- Turunen-Rise, I.H., Brekke, A., Hårvik, L., Madshus, C. and Klæboe, R. 2003. Vibration in dwellings from road and rail traffic – Part 1: a new Norwegian measurement standard and classification system. Applied Acoustics 64, (1), 71-87. Web site: http://www.defra.gov.uk/ENVIRONMENT/noise/research/pdf/human-response-vibrationresidential-environments.pdf. Web site accessed April 20, 2009.
- Ueshiro, R., 1999. SHEA Program Lead, Boeing LTS. Summary of Discussions on the Propylene Glycol Incident at MSSC.
- UH IfA [University of Hawai'i, Institute for Astronomy]. 2009. Maberry, M., Assistant Director. Personal communication with Dr. Charlie Fein (KC Environmental, Inc.).
- _____ 2006. "Haleakalā High Altitude Observatory, Stormwater Management Plan". Prepared by Tetra Tech, Inc.2006.
- _____ 2005. "Haleakalā High Altitude Observatory Site Long Range Development Plan (LRDP)". KC Environmental, January 2005. Web site: http://www.ifa.hawaii.edu/haleakala/LRDP/.
- _____ 2005a. "Haleakalā High Altitude Observatory Stormwater Erosion Report". Prepared by Tetra Tech, Inc., July 2005.
 - 2005b. Institute For Astronomy, Haleakalā Division, "Hazardous Material and Hazardous Waste Management Program, Rev. Dec. 1, 2005".
- UH Manoa [University of Hawai'i at Manoa]. 2002, October. "Hazardous Material Management Program".

U.S. Census Bureau.

- 2006a. Maui County Selected Housing Characteristics: 2006. Web site: http://factfinder.census.gov. Web site accessed February 14, 2008.
- _____ 2006b. Hawai'i Selected Housing Characteristics: 2006. Web site: http://factfinder.census.gov. Web site accessed February 15, 2008.
 - _____ 2006c. Maui County, Hawai'i. Selected Economic Characteristics: 2006. Web site: http://factfinder.census.gov. Web site accessed February 18, 2008.

- _____ 2006d. Maui County, Hawai'i. 2006. American Community Survey. Data Profile Highlights. Web site: http://factfinder.census.gov. Web site accessed February 18, 2008.
- _____ 2006e. Hawai'i. 2006. American Community Survey. Data Profile Highlights. Web site: http://factfinder.census.gov. Web site accessed February 18, 2008.

U.S. Code, Title 16. 1, 2, 3, and 4. The National Park Service Organic Act .

- USFWS [U.S. Fish and Wildlife Service].
 - _____ 2004. "Draft Revised Recovery Plan for the Nēnē or Hawaiian Goose". First revision July 2004. Region 1, USFWS, Portland, Oregon.
- 1998. "Terrestrial Mammal, 'Ōpe'ape'a or Hawaiian Hoary Bat, Lasiurus cinereus semotus.
 Species Status: Federally listed as Endangered, State listed as Endangered, State recognized as Indigenous (at the species level and Endemic at the subspecies level) Nature Serve Heritage Rank G2/T2 Species secure/Subspecies imperiled, Recovery Plan for the Hawaiian Hoary Bat USFWS 1998".

USGS [U.S. Geological Survey]. Web site: <u>http://pubs.usgs.gov/gip/hazards/earthquakes.html</u>.

_____ NED [National Elevation Dataset] website: <u>http://ned.usgs.gov/</u>. Web site accessed August 1, 2008.

U.S. Soil Conservation Service, 1972.

Wilson, E. O. & Taylor, R. W., 1967. The Ants of Polynesia.

- WRCC [Western Regional Climate Center]. 2005. Haleakalā RS 338, Hawai'i (511004). Web site: http://www.wrcc.dri.edu/cgi-bin/cliRECtM.pl?hihale. Web site accessed November 7, 2005.
- Yuen, George A. L. and Associates. 1990. "Water Resources Protection Plan Volumes I & II. Commission on Water Resource Management Department of Land and Natural Resources State of Hawai'i. June 1990".

This page intentionally left blank.

8.0 ACRONYMS, ABBREVIATIONS AND TERMINOLOGY, INDEX

8.1 ACRONYMS

Α	ACE	U. S. Dept. of the Army, Army Corps of Engineers
	ACHP	Advisory Council on Historic Preservation
	AEOS	Advanced Electro-Optical System
	AFRL	Air Force Research Laboratory
	AGNs	active galactic nuclei
	AIS	alien invasive species
	AMOS	ARPA Maui Optical Station
	AO	adaptive optics
	APA	American Planners Association
	APE	area of potential effect
	ARPA	Advanced Projects Research Agency
	ASHRAE	American Society of Heating, Air-conditioning and Refrigeration Engineers
	ASL	above sea level
	ASP	Astronomical Society of the Pacific
	ATRC	Advanced Technology Research Center
	ATST	Advanced Technology Solar Telescope
	AURA	Association of Universities for Research in Astronomy
	AVCO	AVCO Everett Research Laboratory
	AWS	Aircraft Warning Service
B	BAS	Bachelor of Applied Science
	BBSO	Big Bear Solar Observatory
	BEA	Bureau of Economic Analysis
	BPR	Bureau of Public Roads
	BLNR	Board of Land and Natural Resources
	BMPs	best management practices
С	CCC	Civilian Conservation Corps
	CDUA	Conservation District Use Application
	CDUP	Conservation District Use Permit
	CEQ	Council on Environmental Quality
	CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
	CFR	Code of Federal Regulations
	CfAO	Center for Adaptive Optics
	CKM	Kahu Charles Kauluwehi Maxwell
	CLI	Cultural Landscapes Inventory
	CME	coronal mass ejection
	CPWR	Center to Protect Worker's Rights
	CSH	Cultural Surveys Hawai'i, Inc.
	CZMA	Coastal Zone Management Area
	CZMP	Coastal Zone Management Permit
D	dBA	"A-weighted" decibel scale
	DBEDT	State of Hawai'i Department of Business, Economic Development and Tourism
	DEIS	Draft Environmental Impact Statement, dated September 2006
	DLNR	State of Hawai'i Department of Land and Natural Resources
	DoD	Department of Defense

	DOE	U.S. Department of Energy
	DOH	State of Hawai'i Department of Health
	DOI	U. S. Department of the Interior
	DOT	State of Hawai'i Department of Transportation
E	E&O	Education and Outreach
	EIS	Environmental Impact Statement
	EISPN	Environmental Impact Statement Preparation Notice
	EO	Executive Order
	EPA	U. S. Environmental Protection Agency
	EPE	Estimated Position Error
	ESA	Endangered Species Act
	ESALS	Equivalent Single-Axis Loads
F	FAA	Federal Aviation Administration
	FDA	Food and Drug Administration
	FEIS	Final Environmental Impact Statement
	FHWA	Federal Highway Administration
	FTF	Faulkes Telescope Facility
	FY	fiscal year
G	GEODSS	Ground-Based Electro-Optical Deep Space Surveillance System
	GIS	Geographic Information Systems
	GONG	Global Oscillations Network Group
	GPS	global positioning system
Н	HAER	Historic American Engineering Record
	HALE	Haleakalā National Park
	HAO	High Altitude Observatory
	HAVO	Hawai'i Volcanoes National Park
	HAR	Hawai'i Administrative Rules
	HAZMAT	hazardous materials
	HDOT	Hawai'i Department of Transportation
	HO	Haleakalā High Altitude Observatories
	HRS	Hawai'i Revised Statues
	HST	Hawai'i Standard Time
Ι	IAC	Instituto de Astrofisica de Canarias
	ICONA	Instituto Nacional para la Conservación de la Naturaleza
	IfA	University of Hawai'i, Institute for Astronomy
	IGY	International Geophysical Year
	IWS	Individual Wastewater System
K	kbs	kilobytes per second
	KCE	KC Environmental, Inc.
	kV	kilovolt
	kVA	kilovolt-ampere
L	LAT/LON	Latitude/Longitude
	LCOGT	Las Cumbres Observatory Global Telescope Network, Inc.
	LOS	Level of Service

Р	PA Pan-STARRS PDW	Programmatic Agreement Panoramic-Survey Telescope and Rapid Response System Professional Development Workshop
-		
	OSHA	Occupational Safety and Health Administration
	ORM	Roque de los Muchachos Observatory, Canary Island, La Palma, Spain
	OMB	Office of Management and Business
	OHA	State of Hawai'i Office of Hawaiian Affairs
	OEQC	Office of Environmental Quality Control
	ODS	ozone-depleting substance
0	OCCL	Office of Conservation and Coastal Lands
	NSO	National Solar Observatory
	NSF	National Science Foundation
	NRHP	National Register of Historic Places
	NPS	National Park Service
	NPCA	National Park Conservation Association
	NOI	Notice of Intent
	NOAO	National Optical Astronomy Observatory
	NOAA	National Oceanic and Atmospheric Administration
	NHPA	National Historic Preservation Act
	NHO	Native Hawaiian Organization
	NGS	National Geodetic Survey
	NEPA	National Environmental Policy Act
	NED	National Elevation Dataset
	NCAR	National Center for Atmospheric Research
	NASA	National Aeronautics and Space Administration
Ν	NARA	National Archives and Records Administration
NT		
	MSTEE	Maui Science and Technology Education Exchange
	MSSS	Maui Space Surveillance System
	MSSC	Maui Space Surveillance Complex
	MSO	C. E. Kenneth Mees Solar Observatory
	MSDS MSO	Material Safety Data Sheets
		Major Research Equipment and Facilities Construction
	MREFC	
	mph	miles per hour
	MPD	Maui Police Department
	MP	mile post
	MOA	Memorandum of Agreement
	MECO	Maui Economic Development Board, Inc.
	MECO	Maui Electric Co., Inc.
	MCF	Mirror Coating Facility
	MCC	Maui Community College
	Mbs	Megabytes per second
	MAGNUM	Multi-color Active Galactic Nuclei Monitor
-	M2	secondary mirror
\mathbf{M}	M1	primary mirror
	LOIL	Lana Kanging Depenment
	LURE	Lunar Ranging Experiment
	LUC	Land Use Commission
	LRDP	Long Range Development Plan, UH IfA

	PPV	peak particle velocity
R	RCAG	Remote Communications Air/Ground
	RCRA	Resource Conservation and Recovery Act
	RBSE	Research Based Science Education
	RET	Research Experiences for Teachers
	REU	Research Experience for Undergraduates
	ROI	Region of Influence
	KOI	Region of influence
S	S&O	Support and Operations Building
	SCIA	Supplemental Cultural Impact Assessment
	SCOPE	Southwest Consortium of Observatories for Public Education
	SDDS	Seamless Data Distribution System
	SDEIS	Supplement Draft Environmental Impact Statement
	SHPD	State Historic Preservation Division
	SHPO	State Historic Preservation Officer
	SIHP	State Inventory of Historic Properties
	SLR	Satellite Laser Ranging
	SOC	Solar Observatory Counsel
	SOC	species of concern
	SOLAR-C	Scatter-free Observatory for Limb Active Regions and Coronae
	SOLIS	Synoptic Optical Long-term Investigations of the Sun
	SQG	Small Quantity Generator
	SRD	Science Requirements Document
	SSWG	Site Survey Working Group
	START	Science Teaching with Astronomical Robotic Telescopes
	STEM	science, technology, engineering, and math; CfAO program
	SUP	Special Use Permit
	SWG	Science Working Group
	SWMP	Stormwater Management Plan
Т	TCP	Traditional Cultural Property
-	TMK	Tax Map Key
	TOPS	Towards Other Planetary Systems
	TPD	trips per day
U	UH	University of Hawai'i
	UHF	Ultra-High Frequency
	UK	United Kingdom
	UM	University of Michigan
	URM	under-represented minorities
	USAFRL	U. S. Air Force Research Laboratory
	USEPA	U.S. Environmental Protection Agency
	USFWS	U. S. Fish & Wildlife Service
	USGS	U. S. Geological Survey
	UV	ultraviolet
V	V/C	Volume/Capacity
	VHF	Very High Frequency
W	WRCC	Western Regional Climate Center

8.2 ABBREVIATIONS AND TERMINOLOGY

'ahinahina	Haleakalā Silversword, <i>Argyroxiphium sandwicense</i> <i>subsp. Macrocephalum.</i> Low-growing plant found only in volcanic craters on Hawai'i having rosettes of narrow pointed silver-green leaves and clusters of profuse red-purple flowers on a tall stem
ahu	altar or shrine
akamai	smart, clever
centimeter	A metric unit of measure where 2.5 centimeters equals 1 inch
chukar	Alectoris chukar
Cinder Land	rCl
су	cubic yards
feral goat	Capra hircus
field-of-view	The size of the area that can be seen while looking through an optics device. The angular field-of-view is indicated on the outside of the binocular, in degrees. The linear field of view refers to the area that can be observed at 1,000 yards, and is expressed in feet. Field-of-view is related to magnification, with greater magnification typically resulting in a smaller field-of-view.
gauss	The centimeter-gram-second unit of magnetic flux density, equal to one maxwell per square centimeter.
Haleakalā	House of the Sun; mountain at 10,023 ft ASL on island of Maui
HazMat	hazardous material
Hawaiian Petrel	'Ua'u, Pterodoma phaeopygia sandwichensis
Hawaiian Goose	Nēnē, Branta sandvicensis or Nesochen sandvicensis
Hawaiian Hoary Bat	'Ope 'ape 'a, Lasiurus cinereus semotus
Haleakalā Silversword	'ahinahina, <i>Argyroxiphium sandwicense subsp. Macrocephalum</i> Low- growing plant found only in volcanic craters on Hawai'i having rosettes of narrow pointed silver-green leaves and clusters of profuse red-purple flowers on a tall stem
Hinala'anui	Name dedicated to West-facing ahu on Haleakalā
Honua'lua	area of Maui once inhabited by Hawaiian people
hoʻomahanahana	dedication or "warming" offering

ho'oponopono	to "make right"
hula hālau	place to dance hula
I na 'ōiwi Hawai'i Aloha 'āina	To the native caretakers of the land, please enter.
Indian mongoose	Herpestes auropunctatus
kama'āina	native born
Kanaka Maoli	Native Hawaiian
kahu	clergyman
Kāhuna Po'o	head priest
Kanaka Maoli	indigenous Hawaiian person
Kinolau	supernatural forms taken by Pele
koʻa	ceremonial rock formations
Kolekole	 Land section in Kilohana and Mākena. (1) One account explicates that Kolekole was named after the first Kole, for its similarity in the abundance of the rusty hue. (2) The second account stated that Kolekole means to "talk story". Some believe it was an area where Kahuna Po'o or High Priests would come to delve over tough issues.
Konohiki	Headman of an ahupua'a land division under the chief; land or fishing rights under control of the konohiki; such rights are sometimes called konohiki rights
kuleana	responsibility
Kumu Hula	hula master
kupuna	elders
na poāo kāhuna	priest
mana	spirit
M1	primary mirror
M2	secondary mirror

Makahiki	Ancient festival beginning about the middle of October and lasting about four months, with sports and religious festivities and taboo on war
Maui Nui O Kama	the greater Maui
meter	A metric unit of measure that equals 39.37 inches
moʻolelo	stories
Nēnē	Hawaiian Goose, Branta sandvicensis or Nesochen sandvicensis
oli	chants
'Ope 'ape 'a	Hawaiian Hoary Bat, Lasiurus cinereus semotus
ʻopihi	limpet, Cellana spp.
Pā'ele Kū Ai I Ka Moku	Name dedicated to East-facing ahu on Haleakalā
Pele	Goddess of the Volcano
PI-based observing	principal investigator-based observing
piko	navel
Pinus sp.	large genus of true pines
Polynesian rat	Rattus exulans
puʻu	hill
Pu'u Kolekole	land near the summit of Haleakalā
Pu'u Ula'ula	Red Hill Overlook
Roof rat	Rattus rattus
seeing	Seeing is a term used by astronomers as a measure of the image quality with "excellent seeing" referring to conditions under which the images delivered through the atmosphere are very sharp and "bad seeing" referring to atmospheric conditions that blur the images.
Star Compass	A learning tool used to teach direction without instruments: The star compass is the basic mental construct for navigation, to help one memorize what is needed to navigate.

synoptic observations	A surface weather observation, made at periodic times (usually at 3-hourly and 6-hourly intervals specified by the World Meteorological Organization), of sky cover, state of the sky, cloud height, atmospheric pressure reduced to sea level, temperature, dew point, wind speed and direction, amount of precipitation, hydrometeors and lithometeors, and special phenomena that prevail at the time of the observation or have been observed since the previous specified observation.
telecon	telecommunication conversation
ʻuaʻu	Hawaiian Petrel, Pterodoma phaeopygia sandwichensis
Wahi Pana	a legendary place

8.3 INDEX

- **ahu**, 1-20, 1-24, 1-31, 3-12, 3-18, 3-39, 3-42, 3-67, 4-9, 4-142, 4-150, 4-152, 4-155
- **air quality**, 3-1, 3-61, 3-62, 4-111, 4-112, 4-113, 4-144, 4-145, 4-146, 4-147, 4-148, 4-149, 4-164, 4-166, 4-170, 4-212, 4-213, 4-223, 4-224, 4-225, 4-226, 4-234, 4-235
- **archeological resources**, 2-16, 3-7, 3-30, 4-7, 4-8, 4-16, 4-17, 4-18, 4-19, 4-20, 4-144, 4-162, 4-165, 4-169, 4-176, 4-177, 4-178, 4-179, 4-223, 4-224, 4-225, 4-226, 4-227, 4-228, 4-232, 4-233, 4-234, 5-44
- **basalt collection**, 2-24, 3-20, 3-45, 3-50, 3-56, 4-203
- **biological resources**, 4-5, 4-20, 4-21, 4-23, 4-31, 4-32, 4-34, 4-36, 4-138, 4-162, 4-166, 4-169, 4-179, 4-181, 4-183, 4-186, 4-223, 4-224, 4-225, 4-226, 4-228, 4-233, 4-234
- **botanical resources**, 4-22, 4-23, 4-24, 4-30, 4-36, 4-162, 4-180, 4-181, 4-183, 4-184
- **C. E. Kenneth Mees Solar Observatory** (**MSO**), 1-2, 1-21, 1-23, 1-25, 2-1, 2-18, 2-20, 2-21, 2-22, 2-23, 2-26, 2-27, 2-38, 2-41, 2-43, 2-44, 2-46, 3-5, 3-6, 3-27, 3-33, 3-51, 3-52, 3-53, 3-54, 4-16, 4-39, 4-114, 4-115, 4-116, 4-117, 4-118, 4-123, 4-127, 4-129, 4-134, 4-135, 4-143, 4-148, 4-165, 4-166, 4-169, 4-171, 4-172, 4-174, 4-176, 4-177, 4-187, 4-199, 4-200, 4-205, 4-207, 4-210, 4-222, 4-224, 4-225
- **cesspool**, 2-22, 2-23, 2-30, 2-38, 2-43, 3-52, 4-115, 4-116, 4-117, 4-118, 4-127, 4-134, 4-135, 4-163, 4-165, 4-166, 4-199, 4-205, 4-210
- Children, 3-69
- climatology, 1-13, 3-61
- **Convoys**, 4-167
- **cultural resources**, 2-18, 2-34, 2-38, 3-7, 3-8, 3-11, 3-28, 3-29, 3-30, 4-2, 4-5, 4-7, 4-8, 4-9, 4-10, 4-11, 4-14, 4-17, 4-19, 4-154, 4-155, 4-168, 4-177, 4-178, 4-179, 4-228, 5-40, 5-44, 5-91, 5-93, 5-94

- endangered species, 1-26, 2-15, 3-32, 3-38, 3-39, 3-40, 3-41, 4-2, 4-21, 4-28, 4-29, 4-36, 4-181, 4-182, 4-183, 4-185, 4-229, 5-95
- **environmental justice**, 3-62, 3-63, 3-69, 4-149, 4-150, 4-151, 4-152, 4-153, 4-154, 4-155, 4-164, 4-170, 4-214, 4-215, 4-216, 4-217, 4-223, 4-224, 4-225, 4-226, 4-234, 4-235
- **existing activities**, 4-3, 4-4, 4-5, 4-6, 4-7, 4-145, 4-176, 4-211
- **fauna**, 3-24, 3-30, 3-32, 3-40, 3-41, 3-48, 4-20, 4-23, 4-29, 4-31, 4-34, 4-183, 4-186, 4-230
- Federal Aviation Administration (FAA), 1-2, 1-30, 2-7, 2-23, 2-27, 3-1, 3-6, 3-38, 3-52, 3-55, 3-56, 3-57, 4-3, 4-5, 4-6, 4-115, 4-116, 4-125, 4-129, 4-134, 4-136, 4-158, 4-162, 4-164, 4-171, 4-172, 4-173, 4-174, 4-176, 4-203, 4-204, 4-207, 4-222, 4-227, 6-2
- **geology**, 1-24, 3-1, 3-43, 3-47, 3-71, 4-36, 4-37, 4-38, 4-39, 4-40, 4-157, 4-187, 4-188, 4-189, 4-190
- **groundwater**, 2-11, 2-34, 3-48, 3-49, 3-50, 3-52, 4-113, 4-115, 4-116, 4-117, 4-118, 4-127, 4-134, 4-163, 4-165, 4-198, 4-199, 4-202
- Haleakalā High Altitude Observatories (HO), 1-1, 1-2, 1-5, 1-9, 1-20, 1-21, 1-22, 1-23, 1-24, 1-25, 1-27, 1-28, 1-29, 1-30, 1-32, 2-1, 2-7, 2-18, 2-23, 2-26, 2-27, 2-34, 2-36, 2-38, 2-40, 2-41, 2-44, 2-46, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-12, 3-13, 3-21, 3-22, 3-23, 3-27, 3-28, 3-30, 3-31, 3-32, 3-33, 3-34, 3-35, 3-37, 3-39, 3-40, 3-41, 3-42, 3-43, 3-44, 3-45, 3-46, 3-48, 3-49, 3-50, 3-51, 3-52, 3-53, 3-54, 3-55, 3-56, 3-57, 3-58, 3-59, 3-61, 3-62, 3-67, 3-70, 3-71, 3-72, 3-76, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-14, 4-16, 4-17, 4-18, 4-19, 4-20, 4-22, 4-23, 4-24, 4-25, 4-26, 4-27, 4-29, 4-30, 4-31, 4-32, 4-33, 4-34, 4-35, 4-36, 4-37, 4-38, 4-39, 4-40, 4-43, 4-44, 4-45, 4-46, 4-47, 4-48, 4-49, 4-50, 4-51, 4-52, 4-53, 4-54, 4-55, 4-57, 4-108, 4-109, 4-110, 4-112, 4-113, 4-114, 4-115, 4-116, 4-117, 4-118, 4-120, 4-121, 4-125, 4-126, 4-127, 4-128, 4-129, 4-130, 4-131, 4-133, 4-134, 4-135, 4-136, 4-137, 4-138, 4-140, 4-142, 4-143, 4-144,

 $\begin{array}{l} 4-145, 4-146, 4-147, 4-148, 4-149, 4-150, \\ 4-151, 4-153, 4-154, 4-155, 4-156, 4-157, \\ 4-158, 4-159, 4-160, 4-161, 4-162, 4-163, \\ 4-164, 4-165, 4-168, 4-169, 4-170, 4-171, \\ 4-172, 4-173, 4-174, 4-175, 4-176, 4-177, \\ 4-178, 4-179, 4-180, 4-181, 4-182, 4-183, \\ 4-184, 4-185, 4-186, 4-187, 4-189, 4-190, \\ 4-191, 4-192, 4-193, 4-194, 4-195, 4-196, \\ 4-197, 4-198, 4-199, 4-200, 4-201, 4-202, \\ 4-203, 4-204, 4-205, 4-206, 4-207, 4-208, \\ 4-209, 4-210, 4-211, 4-212, 4-213, 4-214, \\ 4-215, 4-216, 4-217, 4-218, 4-219, 4-220, \\ 4-221, 4-222, 4-230, 4-231, 4-234, 4-235, \\ 5-10, 5-27, 5-41, 5-48, 5-92, 5-95 \end{array}$

Haleakalā National Park (HALE), 1-1, 1-2, 1-25, 1-26, 1-29, 1-30, 1-32, 2-1, 2-29, 2-32, 2-33, 2-34, 3-1, 3-3, 3-4, 3-7, 3-8, 3-11, 3-23, 3-24, 3-26, 3-29, 3-30, 3-31, 3-33, 3-34, 3-35, 3-37, 3-39, 3-40, 3-42, 3-43, 3-45, 3-46, 3-47, 3-48, 3-49, 3-50, 3-53, 3-55, 3-57, 3-59, 3-61, 3-62, 3-70, 3-71, 3-72, 3-74, 4-5, 4-7, 4-8, 4-10, 4-13, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-20, 4-22, 4-23, 4-24, 4-26, 4-28, 4-29, 4-30, 4-31, 4-33, 4-34, 4-35, 4-40, 4-41, 4-42, 4-43, 4-44, 4-46, 4-47, 4-49, 4-50, 4-51, 4-52, 4-53, 4-54, 4-56, 4-57, 4-108, 4-110, 4-111, 4-113, 4-118, 4-126, 4-127, 4-130, 4-131, 4-132, 4-133, 4-135, 4-140, 4-153, 4-156, 4-157, 4-159, 4-160, 4-168, 4-169, 4-170, 4-171, 4-173, 4-174, 4-177, 4-178, 4-179, 4-180, 4-181, 4-182, 4-183, 4-184, 4-186, 4-188, 4-190, 4-191, 4-192, 4-193, 4-194, 4-195, 4-196, 4-197, 4-198, 4-204, 4-205, 4-208, 4-209, 4-210, 4-211, 4-212, 4-213, 4-215, 4-216, 4-217, 4-218, 4-219, 4-220, 4-223, 4-225, 4-228, 4-231, 4-236, 5-4, 5-7, 5-10, 5-21, 5-27, 5-28, 5-29, 5-30, 5-31, 5-40, 5-41, 5-42, 5-43, 5-44, 5-45, 5-47, 5-91, 5-92, 5-93, 5-94, 5-95, 6-1

- Haleakalā silversword ('ahinahina), 2-21, 3-24, 3-31, 3-32, 3-33, 3-34, 3-35, 3-47, 3-71, 4-173, 4-181, 5-95
- Hawaiian goose (nēnē), 2-34, 3-20, 3-24, 3-31, 3-35, 3-38, 3-39, 4-15, 4-24, 4-28, 4-29, 4-30, 4-31, 4-35, 4-132, 4-182, 4-183, 4-185, 4-209, 4-228, 4-230, 4-231, 5-93, 5-95, 5-96
- **Hawaiian hoary bat ('ope'ape'a)**, 3-31, 3-39, 3-40, 4-24

Hawaiian petrel ('ua'u), 3-20, 4-21, 4-26, 4-28, 4-35, 4-162, 4-229, 5-95, 5-96

- hazardous materials (HAZMAT), 2-36, 3-53, 3-54, 3-55, 3-70, 3-71, 4-118, 4-119, 4-120, 4-121, 4-123, 4-124, 4-133, 4-146, 4-147, 4-163, 4-165, 4-169, 4-199, 4-200, 4-201, 4-202, 4-210, 4-223, 4-224, 4-225, 4-226, 4-233, 4-235
- **historic resources**, 1-29, 1-32, 3-7, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-20, 4-162, 4-178, 4-179
- hunting practices, 3-20
- **Informal Consultation Document**, 2-32, 3-60, 4-21, 4-25, 4-27, 4-136, 4-181, 4-186, 4-229, 5-1, 5-95

infrastructure, 2-11, 2-20, 3-55, 4-125, 4-126, 4-202, 4-206, 4-209, 4-210

invertebrate, 3-30, 3-32, 3-41, 3-42, 3-43

- **land use**, 1-27, 2-7, 3-1, 3-2, 3-3, 3-24, 3-61, 4-1, 4-3, 4-4, 4-5, 4-6, 4-7, 4-12, 4-145, 4-162, 4-175, 4-176, 4-187, 4-190, 4-199, 4-202
- National Environmental Policy Act (NEPA), 1-1, 1-2, 1-6, 1-7, 1-9, 1-25, 1-29, 2-12, 2-18, 3-30, 4-2, 4-8, 4-9, 4-11, 4-13, 4-166, 4-167, 4-169, 4-178, 5-1, 5-6, 5-18, 5-24, 5-30, 5-40, 5-42, 5-44, 5-93, 5-94, 6-1

National Historic Preservation Act, Section 106, 1-26, 1-27, 1-32, 1-33, 2-18, 3-21, 3-29, 3-30, 4-4, 4-7, 4-8, 4-9, 4-12, 4-13, 5-1, 5-16, 5-25, 5-26, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 34, 5-35, 5-36, 37, 5-37, 5-38, 5-40, 5-41, 5-42, 5-43, 5-44, 5-45, 5-46, 5-47, 5-48, 5-91, 5-93, 5-94, 6-1

- **natural hazards**, 3-72, 4-159, 4-160, 4-161, 4-220, 4-221
- **noise**, 2-20, 2-32, 2-35, 3-59, 3-60, 3-61, 4-2, 4-9, 4-10, 4-11, 4-13, 4-14, 4-15, 4-17, 4-18, 4-19, 4-20, 4-24, 4-25, 4-26, 4-27, 4-28, 4-29, 4-31, 4-32, 4-34, 4-35, 4-108, 4-110, 4-111, 4-112, 4-136, 4-137, 4-138, 4-139, 4-140, 4-141, 4-142, 4-143, 4-144, 4-162, 4-163, 4-164, 4-166, 4-168, 4-169, 4-170, 4-182, 4-183, 4-185, 4-186, 4-187, 4-194, 4-196, 4-197, 4-210, 4-211, 4-212, 4-219, 4-223,

4-224, 4-225, 4-226, 4-228, 4-229, 4-230, 4-231, 4-232, 4-234, 4-235, 4-236

- **notification**, 1-32, 4-132, 4-133, 4-210, 5-1, 5-3, 5-10, 5-25, 5-27, 5-30, 5-31, 5-92
- **Pa Ka'oao (White Hill)**, 3-3, 3-23, 3-25, 3-26, 3-46, 3-47, 4-5, 4-44, 4-45, 4-48, 4-51, 4-52, 4-54, 4-110, 4-111, 4-163, 4-174, 4-194, 4-197
- Park road corridor, 2-36, 3-1, 3-3, 3-7, 3-23, 3-24, 3-26, 3-28, 3-30, 3-31, 3-32, 3-34, 3-35, 3-36, 3-37, 3-39, 3-40, 3-42, 3-43, 3-45, 3-46, 3-48, 3-49, 3-50, 3-53, 3-55, 3-57, 3-61, 3-70, 4-3, 4-4, 4-5, 4-7, 4-8, 4-13, 4-14, 4-15, 4-16, 4-18, 4-19, 4-20, 4-22, 4-23, 4-26, 4-27, 4-28, 4-29, 4-30, 4-31, 4-34, 4-35, 4-36, 4-37, 4-38, 4-39, 4-40, 4-45, 4-46, 4-47, 4-48, 4-49, 4-51, 4-52, 4-53, 4-54, 4-55, 4-108, 4-112, 4-113, 4-115, 4-116, 4-118, 4-124, 4-125, 4-126, 4-129, 4-131, 4-132, 4-133, 4-136, 4-141, 4-144, 4-145, 4-147, 4-148, 4-149, 4-155, 4-156, 4-157, 4-159, 4-162, 4-163, 4-164, 4-165, 4-167, 4-168, 4-169, 4-170, 4-173, 4-175, 4-176, 4-177, 4-178, 4-179, 4-180, 4-181, 4-182, 4-183, 4-184, 4-185, 4-186, 4-187, 4-188, 4-189, 4-190, 4-194, 4-196, 4-197, 4-198, 4-199, 4-202, 4-204, 4-207, 4-208, 4-209, 4-210, 4-217, 4-218, 4-219, 4-220, 4-231, 5-42, 5-43, 5-92, 5-95
- **Pu'u Kolekole**, 1-2, 1-20, 3-1, 3-23, 3-31, 3-33, 3-50, 4-17, 4-44, 4-50, 4-51, 4-129, 4-207
- **Pu'u 'Ula'ula (Red Hill Overlook)**, 1-2, 3-1, 3-25, 3-26, 3-31, 3-45, 3-46, 3-47, 3-48, 3-71, 3-76, 4-10, 4-41, 4-43, 4-44, 4-45, 4-46, 4-47, 4-50, 4-51, 4-53, 4-54, 4-62, 4-63, 4-64, 4-65, 4-66, 4-67, 4-110, 4-111, 4-140, 4-157, 4-158, 4-190, 4-191, 4-192, 4-193, 4-194, 4-196, 4-218, 4-219, 4-220, 4-235
- public comment, 1-2, 1-29, 1-32, 2-8, 2-29, 4-9, 5-1, 5-6, 5-16, 5-17, 5-18, 5-24, 5-26, 5-48
- public meeting, 2-23, 2-26, 5-26, 5-27, 5-37
- **public services**, 3-70, 4-155, 4-156, 4-158, 4-159, 4-164, 4-170, 4-217, 4-218, 4-219, 4-220, 4-223, 4-224, 4-225, 4-226, 4-234, 4-235, 5-44
- **roadways and traffic**, 1-2, 1-26, 2-11, 2-13, 2-26, 2-27, 2-29, 2-32, 2-34, 2-36, 2-38, 2-40,

 $\begin{array}{l} 2\text{-}45, 3\text{-}4, 3\text{-}5, 3\text{-}42, 3\text{-}43, 3\text{-}48, 3\text{-}55, 3\text{-}57,\\ 3\text{-}58, 3\text{-}59, 3\text{-}60, 3\text{-}61, 3\text{-}62, 3\text{-}74, 4\text{-}9, 4\text{-}10,\\ 4\text{-}13, 4\text{-}14, 4\text{-}15, 4\text{-}16, 4\text{-}17, 4\text{-}18, 4\text{-}19, 4\text{-}20,\\ 4\text{-}22, 4\text{-}23, 4\text{-}25, 4\text{-}26, 4\text{-}29, 4\text{-}31, 4\text{-}33, 4\text{-}44,\\ 4\text{-}111, 4\text{-}112, 4\text{-}113, 4\text{-}125, 4\text{-}126, 4\text{-}127,\\ 4\text{-}129, 4\text{-}130, 4\text{-}131, 4\text{-}132, 4\text{-}133, 4\text{-}134,\\ 4\text{-}135, 4\text{-}141, 4\text{-}142, 4\text{-}143, 4\text{-}144, 4\text{-}145,\\ 4\text{-}146, 4\text{-}147, 4\text{-}148, 4\text{-}149, 4\text{-}158, 4\text{-}163,\\ 4\text{-}164, 4\text{-}169, 4\text{-}173, 4\text{-}174, 4\text{-}182, 4\text{-}183,\\ 4\text{-}184, 4\text{-}185, 4\text{-}186, 4\text{-}187, 4\text{-}194, 4\text{-}195,\\ 4\text{-}196, 4\text{-}197, 4\text{-}202, 4\text{-}204, 4\text{-}205, 4\text{-}207,\\ 4\text{-}208, 4\text{-}210, 4\text{-}211, 4\text{-}212, 4\text{-}218, 4\text{-}219,\\ 4\text{-}220, 4\text{-}228, 4\text{-}229, 4\text{-}230, 4\text{-}231, 5\text{-}92\end{array}$

- **socioeconomics**, 2-12, 3-63, 4-149, 4-150, 4-151, 4-152, 4-214, 4-215, 4-217
- **soils**, 2-23, 2-34, 2-44, 3-31, 3-43, 3-50, 4-36, 4-37, 4-38, 4-39, 4-40, 4-115, 4-117, 4-121, 4-123, 4-124, 4-135, 4-187, 4-188, 4-189, 4-190, 4-202
- **solid waste**, 2-40, 3-53, 4-118, 4-119, 4-120, 4-121, 4-124, 4-125, 4-163, 4-165, 4-199, 4-200, 4-201, 4-202
- **Special Use Permit (SUP)**, 1-1, 1-26, 2-1, 3-1, 3-30, 4-10, 4-13, 4-14, 4-15, 4-17, 4-18, 4-19, 4-20, 4-23, 4-25, 4-34, 4-35, 4-132, 4-133, 4-135, 4-184, 4-209, 4-210, 4-228, 4-231, 5-43, 5-91, 5-93, 5-95, 6-1

Star Compass, 4-12, 4-17, 4-19, 4-227, 5-41

- stormwater, 2-7, 2-20, 2-34, 2-38, 3-30, 3-49, 3-50, 3-52, 3-56, 4-31, 4-33, 4-38, 4-39, 4-113, 4-114, 4-115, 4-116, 4-117, 4-125, 4-127, 4-128, 4-129, 4-134, 4-135, 4-164, 4-188, 4-198, 4-202, 4-203, 4-204, 4-205, 4-206, 4-207, 4-210, 4-220
- **topography**, 2-5, 2-41, 2-43, 2-44, 3-7, 3-24, 3-26, 3-43, 3-50, 4-36, 4-37, 4-38, 4-39, 4-40, 4-46, 4-51, 4-52, 4-53, 4-55, 4-56, 4-109, 4-187, 4-188, 4-189, 4-192
- **traditional cultural practices**, 3-8, 3-9, 3-11, 3-12, 3-20, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4-18, 4-140, 4-162, 4-168, 4-177, 5-41, 5-93
- traditional cultural property (TCP), 4-19, 4-177, 5-91
- **University of Hawai'i (UH)**, 1-1, 1-2, 1-5, 1-7, 1-9, 1-15, 1-20, 1-21, 1-23, 1-24, 1-30, 2-2,

2-7, 2-38, 2-43, 3-1, 3-2, 3-5, 3-23, 3-26, 3-27, 3-31, 3-32, 3-45, 3-46, 3-50, 3-53, 3-54, 3-55, 3-56, 3-58, 3-66, 3-67, 3-68, 4-10, 4-11, 4-12, 4-23, 4-24, 4-117, 4-120, 4-128, 4-134, 4-146, 4-149, 4-150, 4-155, 4-169, 4-172, 4-175, 4-180, 4-186, 4-199, 4-200, 4-203, 4-214, 4-227, 4-232, 5-2, 5-8, 5-15, 5-26, 5-27, 5-28, 5-29, 5-41, 5-42, 5-48, 5-91, 5-92, 5-94

University of Hawai'i Institute for Astronomy (IfA), 1-1, 1-2, 1-5, 1-7, 1-18, 1-20, 1-21, 1-23, 1-24, 1-30, 1-31, 2-2, 2-21, 2-23, 2-38, 2-43, 3-1, 3-5, 3-6, 3-23, 3-26, 3-27, 3-31, 3-32, 3-35, 3-45, 3-46, 3-50, 3-52, 3-53, 3-54, 3-56, 3-58, 3-67, 3-68, 4-5, 4-9, 4-10, 4-11, 4-12, 4-24, 4-25, 4-28, 4-30, 4-114, 4-117, 4-120, 4-121, 4-123, 4-128, 4-129, 4-134, 4-146, 4-149, 4-150, 4-170, 4-171, 4-172, 4-174, 4-180, 4-185, 4-186, 4-199, 4-200, 4-203, 4-207, 4-214, 4-227, 4-229, 4-230, 4-232, 5-2, 5-8, 5-15, 5-26, 5-27, 5-28, 5-29, 5-37, 5-41, 5-42, 5-46, 5-91, 5-92, 5-94, 5-95

utilities, 2-4, 2-10, 2-15, 2-20, 2-24, 2-30, 2-31, 2-33, 3-55, 4-15, 4-28, 4-38, 4-39, 4-125, 4-126, 4-132, 4-135, 4-141, 4-164, 4-169, 4-202, 4-210, 4-223, 4-224, 4-225, 4-226, 4-227, 4-230, 4-231, 4-234, 4-235, 5-93

- **view plane**, 2-14, 3-8, 4-2, 4-8, 4-9, 4-10, 4-40, 4-55, 4-109, 4-157, 4-190
- **viewshed**, 4-40, 4-42, 4-44, 4-45, 4-46, 4-47, 4-48, 4-49, 4-50, 4-51, 4-52, 4-53, 4-55, 4-56, 4-109, 4-112, 4-113, 4-157, 4-158, 4-159, 4-164, 4-169, 4-192, 4-218, 4-220, 5-27
- **visitor experience**, 4-108, 4-110, 4-111, 4-140, 4-195, 4-196, 4-197, 5-93
- **visitor use**, 4-15, 4-43, 4-108, 4-109, 4-110, 4-111, 4-112, 4-113, 4-132, 4-136, 4-168, 4-194, 4-195, 4-196, 4-197, 4-198, 4-209, 4-231

visual resources, 4-17, 4-40, 4-42, 4-44, 4-45, 4-46, 4-47, 4-48, 4-49, 4-50, 4-51, 4-52, 4-53, 4-54, 4-55, 4-56, 4-57, 4-108, 4-109, 4-110, 4-111, 4-112, 4-157, 4-163, 4-165, 4-167, 4-168, 4-169, 4-178, 4-190, 4-191, 4-192, 4-193, 4-194, 4-195, 4-196, 4-197, 4-218, 4-220, 4-223, 4-224, 4-225, 4-226, 4-233, 4-235 wastewater, 2-11, 2-20, 2-34, 2-38, 2-43, 3-52, 3-56, 4-31, 4-33, 4-115, 4-116, 4-117, 4-118, 4-125, 4-127, 4-134, 4-135, 4-163, 4-166, 4-171, 4-199, 4-202, 4-205, 4-210

water resources, 3-48, 3-49, 4-113, 4-114, 4-116, 4-117, 4-118, 4-127, 4-134, 4-163, 4-165, 4-166, 4-198, 4-199, 4-203, 4-223, 4-224, 4-225, 4-226, 4-233, 4-235

Yellow-jacket, 3-43

9.0 LIST OF PREPARERS

This Environmental Impact Statement for the Advanced Technology Solar Telescope project was prepared on behalf of the National Science Foundation and the National Solar Observatory by KC Environmental, Inc. The organizations and individuals listed in Table 9-1 contributed to the overall effort in the preparation of this document.

	Charlie Fein, Ph.D.	Environmental Planner
KC Environmental, Inc.	Tom Kekona	Technician/Graphic Artist
	Sharon Loando-Monro	Planning Projects Manager
National Optical Astronomy Observatory	Jeff Barr	Project Architect
ř ř	Scott Bulau	Controls Engineer
	Jennifer Ditsler	Project Assistant
National Solar Observatory	David Dooling	Public Education and Outreach Manager
	Bret Goodrich	High-Level Controls and Software Manager
	Eric Hansen	Lead Optical Systems Engineer
	Frank Hill	Program Scientist
	Robert Hubbard	Systems Engineer
	Rex Hunter	Facilities Manager
	Steve Keil	Project Director, ATST Principle Investigator
	LeEllen Phelps	Enclosure Engineer
	Thomas Rimmele	Project Scientist
	Jeremy Wagner	Project Manager
	Mark Warner	Mechanical Systems Engineer
	Constance Callahan, J.D.	Legal Review
	Susan Carstenn, Ph.D.	Biological Resources
	Yashekia Evans	GIS/Graphics
	Leslie Garlinghouse	Project Manager, NEPA Specialist
	Andrew Gentile	Air Quality, Noise, Hazardous Materials, and Solid Waste
	Rima Ghannam	Socioeconomics, Water Resources
Tetra Tech, Inc.	Landin Johnson	Traffic and Transportation
,	Dawn A. Lleces	Environmental Scientist.
	Marleina Overton	Environmental Scientist.
	George Redpath	NEPA Specialist, Biological Resources
	Roy Roenbeck	Air Quality, Noise
	Cindy Schad	Word Processor
	Tom Whitehead	Water Resources
	Randolph Varney	Technical Editor
CH2M Hill	FEIS compilation support.	

TABLE 9-1. LIST OF PREPARERS.

This page intentionally left blank.

10.0 LIST OF FEIS RECIPIENTS

The Final Environmental Impact Statement (FEIS) for the proposed Advanced Technology Solar Telescope Project was provided to the following list of agencies, organizations and persons via hardcopy, compact disc, and/or electronic messages that provided the Internet address for the ATST website where the document is posted, http://atst.nso.edu/nsf-env.

First Name	Last Name	Title	Affiliation
George	Aikala	Maui Field Representative/Organizer	Laborers' International Union of
C		1 0	North America, Local 368
Pua	Aiu	Administrator	State of Hawaii, State Historic Preservation Division
Daniel	Akaka	Senator	U. S. Senate
Clarence	Apana		
Princess Lehuanani	Aquino		
Milton	Arakawa	Director	County of Maui
	i iiuiiu // u		Dept. of Public Works and Environmental
			Management
Jeff	Bagshaw		hungemen
Betz	Dorothy		
Greg	Brenner		Pacific Analytics, LLC
Teri	Bristol	Vice President,	Federal Aviation Administration
		Technical Operations Services	
Sylvia	Cabral		
•			
Thomas	Cannon		
Martha	Catlin	Program Analyst	Advisory Council on Historic Preservation
			Office of Federal Agency Programs
Elle	Cochran		
Alan	Cohen		
Paul	Conry	Administrator	Dept. of Land and Natural Resources,
			Division of Forestry and Wildlife
Joclynn	Costa		
Sarah	Creachbaun	Park Superintendent	Haleakala National Park
John	Cumming	Branch Manager	State of Hawaii
			Department of Land and Natural Resources,
			Division of Forestry and Wildlife
Sonia	Danse		
Penny Lin	Davis	Penny Lin Davis	
Bill	Evanson		
Carol	Evanson		
Mary	Evanson		
Kiersten	Faulkner	Executive Director	Historic Hawai'i Foundation
Jamie	Fernandez		
Douglas	Field and Family		
John	Fink	General Manager	Raycom Media, Inc.
David Kimo	Frankel	Staff Attorney	Native Hawaiian Legal Corp.
Erik	Fredericksen		Xamanek Researches, LLC
Chiyome	Fukino, M.D.	Director of Health	State of Hawaii
			Department of Health,
			Environmental Planning Office
Ali`i Sir William	Garcia, Jr. CK	Ku'auhau Nui	Royal Order of Kamehameha I
Kyle	Ginoza	Maui Director	State of Hawaii
			Department of Transportation
Cathleen	Goforth	Environmental Review Office Manager	U. E. Environmental Protection Agency
			Region 9, CED-II
			Communities and Ecosystems Division
Joe andKaren	Grafe		
Isaac	Hall		
George	Hanzawa	Electronics Manager	Federal Bureau of Investigation

First Name	Last Name	Title	Affiliation
Aliʻi Sir and	Hashimoto	Aha Ali'i O Kapu'aiwa O Kamehameha V	
Grand Master Clifford		1	
Elizabeth	Havelin		
Dr. Kenneth	Havran		U. S. Dept. of the Interior Office of Environmental Policy and Compliance
Roger Dennis	Hawley		
Mikahala	Helm		
Robert	Hlivak	Information and Communications Services Division	State of Hawai`i, Dept. of Accounting and General Services Public Works
Dan	Holtman		
Liana	Horovitz		
Michael	Howden		
Jeff	Hunt	Planning Director	County of Maui Dept. of Planning, Cultural Resources Commission
Lisa	Hunter	Associate Director	Education & Human Resources Center for Adaptive Optics University of California, Santa Cruz
Daniel	Inouye	Senator	U. S. Senate
Brain	Jenkins	President	Friends of Polipoli
Jeff	Jerry	Site Manager	Sandia Laboratories
Joe and Karen	Johnson		
Kalei	Ka'eo		Maui Community College
George	Kaho`ohanohano	Ku`auhau	Royal Order of Kamehameha I
Sol	Kaho'ohalahala	County Council Member	Maui County Council
Sam	Kalalau III	Chairperson	County of Maui Cultural Resource Commission
Daniel	Kanahele		
Shad	Kane		
Kathy	Kaohu		
Katherine	Kealoha	Director	State of Hawaii, Dept. of Health Office of Environmental Quality Control
Harold	Keyser		C
Howard	Kihune	President	Maui Native Hawaiian Chamber of Commerce
Maury	King		
Thomas	King, Ph.D.		
Kari	Kiser	Sr. Program Coordinator	National Parks Conservation Association
Cari	Kreshak	Pacific Islands Cultural Resource Program Manager	National Park Service Regional Office
Rolf-Peter	Kudritzki	Director	University of Hawaii Institute for Astronomy
Leslie Ann	Laing		
Al	Lardizabal,	Director Government Relations	Laborers' International Union of North America, Local 368
Ivan	Lay		Hawaii Carpenters Union
Brain	Lee	Research & Communications Director	International Brotherhood of Electrical Workers, Local Union 1186
Samuel	Lemmo		State of Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands
Patrick	Leonard	Field Supervisor	U. S. Fish & Wildlife Service Pacific Islands Fish and Wildlife Service
Greg	Lind	Assistant Field Solicitor	U. S. Dept. of the Interior

First Name	Last Name	Title	Affiliation		
Ted	Liu	Director	State of Hawaii, Department of Business, Economic		
			Development and Tourism, Energy, Resources and		
			Technology Division		
Richard	Lucas				
Michael	Lucas				
Mike	Maberry	Assistant Director	University of Hawaii Institute for Astronomy		
Judy	Mancini				
Mayumi	Marks				
Kahu Charles	Maxwell, Sr.		Dept. of Land and Natural Resources		
			Island Burial Council		
Kahu Charles	Maxwell, Sr.				
Dick	Mayer				
Vicky	McCarty				
Kathy	McDuff				
Kathy	McDuff		Sierra Maui Club		
Steve and Ellie	McGaughey				
Nancy	McMahon	Archaeology and	State of Hawaii, State Ulistaria Breastruction Division		
Dishard	Maalay	Historic Preservation Manager	State Historic Preservation Division		
Richard	Mealey Medeiros				
Art Elizabeth	Medeiros Merritt	Deputy General Counsel	National Trust for Historic Preservation		
Lola	Milani	Deputy General Counsel	National Trust for Historic Preservation		
Mike	Minn	President	The Kipahulu Ohana		
		riesident			
Ohua	Mirando				
James	Moncur		University of Hawaii at Manoa		
			Water Resources Research Center		
Brennon	Morioka	Interim Director	State of Hawaii		
			Department of Transportation		
Kaimookalani	Muhlestein				
Verna	Nahulu				
Clyde	Namu`o	Administrator	Office of Hawaiian Affairs		
Jim	Niess		Maui Architectural Group, Inc.		
Kupuna Patty	Nishiyama		Na Kupuna O Maui		
Torrie	Nohara	Trails and Access Specialist	Maui Na Ala Hele Advisory Council		
Sean	O'leary				
Daniel	Ornellas	Land Agent-Maui	Dept. of Land and Natural Resources,		
			Land Division		
Gary	Ostrander	Vice Chancellor for Research	University of Hawaii		
XX 7 1.	D 1	and Graduate Education			
Walt	Pacheco		County of Maui Police DeptTelecommunications		
Hilary	Parker				
Mark	Parsons				
Marv	Paularena				
Wallette	Pellgrino				
Brian	Perry	Editor in Chief	The Maui News		
Frances	Pitzer				
German	Platero				
Melissa	Prince				
Palmer	Purdy				
Leone	Purugganan		Central Maui Hawaiian Civic Club		
Peter	Rappa	Environmental Review Coordinator	University of Hawaii, Water Resources Research		
			Center		
Robert	Ratkowski				

First Name	Last Name	Title	Affiliation	
Ki`ope	Raymond			
Ki'ope	Raymond	Kilakila o Haleakala		
George	Redpath		Tetra Tech, Inc.	
Don	Reeser			
Carol	Reimann	Executive Director	Maui Hotel & Lodging Association	
Hinano	Rodrigues	Cultural Historian	State of Hawaii,	
Timano	Roungues		State Historic Preservation Division	
Robert	Rossman			
Stephen	Roth			
Leiohu	Ryder			
Chancellor Clyde	Sakamoto		Maui Community College	
Patricia	Sanderson Port	Regional Environmental Officer	Office of the Secretary,	
i uuroru			U. S. Dept. of the Interior	
			Office of Environmental Policy and Compliance	
			Pacific West Region	
Abby	Seth Mayer		State of Hawaii	
			Land Use Division	
			Department of Business, Economic Development and	
			Tourism, Office of Planning	
Douglas	Sheehan			
Nancy	Sherman			
Warren	Shibuya			
Ray	Shimabuku	Business Representative	International Brotherhood of Electrical Workers, Loca Union 1186	
Thelma	Shimaoka	Community Resource Coordinator	Office of Hawaiian Affairs	
Jeanne	Skog	President	Maui Economic Development Board	
Clarence	Soloman	Kahu Po'oiki	Royal Order of Kamehameha I	
Forest and Kim	Starr		Starr Environmental	
Walt	Steiger			
Mele	Stokesberry			
Carl	Suekawa	Communications Manager	National Weather Service/NOAA	
Kelvin	Sunada	Manager	State of Hawaii, Dept. of Health,	
			Environmental Planning Office	
F	Tabrah			
Miwa Winslow	Tamanaha	Executive Director	Kahea Hawaii Telecom	
Ron	Tanabe Terry	Area Manager	Geometrician Associates, LLC	
Ed	Texeira	Vice Director of Civil Defense	Dept. of Defense	
Lu	Texena	vice Director of Civil Defense	Office of the Director of Civil Defense	
Laura	Thielen	Director	State of Hawaii, State Historic Preservation Division	
Sherry	Tihada		Hawaii Telecom	
Derek	Tomimoto	AWP-471 FMO	Federal Aviation Administration	
Meyer	Ueoka	Maui Wildlife Manager	Dept. of Land and Natural Resources, Division of Forestry and Wildlife	
David	Victor	Maui Branch Engineer	Division of Forestry and Wildlife State of Hawaii Department of Accounting and General Services Public Works	
Jeremy	Wagner	ATST Project Manager	National Solar Observatory	
Elaine	Wender			
Harriet	Witt	1		
Matt	Wordeman	President	Friends of Haleakala	
Kathy	Seidman Wong			
Kenneth	Wrobel			
R. N.	Wykle	Commanding Officer	U. S. Coast Guard Civil Engineering Unit Honolulu	

First Name	Last Name	Title	Affiliation
Craig	Yamasaki	Engineering Dept.	Maui Electric Co.
Lynette	Yoshida	Senior Manager	Hawaiian Telcom
			Network Engineering & Planning
		Head Librarian	Hana Public and School Library
		Head Librarian	Hawai`i Document Center
			Hawai`i State Library
		Head Librarian	Hilo Regional Library
		Head Librarian	Kahului Regional Library
		Head Librarian	Kaimuki Regional Library
		Head Librarian	Kaneohe Regional Library
		Head Librarian	Kihei Public Library
		Head Librarian	Lahaina Public Library
		Head Librarian	Legislative Reference Bureau Library
		Head Librarian	Lihue Regional Library
		Head Librarian	Makawao Public Library
		Head Librarian	Maui Community College Library
		Head Librarian	Pearl City Regional Library
		Head Librarian	State of Hawaii
			DBEDT Planning Office and Library
			State of Hawaii, Dept. of Agriculture
		Editor	The Honolulu Advertiser
		Editor	The Honolulu Star Bulletin
			U.S. Environmental Protection Agency
			Office of Federal Activities
			University of Hawai'i Environmental Center
		Head Librarian	University of Hawai'i - Manoa
			Hamilton Library
		Head Librarian	Wailuku Public Library

A Device July			A B	De de la Alleria	Duth Chata
A Bonvouloir	Alice Neuhauser	Amy Nelson	Anne Dugaw	Barbara Allen	Beth Stein
A Grey	alice ordover	Amy Roseman	Anne Marie Earsley	Barbara Arlen	Betsy Pendergast
A Lopez	Alice Polesky	Amy Steiner	Anne Roda	Barbara Austin	Bette Nelson
A Patrick	Alice Van Leunen	Ana Rudolph	Anne Schreibe	Barbara Bennigson	Betty Kissilove
A. Vinton	Alice Weigel	Andi Klein	Anne Staggemeier	Barbara Blackburn	Betty Nudelman
A.M. Miller	Alice Wendy Colton	Andrea Bloom	Anne Stewart	Barbara Caton	Betty Sabo
Aaron Sikes	Alicia Alatriste	Andrea Bonnett	Anne Swanson	Barbara DeYoung	Betty Whitmer
Abby Hotchkiss	Alicia Lindsay-Dietrich	Andrea Chin	Anne Van Oppen	Barbara Dow	Beveraly Herbert
Abby Rothman	Alicia Little	Andrea Eftim	Anne Veraldi	Barbara Emerich	beverlea weaver
abigail donovan	Alison Huse fArhner	andrea gardner	Anne Watts	Barbara Gregory	Beverly Brown
Achaessa James de Garibay	alison mcbride	Andrea Greenwold	Annemarie Heggenhougen	Barbara King	Beverly Herrington
Adam Elson	Alixine Sasonoff	Andrea Oberquell	Annette Bork	Barbara Klein-Robuck	Beverly McNeilly
adam gagnon	Allan Campbell	Andrea Pellicani	Annette Lynch	Barbara Last	Beverly Poehlman
adam Makhluf	Allen Burgett	Andrea Tong-Dickson	Annette Way	Barbara Laudan	Beverly Williams
Adam Roske	Allen Hathcock	andrea valenzuela	Annmarie Pasmore	Barbara Leicht	Bill Britton
Adele Myers	Allen Swift	Andreas Wittenstein	Ansula Press	Barbara Macdonald	Bill Hanley
Adene Adene Katzenmeyer	Allison Eckert	Andrew Gach	Anthony Albert	Barbara McKee	Bill Laestadius
Adina Parsley	Allison Sandlin	Andrew Hamilton	Anthony Arcure	Barbara Radecki	Bill Larrabee
Adriana Faria	Allycia Godbee	Andrew Katsetos	Anthony Montapert	Barbara Rizzo	Bill Leikam
Adriana Guastavino	Allyn Meyer	Andrew Osborne-Smith	Antoinette Saletta	Barbara Robins	Bill Lundell
Adrienne Esztergar	Allyson Frye-Henderson	Andrew Sutphin	April Long	Barbara Robinson	Bill Przylucki
Agnes Dickson	Alvin Hadad	Andria Herron	April Theod	Barbara Sanders	Billie He
Ai Mccarthy	Alyssia Bryan-McKelvey	Andy Minor	Apryl Mefford-Hemauer	Barbara Scott	Blair Hopkins
Aileen Campbell	Amanda Coolidge	andy tomsky	Ara Johnson	Barbara Searles	Blair Miller
Aileen Kutaka	Amanda Guthrie	Angel Valdez	Ardeth L. Weed	Barbara Tamanaha	Blari Martin
Aislyn Weinfeld	Amanda Hoagland	Angela Black	Ardith Arrington	Barbara Tonsberg	Blue McRight
AK Dial	Amanda Michaels	Angela Rothweiler	Ariel Anderson	Barbara Vogl	Bob Aegerter
Al Mueller	amanda niles	Angela Smith	Ariel Walden	Barbara Voss	Bob Fletcher
Alan Korsen	Amanda Pekin	Angela West	Arlene Vogele	Barbara Ward	Bob Gengler
Alan Young	Amanda Penn	Angie Grosland	Arlene Zimmer	Barby & Vic Ulmer	Bob Hoff
Alanna Louin	Amanda Petel	Anita Cohen	Armand Chevalier	Barry Bishop	Bob Johnston
Albert Chen	Amanda Rosenberg	Anita Das	Armando Gomez	Barry Kaufman	Bob Slawson
Albert Chiu	Amanda Withrow	Anita Emery	Arminda Diaz	Barry Klein	Bob Thomas
Alea Al	Amber Tidwell	Anita Harwardt	Arnold Newman	Barry Oaks	Bonita Christianson
Aleda Jeanne Owen	Ameena Jandali	Ann Bartell	Arran Thomson	Barry Saltzman	Bonnie Bruinsslot
Aleta Milligan	Ameer Sanghvi	ann chandler	Arthur Kemish	Basey Klopp	Bonnie Fischer
Aletha Fulton-Vengco	Ami Blur	Ann Garth	Arthur van der Harten	Beatrice Howard	Bonnie Grossman
Alex Litel	Amin Arikat	Ann Hopwood	Asa Hammond	Beatrix Schramm	Bonnie Harding
Alex MacCollom	Amity Moffatt	ann Johnson	Ashlev R.	Becky Croll	Bonnie Hemauer
Alex Oshiro	Amos Hobby	Ann Phelan	Athena Miller	Becky Spraitzar	Bonnie Kelchner-Bunn
Alex Sorger	Amy Alexander	Ann Rosenthal	Audrey Johnson	Ben Chiang	Bonnie Levin
Alex Zukas	Amy Callaway	Ann Schneider	Audrey Meade	Ben Earle	Bonnie Margay Burke
Alexander Hathcock	Amy Campbell	Ann Strong	Autumn Chamberlin	Ben Ruwe	Bonnie Spromberg
Alexandra Hangsterfer	Amy Darnall	Ann Tibbot	Autumn Skye Rath	Benita Moore	Boyer c. August
Alexandra Hoffmann	Amy Grondin	Anna Handler	Ayesha Gill	Benjamin Sheppard	Brad Martin
Alexandra Lamb	Amy Hodges	Anna Meacham	B Frances	Bernard Heisterkamp	Braden LeMaster
Alexandre Kaluzhski	amy kaplan	Anna Rundle	B Lerner	Bernie And Marcia Altman	Bradford Goodwin
alexandria alloco	Amy Karcher	Annapoorne Colangelo	B White	bert greenberg	Bradford Lee Steele, Ph.D.
Alice Fichandler	Amy Lippert	Anne Baker	Barb Thompson	Beth Beringer	Bradford Martin
Alice Goodman	Amy McGuire	Anne Daletski	Barb Varellas	Beth Bozarth	Bradford Nickoloff
	Any Wildure	Anne Daletski		Detti BUZditli	

Bradley Gordon	Callie Riley	Carole Huelsberg	Charlene Carter	Christina Hall	Colleen Carter
Brandi Gartland	cameron binkley	Carolee Darden	Charlene Mclaughlin	Christina Resasco	Colleen Dane
Brandon Bean	Camille Gilbert	Caroline Campbell	Charlene Root	Christine Bonney	Colleen Evans
Branislav Kecman	candace batten	Caroline Good	Charles Bell	christine Brazis	Colleen Lobel
Brenda and Larry Smith	Candace Hallmark	Caroline Van Bakel-Edminster	Charles Bunting	Christine Deblock	Colleen Watson
Brenda Bailey	Candace Holthaus	Caroll Fowler	Charles Connors	Christine Engel	Connie Devine
Brenda DeBernardi	Candace Rocha	Carolyn Knoll	Charles Edmondson	christine fiorentino	Connie Marquez
Brenda Lewis	Candace Stolley	Carolyn Lindsey	Charles Elliott	Christine Freytag	Connie Newman
Brendan Hughes	Candi Ausman	Carolyn Mogavero	Charles Warner	Christine Kuranishi	Connie Northern
Brendan Lee	Candice Cassato	Carolyn Seeman	Charlie Graham	Christine Miller	connie sonderegger
Brent Rocks	Candy Bowman	Carolyn Thomas	Charlotte Hansen	Christine Pasmore	constance constance kosuda
Brent Williamson	Candy LeBlanc	Carolyn Westberg	Charlotte Pirch	Christine Sawyer RN, BS	Constance Miles
Brett Mayer	Candy Pope	carolyne & ray haycraft luong	Charlotte Stahl	Christine Waters	Constance Sutton
Brian & Rita Cohen	Cara Chestnut	Carrie Cole	Charmaine Clapp	Christopher Barhoum	Constance Thayer
Brian Clark	Cara O'Neill	Carrie Diamond	Charmaine P. Bailey	Christopher Detzer	Coralie Benton
Brian Gottejman	Cari Chenkin	Carrie Durkee	Chas Ferris	Christopher Lima	Cordia Gotshall
Brian Gwinn	Carl Knorr	Carrie Lynn Moylan	Chaz Groves	Christopher Senn	Cori Bishop
brian lamb	Carl Petersen, Jr.	Carrie Wales	Cheri Carlson	Christopher Still	corinne mcwilliams
Brian Larson	Carl Reese	Carrol Kuhlow	CHERIE REEVES-RUTLEDGE	Christy Cornelsen	Corinne Pettey
Brian Murphy	Carl Ronzheimer	Cary Friedman	Cheriel Jensen	Chuck Wieland	Cornelia Rusk
Brian Pope	Carl Smith	Caryn Cowin	Cheryl Carter	Cierra Buer	Courtney Lewis
Brian Schick	Carl Sorem	Caryn Graves	Cheryl Cullen	Cindy Belleau	Craig Coleman
Brian Skowron	Carla Hervert	Casey Carroll	Cheryl Drake	Cindy Loomis	Craig Guillod
Bridget Greuel	Carlos J. Ecehvarria	Casey Fox	Cheryl Elkins	cindy ockert-cook	Craig Harzmann
Brigid Yentz	Carlos Nunez	cassandra zazzaro	Cheryl Erb	Cindy Santry	craig walker
Brittany Santangelo	Carly Clements Owens	Catherine Albers	Cheryl Jenkins	CINDY Stone	Creda Markham
Brock Roberts	carly fraizer	Catherine Corwin	Cheryl Kiraly	Cindy Unruh	Crista Worthy
Brook Lee	Carmen Lucero	Catherine Gauthier	Cheryl Kopec	Claire Cohen	Crystal Banducci
Bruce Endicott	Carmen n'ha Lydia	Catherine George	Cheryl Lewis	Claire Flewitt	Crystal Tracy
Bruce Jackson	Carmen Rodriguez	Catherine Hirsch	Cheryl Oliver	Claire Mikalson	Crystal Wood
Bruce Reutlinger	Carol Anne Fusco	Catherine Loudis	Cheryle Steele	claire Perricelli	Cydne Cochran
Bruce Stubbs	Carol BenDixen	Catherine McQuigg	Chester Rideout	Claire Watson	Cyndi Mathews
Bruce Traficante	Carol Blessum	Catherine Ridder	Chester Starki	Clara Jo Hayes	Cynthia Adams
Bruce White	Carol Bryce	catherine siskron	Chris Aycock	Clarice Adams	Cynthia Elisberg
Bryan Anderson	Carol DeLacey	Cathie Bell	chris byrne	Clark Davis	Cynthia Ferguson
Bryan Cahill	Carol Foort	Cathy Bledsoe	Chris Coco	Clark Shimeall	Cynthia Wolfe
Bryan Stitt	Carol Knutson	Cathy Crum	Chris Emerson	Claudette Bernabe	Cynthia Wood
Bryna Schreier	Carol Martin-hay	Cathy Kozak	chris humphrey	Claudia Eads	D Duke
C E Blower	Carol Mc Cluer	Celeste Black	Chris MacKrell	Claudia Lucas	d matsuda
C Goodman	Carol S. Bostick	Celeste Burrows	Chris OMeara Dietrich	Claudia Romero	DW
C Keim	Carol Savary	Celeste Chase	Chris Purpus	Clay Atkins	D Yermolenko
C Obert	Carol Sawyers	Celeste Hong	Chris Rice	Clea Markman	D. W. Terrance Henderling
C. Blakesley	Carol Scott	Celeste Young	chris simmons	Clem Wilkes	Dale Le Fevre
C. Martinez	Carol Taggart	Celia Rabinowitz	chris solart	Cleo Wilson	Dale Matlock
C. Teuffel	Carol Taylor	Chad Halsey	Christian Alexanderson	Clifford Mapes	Dale Peterson
Caery Hauser	Carol Weston	Chad Held	Christie Chou	Clover Catskill	Dale Pressnall
Caitlin Tolland	Carol Whitehurst	Chait Diwadkar	christin bn	Clyde C Williams II CRL	dale riehart
	Carol Wild	Chantelle Ball	Christina Babst	Colette Walczak	Dan Christiaens
Cal Wellander			emistina babst	CONCLUC WWWICZAN	Bail Childracha
Cal Wellander Caleb Bushner	Carol Wiley	char laughon	Christina CASTLE REY	Colin Smith	Dan Esposito

Dan Perdios	David Hertzel	Deborah Cole	Diana Regan	Donna M. Hanson	Eileen Peterson
Dan Schneider	David Hind	Deborah Cronin	diana schmidt	Donna Sharee	Elaima Grigoryan
Dan Sherwood	David Huston	deborah lancman	Diana Shreves	Donna Snow	Elaine Elmer
Dana Bleckinger	David Ingalsbe	Deborah Marchand	Diana Vest Goodman	Donovan Nin	Elaine Glass
Dana Knutson	David Isaac	Deborah Newell	Diane B Coale	Dorothy Agins	Elaine Green
Dana Landis	David Kenagy	Deborah Santone	Diane Bateson	Dorothy Hanes	Elaine Grow
Dana Luchini	David L. Edwards, M.D.	Deborah St. Julien	Diane Benzler	Dorothy O'Reilly	Elaine Johnson
Dana Shaw	David Marsh	Deborah Voves	diane Bolman	Dorothy Swanson	Elaine Mont-Eton
Dana Stewart	David mcfarland	Debra dunlop	Diane Cantwell	Doug Balcom	Elaine Wilson
Dana Wullenwaber	david moate	Debra Pena	Diane Heath	Doug Childers	Eleanor Decker
Dane Durham	David Newlon	Debra Rehn	Diane Krell-Bates	Doug Cunningham	Eleanor Dowson
Dani Pen	David Perry	Dee McMurrey	Diane Lamont	Doug Dallam	Eleanor Gomez
Daniel Chipps	David Proctor	Dee Randolph	Diane Mac Innes	Doug Fleming	Elena Myers
Daniel Fischer	David Richard	Dee Warenycia	Diane Rose	Douglas Boucher	Eli Dumitru
Daniel Garcia	David Root	Deena Cornish	Diane Shaughnessy	Douglas Daetz	Eli Leon
Daniel Newell	David Root	Deidra Kahn	Diane Snow	Douglas McCormick	Elika Zomorodi
daniel penunuri	David S. Nichols	Del E. Domke	diane tegtmeier	Douglas Nelson	Elinor Vega
Danny DeTora	David Shirley	Demelza Costa	Diane Williams	Douglas SCHORLING	eliot helman
Danny Dyche	David Sundstrand	demetra canning	Diane Wooldridge	Douglas Walker	elisabeth feiss
Danuta Huetter	David Thomas	Dena Hernandez-Kosche	Dianna Sahhar	Douglas Ware	Elise White
Daphne Turban	David Turnoy	Dency Nelson	Dina Angress	Dr. and Mrs. Peter Seid	
Dara Engel	David Weinstein	Deni Larimore-Albrecht	Dina Wilson	Dr. Linda Jones	Elizabeth Azevedo
Darcy Bergh	david white	Denise Liebmann	Dixie Walter	ds powell	Elizabeth Berteaux
Darcy Skarada	David Williams	Denise Schafte	DJ Bradley	Dulce Farmer	Elizabeth Carey
Darius Klein	David Wilson	Denise Spielman	Dolores Boutin	E Lynn Galiste	Elizabeth Cotton
DARIUS MITCHELL	David Young	Denise Wheatley	Dolores MASSEY	E. Blake Peterson	Elizabeth Davis
Darlene Dunham	David Zebker	Deniz Bolbol	Domingo Hermosillo	Earl Frounfelter	Elizabeth Gillingham
Darlene Lee	Davis Montalvan	Deniz Cagliyan	Don Reinberg	Earl Rubell	Elizabeth Guise
Darrell Phare	Dawn Hutchinson	Dennis Allen	Don Schwartz	Earl Stutes	Elizabeth Jackson
Darren Frale	dayle schweninger	Dennis Beall	Dona Fong	Eddie Griffiths	Elizabeth Johnson
Darren Murtha	Dayle Scott	Dennis Berman	Donald Engel	Eden Kennan	Elizabeth Johnson
darynne jessler	dayvid jones	Dennis Cook	Donald Figge	Edh Stanley	Elizabeth Leaf
Dassi McCurdy	De Linda Brady	Dennis Earley	Donald Fromme	Edith Thomsen	Elizabeth Mollo
Dave Wood	Dean Cobb	Dennis Fritzinger	Donald Gelpi, S.J.	Edward and Ruth Osias	
David & Catherine Dow	Dean Johnson	Dennis O'Rorke	Donald Hamblin	Edward Berg	Elizabeth Rotter
David & Mary Walker	Dean Monroe	Dennis Phillips	Donald Nesbit	Edward Costello	elizabeth saveri
David and Claudia Chittenden	Dean Murphy	dennis sailor	Donald Shank	Edward Craig	Ellen Blunk
David Arnson	Dean Peppard	Dennis Trembly	Donald Wallace	Edward Goral	Ellen Caldwell
David Balfour	Dean Webb	Derek Brown	Donald Woods	Edward L. Gowens	Ellen Lewis
David Bills	Deanna Allen	Derek Gendvil	Dondi Visser	Edward Twelfth	Ellen McBride
David Burkhart	Debbie Bremner	Derek Smith	Donlon G. McGovern	Edwin Aiken	ellen pillow
David Comfort	Debbie Danielski	Derin Darby	Donna Alleyne-Chin	Edwin J. Martz	Elli Kimbauer
David Depew	Debbie Egan	Desiree Kisselburg	Donna Anderson	Edwin McCready	Emily Duran
David Dorinson	Debbie Steglic	Desmond Giffen	Donna Carr, M.D.	Edwina Anderson	emily ettinger
David Futch	Debbie Sturt	Devon MacDermott	Donna Clark	Edwina Smith	Emily Goodwin
David Gaines	Debbie Thorn	Diana Atchley	Donna Flade	Edy Rayfield	Emily Liu-Elizabeth
David Gladstone	Debby Young	Diana Barbee	Donna Greathouse Neel	Eileen Happer	Emma Stevens
David Griffith	Deborah Brooks	Diana Grob	Donna Leslie-Dennis	Eileen Harrington	Ena Sroat
David Hartzheim	Deborah Burgett	Diana Kovic	Donna Lewis	Eileen Kramer	Eric Burr
David Henderson	Deborah Chappie	Diana Parsons	Donna Lohr	Eileen Massey	eric calande

Final Environmental Impact Statement — Advanced Technology Solar Telescope

Eric Dolph	Faith Franck	Gary Lapid	Glenn Ward	Helene Green	J. Esposito
Eric Forrester	Faith Moeller	Gary McHone	Gloria Aguirre	Helmut Kayan	J. R. Bertram
Eric Fosburgh	Farion Pearce	Gary Shogren	Gloria Resa	Henry George	J. Schweizer
Eric Madis	Fatima Aydin	Gary Wright	Gonzalo Duran	Henry Kimbell	J.B. Spickler
Eric Moore	Faye Clarke	Gay Chung	gordon dodd	Henry McGuire	Jack Groce
Eric O'Rafferty	Felina Strait	Gayle Janzen	Gordon Long	Henry Rosenfeld	Jack Marden
Eric Reyes	Fern Walker	Geert Vancompernolle	Gordon Wood	Henry Schlinger	Jack Preston Marshall
Eric Steffen	Ferronato Shen	Gemma Geluz	Greg Korelich	Henry Weiss	Jack Schmitt
Eric Voorhies	Fiona Nolan	Gene Faucher	Greg Nakamoto	Herb Joseph	Jack Stansfield
Eric Wedel	Fleur Nooyen	gene groom	Greg Rosas	Hilda Foley	Jacki Anderson
erica johnson	Florence Leto	Gene R. Trapp & Jo Ellen Ryan	Gregg Oelker	hillary Posvar	jackie engle
eRica lann clark	Florence Mesker	Gene Webb	Gregory Coyle	Hoby Van Hoose	Jackie Pomies
Erica schram	Florence Windfall	genevieve deppong	Gregory Frisch	Holland Garcia	Jackie Thompson
Erick Egertson	Fran Larson	Geoffrey Stradling	Gregory Peterson	Hollis Hardy	Jacqueline Lasahn
Ericka Camp	Fran Watson	George Buckingham	Gregory Reidenbach	Holly Reyes	Jacquelyn Sorby
Erik Haig	frances alet	George C. Brown	Gregory Severson	Horace Gaims	Jacques Graber
Erik Shank	frances caplan	George Chakiris	Gretchen Braren	Howard Kastan	Jade English
erin garcia	Frances Clark	George Ellison	Gretchen Sackett	Howard Moore	Jaime Becker
Erin Matthiessen	Frances Craig	George F Klipfel II, CLS, MT(ASCP)	Gretchen Shaw	Howard Rentzer	James Adams
Erin McCreless	frances Kalfus	george graham	Guido Muzzarelli	Hudelle Newman	James Boone
Erin Neeley	Francisco Costa	George Guenther	Gustavo Gil	Hugh Moore	James Columbia
Erin Netter	Francisco Gadea	George Hassinger	Guthrie Schrengohst	Hygi Waetermans	James Dudzinski
Erin Thayer	FRANK BROWN	george marzocchi	Guy Perkins	lan Cree	james fairley
Erin Whelan	Frank Cannon	george nethercutt	H. Bailey	lan Harper	James Hamilton
ERNEST SCHOLZ	FRANK CODISPOTI	George O'Neil	Hadi Jorabchi	Ian Hyde	James Harper
Ervin Roorda	frank colletto	george repchinski	Hal Enerson	ian mayer	James Hathcock
Erwin Pearlman	Frank Hill	George Weissmann	Hannah Freed	Ian Shelley	James Kirks
Esta Miller	Frank Scott	George Yonge	Hannah Richards	Ilana Gauss	James Lansing
Esther Jones	Franklin Eventoff	George Youngren	Han-Yu Loo	ilana McAllister	James Mahan
Ethel Perkins	fred karlson	Georgia Lynn	Harald Conradi	Ilona Lindsay	James McAndrew
Eugene Craig	Fred M. Reinman	Gerald Crouch	Harold Samuels	Indira Santiago	james montgomery
Eugene Kiver	fred rinne	Gerald Orcholski	Harriet Alto	ingolf and joan klengler	James Mulcare
Eury Ramos	Fred VanRiper	Gerald Rodgers	harriet miller	Ingrid Emming	james noordyk
EVA ADAMYAN	Frederick H. Forschler	Gerda Seaman	Hassan Al Mezori	Irene Mills	james perez
Eva Brunner	FRIEDA BROCK	Geri Bommarito	Hayd�e Felsovanyi	Irene Miracle	James Rudoff
Eva Marie Grey	Fuoad Shashani	Geri Vasilia	Hayley Wise	Irene Recker	James Sams
Eva Sipos	G. Rose Montgomery	Gerry and Genny Foley	Heather Gould	Irina Foster	James Seibert
eva thielk	Gabriel Sheets	Gertrude Barden	Heather Parker	Irmelin DiCaprio	James Staples
Eva Thomas	Gail Blumberg	Gesa Cowell	Heather Perin	Irwin Ottenberg	James Taylor
Evalyn F. Segal	Gail Caswell	Ggisela Nass	heather rider	Isaac Mendoza	James Yeomans
Eve Reynolds	Gail Coviello	Gianna Torres	heather shick	Isabella La Rocca	Jami Urbanic
Evelyn Brakopp	Gail Dukes	Gila Wdowinski	Hector R. Amaro	Ismael Macias	Jamie Ann Meyers
Evelyn Drews	Gail Owens	gillian briley	Hedi Saraf	J B Pearce Sr	Jamie Lee
Evelyn Gajowski	Gail Rains	Gina Gatto	Heidi & Erik Arnold	J Burdin	jamie rosenblood
Evelyn Ledesma	gaile carr	Gina Norman	Heidi Hartman	j frueh	Jamie Sawtell
Evelyn Lundstrom	Galen Davis	Gina Thomas	Heidi Junger	j hynd	Jan Clarridge
f. eileen friedman	Gary Du Bois	Ginger Duran	Heike Beauchaine	J Jackson	Jan Fitcha
F. Zieba	,	Ginny Fereira	Helen Anton	J Kirby	Jan Geren
F. Zieba Fabian Herrera	Gary Gilardi Gary Hartsough	Ginny Fereira Glen Duncan	Helen Anton Helen Meeker	J Kirby J Nonya	Jan Geren Jan Kampa

jan thorne	Jason Heitzman	Jennifer Apkarian	Jim Hunsaker	Joel Stoffer	Jon Spitz
Jan weihmann	Jason Hinz	jennifer baerwald	Jim Leske	JOEL THAMES	Jon Swailes
jan zelenak	Jason Korniski	jennifer bennett	Jim McCurdy	JOHN B. MORGEN	Jonah Weston
Jana Beeman	Jason Lambert	JENNIFER BERMAN	Jim Miller	JOHN BRICKER	Jonathan Beckett
Jana Lane	Jason Martin	Jennifer Colen	Jim Nakata	John Brophy	Jonathan Chu
Janalee Roy	jay jackman	Jennifer Deming	Jim Petkiewicz	John Butterfield	Jonathan Green
Jane and Rolf Schulze	Jay Sibert	Jennifer Fechner	Jim Ross	john chere	jonathan guerra
jane August	Jay Smith	Jennifer Godman	Jim Rosvall	John Clegg	Jonathan Holzer
Jane Daniels	Jay'me Golden	Jennifer Griffith	JJ Rinas	John Culloty	Jonathan Troen
Jane Fossgreen	Jayna Williams	Jennifer Kauffman	Jo Allen	John Deitch	Joneen Richards
Jane Frantz	Jean Conley	Jennifer Kelly	Jo Green	John Dunnicliff	Jordan Van Voast
JANE KELSBERG	Jean Crossley	Jennifer Kim Zeller	Jo Greenwald	John Easterday	Jose Ricardo Bondoc
Jane Latham	Jean Danver	Jennifer Lotery	Jo Nowakowski	John Enrico	Joselyn Bartlett
Jane Martin	Jean Niedner	Jennifer Patterson	Jo Odom	John Essman	Joseph Cox
Janet Altman	Jean Stables	Jennifer Spencer	Joan and Paul Armer	John Evans	Joseph Klein
Janet Bagby	Jean Teach	Jennifer Toth	Joan and Wallace MacDonald	John Goeckermann	joseph kniest
JANET BARBER	Jeanette Faull	Jennifer Zarro	Joan Barrymore	John H. Anderson	Joseph Kovich
Janet Beazlie	Jeanine Ertl	Jenny Boulton	Joan Breiding	John heasley	Joseph Neumann
Janet Black	Jeanne Crowley	Jeremy Huffman	Joan Koptis	John Kafklaoff	JOSEPH REEL
Janet Chase	Jeanne Deller	, Jerian Abel	Joan Leaf	john kegler	joseph rodriguez
janet curtis	Jeanne Kelly	Jeriene Walberg	Joan Moricca	John LeConte	Joseph Shulman
Janet Henthorn	jeanne madden	Jerry Hernandez	Joan Murray	John Levy	Joseph Szabo
janet herbruck	Jeanne Michaels	Jerry Liszak	JoAn Saltzen	John Marchese	Josephine Roth
Janet Hicks	Jeanne Slominski	Jerry Maas	Joan Schiess	john mcintosh	Josh Maresca
Janet Ingraham	Jeanne-Marie Peterson	Jerry Oliver	joan scott	John Meyer	Joshua Valencia
Janet Jamerson	Jeannette Kortz	Jerry Peavy	joan uzelak	John Miles	Joslyn Baxter
Janet Klecker	Jeff Ball	JERRY PERSKY	Joan Walker	John Nicol	Jovon Crain
Janet Krouskop	Jeff Baptista	Jesica Dicione	JOAN WEAVER	John O'Neill	Joy Pierce
Janet McCalister	Jeff Beck	Jesse Thomas	Joan Wilkins	JOHN PASQUA	Joy Zadaca
Janet Miller	Jeff Bjorn	Jessica Cymerman	Joan Zawaski	John Petersen	Joyce Grippi
Janet Newstrom	Jeff Brown	Jessica Hales	JoAnn Griffin	John Pham	Joyce Jeckell
Janet Pinneo	Jeff Jones	Jessica Lam	Joanna Kelly	John Purcell	Joyce Johnson
Janice Cleary	jeff robbins	Jessica Martinez	JoAnna Proctor	John Richardson	Joyce Weinmann
Janice Ewers	Jeff Salvaryn	Jessica Saavedra	Joanna Skirvin	John Rose	Judie Maron
Janice Foss	Jeff Thayer	Jessica Tellez	Joanne Cadkin	John Shell, Jr.	Judith Anshin
Janice Gloe	jeff wilson	Jessica Wodinsky	Joanne Harkins	John Swain	Judith Bennington
Janice Jordan	Jeffery Garcia	Jessie Root	Joanne Kelly	John Teevan	Judith Clayton
Janice Keiserman	Jeffrey Erwin	Jetta Hurst	Joanne Olsen	John Thomson	Judith Graham
Janice Mansfield	Jeffrey Hurwitz	Jewels Stratton	Joceline Tabacco	John Van De Venter	Judith Green
janice marshall	Jeffrey Seitelman	Jill Blaisdell	Jodi Swanson	John W. Houghton Jr.	judith Holmes
Janice Palma-Glennie	Jeffrey Sturm	Jill Bruno	joe and mary volpe	John Walton	Judith Lopez
Janice Rocke	Jeffrey Womble	Jill Davine	Joe Anderson	John Witte	Judith Lotz
janiel giraldo	jeffry myers	Jill Friedlander	Joe Evans	John Zediker	Judith Prowell
Janis Carman	jen willis	Jill Linzee	Joe Myers	John Zimmermann	Judith Routledge
janna piper	Jena Hallmark	Jill Manske	Joe salazar	Johnny Su	Judith Schonebaum
Janna Tessman	jenn hast	Jill Ransom	joel chala	Joli Bennett	Judith Smith
Jasmine Walton	Jenn Steward	jill Timm	Joel Goldfarb	Jolie Depauw	Judith Vincent
Jason Bowman	jenna knickerbocker	Jim Boone	joel Hildebrandt	Jon Anderholm	judy carey
Jason Fish	Jenni Kerteston	Jim Earl	joel levitt	Jon Fish	Judy Dowell
Jason Havelka	Jennifer Afdahl	Jim Geear	Joel Mulder	Jon Jarvis	Judy Haggard

		Kull Blue	h	h	
Judy Spencer	Karen Garber	Kathleen Palmer	ken weeks	kristen greer	Laura Overmann
Judy Stufflebeam	Karen Hedwig Backman	Kathleen Russler	Ken Woolard	Kristen Osman	Laura Russell
Julaine Morley	Karen Heileson	Kathleen Siskron	Kenneth Avance	Kristen Swanson	laura steger
Julene Freitas	Karen Jacques	kathleen Weaver	Kenneth Bauer	Kristi Hutchison	Laura Wynkoop
Jules/Renee Elias	Karen Jenne	Kathleen Wolfe	Kenneth Daponte	Kristi Vanderstock	Laure Dillon
Julia Cechvala	Karen Kite	Kathryn Boole	Kenneth Dawdy	Kristin Hurley	Laureen Kocsis
Julia Glover	Karen Malley	Kathryn Carroll	Kenneth Hardy	Kristin Noble	Laurel Temple
Julia Paulsen	Karen Mosser	Kathryn Chung	Kenneth Heikkila	Kristin Womack	Laurel Wyman
Julia Rutledge	Karen Mulhern	Kathryn Dillon	Kenneth Jones	Kristina Fukuda-Schmid	lauren achitoff
Julie Achterhoff	karen niechdowicz	Kathryn John	kenneth Miller	Kristina Thorpe	Lauren Ford
Julie Amato	Karen Olsen	Kathryn Peterson	Kenneth Mundy	kristina vandergriff	Lauren Graham
Julie Barrett Heffington	Karen P. Morris	Kathryn Plitt	Kent and Kay Hill	Kristine Andarmani	Lauren King
Julie Brents	KAREN POPE	Kathryn Warner	Kent Fredriksson	Kristine Dove	Lauren Martinson
Julie Brickell	Karen Scheuermann	Kathy Aftab	Kermit Cuff	Kurt Cruger	Lauren Murdock
Julie Collins	Karen Schwartz Decker	Kathy Brigger	Kerri Zemko-Kriz	kurt lieber	Lauren Wood
Julie du Bois	karen steele	Kathy Britt	Kerry Kovarik	Kurt Schwenk	Laurence Burris
Julie Ford	Karen Thompson	Kathy Browning	Kerry Logan	Kwame Alaf Kwayana	Laurie & Dave King
Julie Huniu	Karen White	kathy cook	Kevin Gilchrist	Kyle Haines	Laurie Black
Julie Knoop	Kari Peters	Kathy Lou Kronenberger	Kevin Kreiss	Kyndra Homuth	Laurie Carr
Julie Kozel	Karin Peck	Kathy Marshall	Kevin Lewis	LLGunn	laurie elms
Julie Lam	Karine Tchakerian	kathy mesch	Kevin Moore	l tomko	Laurie Estrada
Julie O'Rielly	Karla Cummings	kathy Moore	Kevin Patterson	L. Alvin Hartman	Laurra Maddock
Julie Owen	Karla Devine	Kathy Nolasco	Kevin Tom	L. Gordon	LaWana John
Julie Sanford	Karolyn Nartker	Kathy Scripps	Kiku Nitta	L. Jarvis	Lawrence Holliman
Julie Sebenoler	Karren Sisson	Kathy Sugarman	Kim Concillado	L Lipton	lawrence johnson
Julie Slater	Karynn Merkel	Kathy Sweeney	Kim Groom	L.D pratt	Leah Roschke
Julie Smith	kat white	Kay Goeden	Kim Kaai	L.Susan Griffiths	Leah Stavish
Julie Stanley	Katayoon Zandvakili	Kayleene Miller	Kim Kendrick	Lacey Hicks	Leah Thornton
Julie Starr	Kate Delapoer	Kaylouise Cook	kim skrobiza	lajeanne kline	Leanne Friedman
Julie Vandergrift	Kate Elias	Keira Berges	kim wright	Lana Tickner	Leda Slattery
Julie Warren	Kate Harper	Keith A. Scarmato	Kimberley Buckley	Lanette Hendren	Lee Eisenberg
Julie Whitacre	Kate Hughes	keith cowan	Kimberley Craven	Lani Wageman	Lee Frank
june gordon	Kate McDermott	Keith Houser	Kimberley Graham	Larry Irwin	Lee Pettenger
june stoelzel	Katharine Nelson	Keith Morris	Kimberly Anne Halizak	Larry La Caille	LEE ST. JOHN
junko card	Katharine Wert	Kelli Callahan	Kimberly Christensen	Larry Lyons	Leigh Castellon
Justin Chernow	Katherine Davis-Hitchens	Kelly Bender	Kimberly Leeper	Larry Wood	Lenette Chun
Justin Dunscombe	Katherine DonTigny	Kelly Etheridge	Kimberly Lewis	Laura Ackerman	Leno Sislin
K Goschen	Katherine Evans	Kelly Hairgrove	Kimberly McConkey	laura arntz	Lenore Sheridan
K Krupinski	Katherine Hales	kelly hutchinson	Kimberly Trujillo	Laura Brinson	Leo Smith
ĸw	Katherine Myskowski	Kelly Ireland	KIMBERLY VANDERPOOL	Laura Broyhill	leona gerichter
Kaaren Zvonik	Katherine Russell	Kelly Kramer	Kip Marlow	Laura Carpenter	Leonard Bruckman
kaitlyn McKee	Katherine Snow-Davis	Kelly Monk	kirk francis	Laura Chamberlain	Leonard Jaffee
kamal hassan	Kathleen Angulo	Kelly Rasmussen	Kirk Mills	Laura Cyr	Leonard McCarthy
Kani Chen	Kathleen Dwyer	Kelvin Walker	Kirsten Holmquist	Laura Evnin	LeRoy Gilbertson
Karen Babcock	Kathleen E. Sullivan	Ken Arconti	Kitty Jones	Laura Finkelstein	les roberts
karen bearson	Kathleen Faulkner	Ken Burke	Kj Linarez	Laura Gaines	Leslie Arenas
Karen Boyette	Kathleen Helmer	Ken Hedges	KL Matlock	Laura Herndon	Leslie Brunett
Karen Brandenburger	Kathleen Jones	Ken Jones	Klooster Connie	Laura Hilgers	Leslie Harbold
Karen Chinn	Kathleen Lawrence	Ken Lovejoy	Korina Drenon	Laura Leifer	Leslie Kornblatt
karen clarke	Kathleen Martin	Ken Malonev	Kristen Busold	laura nasca	leslie miranda

leslie rabb	Lisa Northrup	Lucinda Wiley	Marc Rogers	Marianne Brettell-Vaughn	Mark West
Leslie Waltzer	Lisa Piner	Lucy Kenyon	Marc Silverman	Marianne Carello	marla katz
Leslie Wilson	lisa reynolds	Ludy Lim	MARCEL LIBERGE	Marianne Kooiman	Marla Miyashiro
Leslie Winston	Lisa Salazar	Luise Perenne	Marcella Hammond	Marianne McClure	marlene allen
Letitia Adams	Lisa Sanguinetti	luna Gooding	Marci McCartney	Marianne Mills	Marlene Schmid
Li Starr	Lisa Sangumetti Lisa Semeraro-Castro	Lura Iriah	Marci Scileppi	Marianne Shaw	Marlene Sheridan
Liane Rawlings	Lisa Steele	Luranne Drager	Marcia Berman	Marianne Sippel	Marlies Lee
Lidia Belknap	Lisa Thomas	Lydia Sherwood	Marcia Clarake	Marie Koko	marly wexler
Lilia Wood	Lisa Vandermay	Lyle Henry	Marcia Cooperman	Marie Lutz	Marsha Hawk
Lillian Beckett	Lisa Wilson	Lynda Aubrey	marcia flannery	Marie Mason	Marsha Lowry
Lillian Hanahan	Lisha Perini	Lynda Comerate	Marcia McDuffie	Marie Mathews	Martha Johnson
Lillian Marino	Liz Amsden	Lynda Mueller	Marcia Rogers	Mariko Apperson	Martha Knobler
Lily Yang	Liz Hamilton	Lyndy Schaefer	Marcie Mccarthy	Mariko Wall	Martha Perez
, ,	LIZ Hamilton	Lyndy Schaerer Lynette Ridder	Marcie Miccarthy Mare Wahosi	Marilee Armstrong	
Linda B. Tabor-Beck		/		v	Martha Sheriger
Linda Blakesley	Llewellyn Ludlow	Lynn Averill	Margaret Broughton	Marilyn Katz	Martha Sparta
LINDA CAIN	Lois Patton	Lynn Camhi	Margaret Clark	Marilyn La Bollita	Martl Summers
Linda Carden	Lois Shubert	Lynn Feinerman	Margaret Davies	marilyn levine	Marti Wilmot
Linda Degelman	Lois White	Lynn Graham	Margaret Enders	Marilyn Montero	Martin Antuna
Linda Dittmar	Lois Yuen	lynn maclachlan	Margaret Jahn	Marilyn Rodefer	Martin Dreyfuss
Linda Griffin	lon herbert	Lynn Minneman	Margaret Keene	Marilyn Sanchez	Martin Falk
Linda Halopoff	Lonnette Prather	Lynn Tucker	Margaret Kitamura	Marina Capella	Martin J Waterman
Linda Jameson	lorca hart	Lynn Weatherford Bedri	Margaret M. Petkiewicz	Marina Diehl	Martin Marcus
linda kutil	Loretta Womack	Lynn Wilbur	Margaret Minnick	Mario Alarcon	Martita Emde
Linda Lawson	Lori Atkins	Lynnda Strong	Margaret Reynoso	Marion Barry	Marty Hertz
Linda Lyerly	Lori Cook	Lynne Banta	Margaret Smiddy	Maris Arnold	Marvin Gentz
Linda Partyka	Lori Higa	Lynne Eggers	Margaret Spak	Maris Bennett	Marvin Laurence
Linda Petrulias	Lori Ingram	Lynne Jeffries	Margaret Stella Banchero	Marisa Elston	Mary A. Hughan-Rojeski
linda pinkowski	Lori Kegler	Lynne Landers	Margaret Thomas	Marisa Landsberg	Mary Able
Linda Russell	Lori Miller	Lynne Magie	Margaret Tollner	Marisa Nelson	Mary Ann Cramer
Linda Simington	lori ploeser	M Alan Lish	Margaret Wessels	Marita Kubersky	Mary Ann Sowards
Linda Smith	lori stayton	M. Ross	Marge Tucker	Maritza Cabezas	Mary Ann Wilson
Linda Spellman	Lori Stefano	Madelaine Sutphin	Margie Borchers	Marjorie Barton	Mary Anne Joyce
Linda Swan	Lori Vest	Madeleine Sosin	Margie Nemcik-Cruz	Marjorie Moss	Mary Breitlow
Linda Trevillian	Lori Wessely	Madeline Shapiro	Margie Weimer	Marjorie Quon	Mary Clare Lanphear
linda victor	lorna ross	Madeline Wright	Margo Carrera	Mark Allison	Mary Clarke
Lindsay Keilers	Lorraine Cass	Madison Hindman	Marguerite Shuster	Mark Bonney	Mary Daigle
Lindsay Mugglestone	lorraine gaines	Maggie Wise	Marguerite Winkel	Mark Golembiewski	Mary Denevan
Linsey Fredenburg	Lorraine Grauso-Herman	Maja silberberg	Maria Cardenas	Mark Holmgren	Mary Dobosz
Lioba Multer	Lorraine Leduc	Makailelani Osborne	Maria Ehrhardt	Mark Kidd	Mary Eaton Fairfield
Lisa Bail	Lorraine Maloof	Malcolm Groome	maria emmetti	Mark Kupke	Mary Ellen Kelley
Lisa Bakke	Lorri Verzola	Malcolm Simpson	Maria Mange	Mark Langan	Mary F Platter-Rieger
Lisa Clifton	lorrie eaton	Malcolm/Carol Faust	Maria N. Garduno	Mark Oconnell	Mary Fielder
Lisa Cossettini	Louis McCarten	Mali Henigman	Maria Scherer	Mark Reback	mary ingleby
Lisa Gee	Louise Bowles	malia everette	Maria Skercevic	MARK SALAMON	mary jane anderson
Lisa Gherardi	Louise Clements	Mallory Sanford	Maria Talamantes	Mark Schneider	Mary Kay Will
Lisa Hammermeister	Lowell Bushey	mandi houston	Maria Watkins	Mark Strauss	Mary Krieger
Lisa Humphreys	Luanne Alomair	Mapuana Peterson	Maria White	Mark Sutherland	Mary Lane
Lisa Lynch	Luci Ungar	Mara Price	Mariah Maracle	Mark Tolson	Mary Louise Wegman
Lisa Nelson Colton	Lucinda Brisbane	Marc Beauchamp	Marian Cruz	Mark Watson	mary luminoso
LISA NORRIED	Lucinda Cox	Marc Gregory	Marian Hayes	Mark Weinberger	Mary McNeill

Final Environmental Impact Statement — Advanced Technology Solar Telescope

Mary Proteau	Melissa Marote	Michael Picco	Michelle Vela	namita dalal	Nathaniel Perry
Mary Raines	Melissa McCool	Michael Poulsen	Michelle Williams	Nan Bongiovanni	Neal Oyama
mary rossi	Melissa Sage	Michael Quinn	Miguel Godinez	Nan Schweiger	Neil and Karen Erickson
Mary Schulz	melissa swinney	Michael Rifkind	miguel ramos	Nan Scott	Niall Carroll
Mary Westcott	melodie martin	Michael Rotcher	Mijanou Bauchau	Nan Singh-Bowman	NICHOLAS HATGIS
marya suzanne shapiro	melvin taylor	Michael Rubin	Mikail Barron	Nan St.Michael	Nicholle Tadeo
Maryanne Romanowski	Meredith Adami	Michael Sheffield	Mike & Kris Goldberg	nancie greer	Nicola Grobe
MARYELLEN REDISH	Merilyn Hand	Michael Sherman	Mike Cass	Nancy and Errol Rubin	Nicole Gaston-Fowler
Masakazu Konishi	Merry Brook Kotte	michael swerdlow	MIKE CLIPKA	Nancy Bakerink	Nicole Heslip
Matt Goldsmith	Meryle A Korn	Michael Thurman	Mike Conlan	Nancy Bomgardner	Nicole Jergovic
Matt Lafferty	mia kavantjas	Michael Todd	Mike Dorcy	Nancy Dassonville	Nicole Lilak
Matt Martorella	Mia Klein	Michael Tomczyszyn	Mike Kappus	Nancy Drewes	Nicole Westre
Matthew Aarsvold	Michael Afentoulis	MICHAEL TOOBERT	Mike MacDougall	Nancy Edmonson	Nik Kripalani
Matthew Cloner	Michael Akins	Michael W Evans	Mike Scott	Nancy Enz Lill	Nikki Hanson
Matthew Greene	michael Alda	Michael Wheelock	Milica Barjaktarovic	Nancy Fleming	Nina Hinkley
Matthew Sherman	Michael and Barbara Hill	Michael White	Millicent Cox	Nancy Freedland	Nina Smith
Matthew Swyers	Michael Angevine	Michael Whitt	Mimi Raiter	Nancy Graham	noah schlager
Matthew Wire	Michael Barrows	Michael Williams	Mindi Davis	Nancy Harter	Noelle Moyer
maureen cairns	Michael Blincoe	Michael Wollman	Mindi White	Nancy Hieronymus	Nolan Farkas
Maureen Hurley	michael brown	Michael Wylie	Miriam Gillow-Wiles	Nancy Hoffman	Noreen Weeden
Maureen Mcgee	Michael Bush	Michaela Niermann	Mirthia Romero	nancy hoy	Norma Corey
maureen powers	Michael C. Ford & Dr. Richard B. Marks	michele anderson	Misty Beutler	nancy johnson	Norma Odell
Maureen Russell	Michael Cipra	Michele Bachar	Misty Drake	Nancy Katz	Norma Parado
Maurice Robinson	Michael Cowsert	Michele DeBacker	Misty Shemwell	Nancy Kelly	Norman Baker
Maurine Richards	Michael Denton	Michele Easel	Mitch Parkinen	Nancy Kissock	Normandie Hales
Max Kaehn	michael eichenholtz	Michele Jamison	Mitchell Friedman	Nancy Kramer	O. Bisogno Scotti
Maxane Goldstein	Michael Evans	Michele Krupinski	Mollie THOMAS	Nancy L. Reynolds	Odette Rickert
Maxann Kasdan	Michael Faletra	Michele Martin	Mollly Brisbane-Ramirez	Nancy Lilienthal	Oliver Medzihradsky
Maxine Mueller	Michael Ford	Michele mCFerran	Monica Gallicho	Nancy Miller	Orlene Coleman
Megan Brooker	MICHAEL FRANKS	Michele Nihipali	Monica Romero	Nancy Novak	Otto Hunt
Megan Cutler	Michael Franks	Michele Powers	monica swift	Nancy Patumanoan	P StAugust
Megan Hawk	Michael Gallup	Michele Samuelson	Monika Brauer	Nancy Sato	P. Johansen
Megan Hockwalt	Michael Greggs	michele vinz	Monty Wolfrum	Nancy Schnur	Paige Ziehler-Martin
Megan McCullough	Michael Harrington	Michele Walsh	Morgan Cole	Nancy Shannon	Pam Brown
Megan Michaels	Michael Hetz	Michelle Brenard	Moss Henry	Nancy Smith	Pamala Thomas
Megan Montes	Michael Karsh	Michelle Bresette	Mr and Mrs James Denison	Nancy Treffry	Pamela Adams
Meghan Dooney	Michael Kaufman	Michelle Brewer	Mr. & Mrs. D. B. Hardie	nancy walker	Pamela Beard
Meghan Lewis	Michael Kelly	Michelle Charles	Mr. Walter V. Hughes	Nancy Weinstein	Pamela Bond
mel freilicher	Michael Kemper	Michelle McCarthy	Ms. Joyce Wilson	Nani Barnes	Pamela Bradford
melanie graf	Michael Kloor	Michelle McLinden	Ms. Lilith	naoko mizuguchi	Pamela Check
Melanie Wolfe	Michael Kovacs	Michelle Mielke	Murray Cohen	Narek Vardanian	Pamela Conley
Melina Paris	Michael Kulakofsky	michelle mitchell	mushtaq syed	Natalia Wescott	Pamela Fletcher
Melinda Combs	Michael Levin	Michelle Morgan	MW Henderson	Natalie Hall	Pamela Galloway
Melinda Milam	Michael Lewis	Michelle Palladine	Myrna Cohen	natalie oshin	Pamela Green
Melinda Moros	Michael Mallett	Michelle Palmer	Myrna Goldman	Natalie Zarchin	Pamela Lau
Melissa Berasaluce	Michael Mauer	Michelle Pavcovich	Myrtle Cox	Natasha Goldie	Pamela Malmberg
Melissa Buchanan	Michael McBride	Michelle Setaro	Mytzi Rudolph	Nathan Althauser	Pamela Polland
Melissa Cardwell	Michael McGee	Michelle Smith	N.Davida Rabbino	Nathan Coopwood	Pamela Reckers
Melissa Gagliano	Michael Meagher	Michelle Thomas	Nadya Tichman	Nathaniel Childs	Pat Anton
melissa herring	Michael Mitsuda	Michelle Unger	Nam Pho-Berg	Nathaniel Chriest	Pat Carter

Det Constalla		Dhilin Jahastan		Disk and Change	
Pat Cuviello	Paul Borcherding	Philip Johnston	Raul Anorve	Richard Sheng	Robert Thomson
Pat Davis	Paul Brust	Philip Minehan	Ravin Carlson	Richard Stewart	Robert von Tobel
Pat Frankenfield	Paul Cofrancesco	Philip Torres	Ray Akin	Richard Surwillo	ROBERT W SMITH
Pat Healy	Paul Davies	Phillip Collins	Ray Ann Sullivan	Richard Swift	Robert Wheeler
Pat Larson	Paul Doane	Phillip Hoff	Ray Hoekstra	Richard Ten Eyck	Roberta Best
Pat Mayo	Paul Durieux	Phillip Joyner	Rayanne Kirk	Richard Valencia	Roberta Heist
Pat Powell	Paul Grove	Phillip King	Raye Harris	Richard Waibel	roberta newman
Patricia Alejandro	Paul Gullam	phoury chhun	Raymond Hutchinson	Richard Willets	Roberta Oliviero
Patricia Archuleta	Paul Hunrichs	Phyllis Greenleaf	Raymond Shaw	richard wojt	Roberta Parrish
Patricia Barbutti	Paul Johnson	Phyllis Murdoch	Rebecca Cassara	Rick Kemenesi	Roberta Vandehey
Patricia Bereczki	Paul McDermott	Phyllis Schoen	Rebecca Cook	Rick Lambert	Robin Fancher
Patricia Black	Paul Metzger	pierre asmar	Rebecca Goodrich	RICK MORALES	robin rabens
Patricia Blanchard	Paul Myhre	Pierre Grady	Rebecca Leuck	Rick Shreve	Robyn Beckman
Patricia Bolt	Paul Nelson	pinky jain pan	Rebecca McDonough	Rick Sparks	Robyn Rivers
Patricia Brockman	paul r moreno	Pisticia Smudge	Rebecca Merkley	Rick Vaccaro	Rochelle Lafrinere
Patricia Clark	Paul Rossilli	Polly O'Malley	Rebecca Pois	Rick Wilson	Rod Rochambeau
Patricia Conn	Paul Torrence	Polly Osborn	Rebecca Seymour	RIKA ISHIBASHI	ROGER FOX
Patricia Fearey	Paula Cavagnaro	Polly Stonier	Rebecca Simpson	Rita Kiley	Roger Jacob Leonesio
Patricia Flores	Paula Huffman	Priscilla Allen	Rebecca Weinfeld	Rita Morrow	Roger Overholt
Patricia Lovejoy	Paula McCullough	psfsd weiner	Reggie Stiteler	Rita Reis	roger schmidt
Patricia McRae Baley	Paula Pine	R A Larson	Regina Uliana	Rita Santos-Oyama	Roger Smith
Patricia Merrill	Paula Shafransky	R Erwin	Rena Feng	Rita Valent	Rohana McLaughlin
Patricia Miller	Paula Taccogna	RL	Rena Lewis	Robbyn Jackson	Romola Georgia
Patricia Montijo	Paula Zerzan	RP	Renae Lani Anderson	Robert & Elizabeth Burns	Ron Kloberdanz
Patricia Morgan	Paulette Pallaoro	R Salido	Rene Garcia	Robert Bausch	Ron Martin
Patricia Nickles	Paulette Switzer-Tatum	R. Zierikzee	Renee klein	Robert Blumenthal	Ron Molina
patricia owen	pEGGY holmes	Rachael Alvarez-Jett	Renee T.	Robert Brosius Jr	Ron Quigley
Patricia Prime	Peggy LaCombe	Rachel Docherty	Rex Bell	Robert Brown	Ron Taylor
Patricia Quinn	Peggy Ranson	Rachel Hervey PHN	Rhett Lawrence	Robert Burch	Ron Thorne
Patricia Rain	Peggy Witsell	Rachel Sonnenblick	Rhodly Alden	Robert Cassinelli	Ronald Bogin
Patricia Reid	Penelope Johnstone	Rae Cohn	Rhona Baum	Robert Cleveland	Ronald Cali
Patricia Robinson	Penelope Sallberg	Rae Lisker	Ricardo Berg	Robert Davenport	Ronda Snider
Patricia Rodgers	Penny Short	Ralph Guerra IV	Rich Smith	Robert Hicks	Ronnel Corre
Patricia Scheuer	Pete Aniello	Ralph Hipps	Richaqrd Columbia	Robert Hinely	Rose Anton
Patricia Tucker-Dolan	Peter Bennett	Ralph Sanchez, L.Ac., CNS, D. Hom.	Richard Blain	Robert Hingtgen	Rose Catania
Patricia Valdez	Peter Berg	RAMAPRIYA RUIZ	Richard Blakemore	Robert Ishii	Rose Engelfried
Patrick Aitchison	Peter Bodlaender	Ramona Menish	Richard Brabham	robert kennec	Rose Graybill
Patrick Kerwin	Peter Cooper	Rana Sabeh	Richard Corbat	Robert Kenney	ROSE LINCK
Patsy Martin	Peter Novak	Rand Guthrie	Richard Corral	Robert Kyllonen	Rose Marie Menard
Patsy Stratton	Peter Perez	Randa Solick	richard crawford	Robert Lamar	rose wedlund
Patt Doyle	Peter Reynolds	Randall Hartman	Richard Gibbons	Robert McCombs	Roseanne Hovey
Patti Wienke	Peter Stone	Randall McKinnon	Richard Hurlburt	Robert McNamara	rosemarie henley
Patty Bonney	Phaedra Kossow-Quinn	Randall Richardson	Richard Lovitt	Robert Nichols III	Rosemarie Neckelmann-Vaught
patty cornell	Phil Epstein	Randall Shannahan	Richard Moller	Robert Painter	Rosemary Graham-gardner
patty harrison	Phil Hanson	Randy Harrison	Richard Moore	Robert Paquette	Roslyn Jones
patty mccollim	Phil Lanni	Randy Kilmer	Richard Perkins	Robert Roberto	Rosy Morales
Patty Sparks	Phil Luttrell	Randy Montesano	Richard Quinones	Robert Sennett	Roxanne Martin
Paul and Joan Waller	Phil Raider	Randy Morris	Richard Rodriguez	robert spaccarotelli	Roxeanna Zaborac
Paul Bechtel	Phil Reser	RANKO BALOG	Richard Schulenberg	robert stirling	Roy Vanderleelie
	phil rockey	Ratka Mira Popovic	richard schwartz	Robert Sullivan	Royce m

		<u> </u>	la	la. a .	
roz goldstein	Sandy Zelasko	sharon lacy	Sonja Aikens	Steven Cervine	Susan Roberts-Emery
Russell Blandino	Sanjiv Bajaj	Sharon Mattern	Sophe Stine	Steven Cook	susan rosen
Russell Grindle	sara carroll	Sharon Mullane	Sophie E. Miranda	Steven Hibshman	Susan Rowe
Russell Jacobson	Sara David-Feyh	Sharon Parshall	Sossity Chiricuzio	Steven Jacobs	susan shapiro
Russell Weisz	Sara Gonzalez	Sharon Sprouse	Spencer Selander	Steven Mauvais	Susan Shub
Ruta Radzins	Sara Hayes	sharon Valenzuela	Sr. Cindy Turner, OCV	Steven Standard	susan smith
Ruth Clifford	Sara Snyder	Sharon Zelman	stacey mayner	Steven Velasco	Susan Southwick
Ruth Furman	Sara Townsend	sharon zimbler	Stacey Smith	Steven Weigner	Susan Upton
Ruth Lorenz	Sara Turner	Sharri Kallonas	Stacey Yarrish	Steven Wright	Susan Watts-Rosenfeld
Ruth Olafsdottir	Sara W. Baker	Shary Crocker	Stacy Thompson	Stuart Smith	Susan Wechsler
Ruth-Ann Radcliff	Sarah Dixon	Shaun Barrentine	Stan Banos	Sudi McCollum	Susan Wells
Ryan Mickelson	Sarah Hafer	Shawn Clayton	Stan Shappell	Sue Gold	susan yamagata
s Baranowski	Sarah Kaplan	Shawn Hampton	Stanley M. Salomon	Sue Iri	Susan Zollinger
S Robert Lehr	sarah kerr	Shawn O'Donnell	Starbat Black	sue kirkpatrick	susanna sorin
S. Bellue	sarah luth	Shawna Neumeister	Stefanie Gandolfi	Sue Pierson	Susannah Kegler
S. Chapek	Sarah Mangum	Shea Craver	Stella Strand	sue silbert	Susanne Madden
S. Tyroler	Sarah Whistler	shea yzobel de hinde	Steph Truitt	sue slater	Suz Garcia
S.E. Hardy	Sarajane Hall	Sheila Barrand	Stephanie Bisceglia	sue smith	Suzanne a'Becket
sabine freudiger	Saundra Whitten	sheila curtin	Stephanie Houston	Sue Strom	Suzanne Geraci
Sadia Caceres	scott alan	Sheila Ganz	Stephanie Proctor	Sue Wood	Suzanne Hodges
Sakura Vesely	Scott Bowman	Sheila Silan	stephanie richards	Summer Lee	Suzanne Kaufmann
sal munoz	Scott Clements	Sheilagh Creighton	Stephanie Rufner	Susaan Aram	Suzanne Lee
sally abrams	Scott Crockett	Shelley Brady	Stephanie Terlson	Susan (Suni) Ibarra	Suzanne Lewis
Sally Gardner	Scott Mize	Shelley Dahlgren	Stephanie Wedgwood	susan ahlschwede	suzanne livingston
Salme Armijo	Scott Rubel	Shelley Sterrett	Stephanie Young	Susan Babcock	Suzanne Ludlum
Sam Child	Scott Tallman	shereen shuster	Stephanie Ziakas	Susan Bakke	Suzanne McHugh
Sam Diaz	Scott Warwick	Sheri Archey	Stephen and Nancy Petersen	Susan Bassin	Suzanne McNamee
Sam Sloneker	Sean Curtice	Sheri Randolph	stephen handler	Susan Bechtholt	Suzanne Pierce
Samantha Heatherly	SEAN GUFFEY	sheri reeves	Stephen Hutchinson	Susan Birkeland	Suzanne Ramirez
samantha turner	Sean McMullen	sherri edwards	Stephen Jessen	Susan Bohannan	suzi hokonson
Sammy Ehrnman	Sean Sardari, CPE	Sherrill Futrell	stephen johnson	susan bradford	Sylvia Baldwin
Sammy Low	Sedrick Nin	Sherry Breidenthal	Stephen Orsary	susan branch	Sylvia Black
Sampson Boweers	Seiji Miyasaki	Sherry Brown-Ryther	Stephen Ryle	Susan Buckley	Sylvia Cardella
Samuel Anderson	serge vrabec	Sherry Cordova	Stephen Tanga	Susan Ciaramella	Sylvia Hackett
Samuel Aronoff	shamrna murphy	Sherry Marsh	Stephen Weitz	Susan Emblen-Richtsmeier	Sylvia Lawrence
Samuel Hergenrather	shana lauer	Shirley Harris	Stephen Young	susan folsom	sylvia Marie
Sandi Covell	Shanan Bjelland	Shirley Harris	Steve Balok	Susan Ghirardelli	Sylvia Moss
Sandra Applebaum	Shane Farnor	shirley ramstrom	Steve Green	susan gordon	Sylvia Schleimer
Sandra Clark	shannon abernathy	Shirley Shaw	Steve Iverson	SUSAN GUZMAN	T Loper
Sandra Cutter	SHANNON BUDDES	Shirley Sykes	Steve Kreider	Susan Hanger	T. Sharpe
Sandra Gold	Shannon Fouts	Shirley White	Steve Mc Clelland	Susan Hathaway	Tamara Collard
Sandra Lord	Shannon Hillary	Shiu Hung	Steve Olson	Susan Hubbard	tamara roosa
Sandra Noah	Shannon Mortensen	Shoshanah McKnight	Steve Ongerth	susan kuhn	Tamara Tiffany
Sandra Palmguist	Shannon Nesbitt	Siddharth Mehrotra	steve rosin	Susan Kuhn	Tamela Roberson
Sandra Peterson	Shannon York	Signe Young	Steve Spangler	Susan L. Shoup	Tamhas Griffith
sandra scholey	SHARMAYNE BUSHER	simone siebert	Steve Wagner	Susan McMullen	Tami Armitage
Sandy Hunrichs	Sharon Barbour	siria arteaga	Steve Wilson	Susan Morgan	Tammi Sweeney
Sandy Sanderson	Sharon Cox	Sissy Yates	Steven Aderhold	Susan Norman-Jones	Tammy Galaviz
sandy Valencour	Sharon Fetter	Sofia Blizard	Steven Anderson	Susan Rappoport	Tammy Scroggs

Final Environmental Impact Statement — Advanced Technology Solar Telescope

Tanya Baker	Thomas Carroll	Tom Nash	Vanessa Nixon Klein	Whitney Campbell
Tanya Meyer	Thomas Conroy	Tom Reidy	Vanja Ivanova-Hathcock	whitney hines
Tara Kamath	Thomas Kindle	(Vasu Murti	whitney schutt
Tara Mulski	Thomas Ray	tom rossi Tom Sanchez	Vera Lis	Wilfredo Salazar
Tari Parker	Thomas Rummel		Vera Topinka	Wiliam Ricciardi
	Thomas Tizard	Tom Sayre Tom Shinault	Veronica Kirchoff	
Taryn Reed Tasha Chenoweth			Veronica Kircholi	Will George Will Silva
	Thomas W Jenson	Tom Walsh		
Tasha Gustafson	Tia Triplett	Tom Wayson	Vic DeAngelo	William Botch
Tassilo von Koch	Tiffany Solorio	Tommy Bacorn	Vicente Moretti	William Bumgardner
Ted Fishman	Tim Barrington	Tone Butler	vicki kopinski	William Butler
Ted Kennel	Tim Durnell	Toni Russell	Vicki Lewis	William C. Briggs, Jr.
Ted Klump	Tim Kadrmas	Toni Wolfson	vicki maheu	William D. Rausch
Tedd Kawakami	Tim McGuire	Tony Costa	Vickie Rozell	William Dane
Tena Terry	tim moore	Tonya Cockrell	victor lawrence	William Fike
Teos Abadia	Tim Nistler	Toochis Morin	Victor Vuyas	william freshour
teresa ann garcia	Tim Stearns	Torunn Sivesind	Victorea Richeson	William Gerhart
Teresa Conahan	tim tarbell	Toula Siacotos	Victoria Trimble-Lowe	William Harris III
Teresa E Lawrence	tim weinfeld	Tracey Arnold	Vinayak Vinayak	William Henry
Teresa Edmonds	Timmi Sommer	Tracey Kleber	Vincent Alvarez	william kenison
Teresa Forsberg	Timothy Arrington	Traci Rodriguez	Vira Confectioner	William Lenoch
Teresa Goff-Lindsay	Timothy Devine	Tracy Fleming	Virginia Bennett	William M Seyfried Jr
Teresa Ramos	Timothy Farrell	Tracy McCowan	Virginia Foote	william mac bean
Terese Drummond	Timothy Kelly	Tracy van Staalduinen	Virginia Hadley	William Mc Guire
Teri Meadows	Timothy Lawnicki	Traffy DeSalvo	Virginia Sharkey	William Merz
Teri Sigler	Timothy Lippert	Travis Newhouse	Virginia Weller	William Messenger
Teri Travis	Timothy Taylor	Travis Wernet	Vivian Dowell	William Mitchell
Terry Barber	Tina Brown	Trevor Parker	vivian fahlgren	William Modesitt
Terry charbonneau	TINA JONES	Tricia Ebert	Viviann Choate	William Perren
terry goss	Tina Ladd	Tricia Thrasher	vonnie iams	William Roberson
Terry Larsen	Tina Rosa	Trifon Trifonopoulos	W Joyce Coger, Esq.	William Rogers RN (Ret.)
Terry Miller	tina wener	Trisha Bradford	Wally Wolfe	William Sanford
terry oda	tobbi kyle	Tristan Sophia	Walter Kloefkorn	William Scott
Terry Peterson	Toby Allphin	tristin eros	Walter Phelps	William Sneiderwine
Terry Poplawski	Toby McElravey	Trudy Williams	Wayne Kelly	William Webster
Tess Morgan	Toby Rane	Twik Simms	Wayne Luzon	Willow Hales
Theodore Kerhulas	Todd Feiler	Twila Friberg	Wayne Pollaccia	Winnie H
Theodoros Polychronis	Todd Lockwood	Twyla Meyer	Wayne Steffes	Wm. A. / Janet M. Corkran
Theresa Jaquess	Todd McGregor	Uriel Ulam	Wayne Ude	Wm. Mccall
Theresa Lopez	Todd Provino	Ursula Noto	Weldon H Jackson	Woody Griggs
Theresa Rieve	Todd Ryan	V. Christenson	wendi abbott	Yelena Shabrova
Theresa Skager	Todd Sargent	V.R. Wallace	Wendy Fiering	yen li Moore
theresa sullivan	Todd Snyder	Val Sanfilippo	Wendy Hambidge	ynez reyes
Therese & Thomas Ryan	Todd Watkins	Valentino Pellizzer	Wendy Hernandez	yoka brouwer
Therese DeBing	Tom and Karon Gilles	valerie bernard	Wendy Martin	Yoriko Nishi
Thomas - Tony Lawson - Gonzales	tom camara	Valerie Kadium	wendy weikel	Yuka Persico
thomas alexander	Tom Dadant	Valerie Rose	Wendy Wiseman	yvonne gensurowsky
Thomas Boughton	Tom Fitzsimmons	VALERIE VILCHES	Wendy Wittl	yvonne hyatt
thomas broad	Tom Johnson	Valerie Williams	Werner and Sally Kiepe	Yvonne Neal
thomas burt	Tom Kunhardt	Vance Lausmann	Wesly Moore	Yvonne Slater-Grigas
Thomas Carlino	Tom McCarter	Vanessa Farmer	White Bear	Zack Bradford
		vuicessa i diffici		Zack Lewis-Murphy
				Zandra Saez
		I		Zena Lamp

Christine Walte Cindy Lance

Dawn Gohara Delton Johnson

Diane Wong Donald Cooke

Donna Cussac

Emily Baker

Enoch Page

Fern Holland

Fiorrest Hurst

Forest Shomer

Gregg Schulze Gwen Morinaga-Kama

Janice Brencick

Jennifer Ire Karsten Zane

Kiiana Haili

Katie Winchell

N	ame
Alana Bryant	Kaleo Buckley
Andrea Brower	Kapa Oliveria
Anna L. Subiono	L. Ertel
Anna Reycraft	L. Marina Cabanilla Maza
Annalia Russell	Laura Lee
Annjulie Vai	Leana Sims
Becky Robison	Marge White
Bill Smith	Margot Malia Lunch
Caren Diamond	Maryjane Genco
Christina Gauen	Matthew Koanui
Christine Kauahikaua	Michael Saiz
Corey Ann Lewin	Michelle Baydo
Dawn Boucher	Nadine Apo
Denise Lytle	Nancy Landon
Eden Peart	Philip Thomas
Eileen Harrington	Renee Kinimaka
Eileen Kwan-Castaneda	Robin Rabens
Eloise Engman	Rowena Vaca
Ephrosine Daniggelis	Royelen Lee-Boykie
Fithian Jones	Ru Carley
Fredericka Ebel	Sandra Morey
Gail Crabbe	Sara Hayes
James Patitucci	Scottlee McDougall
Jamie Oshiro	Stacey Moniz
Juju Juju	Yvonne Manipon
Na	ame
Alison Hartle	Kawewehi Pundyke
Amara Karuna	Keoki Fukumitsu
Annalia Russell	Jon Spitz
Annjulie Vai	Kawika Au
April Esterly	Kelly LaRose
Babara Gach	Keoki Baclayon
Ben Tajon	Kevin Brown
	Kristen Becher
Bobbi Lempert	
Brenda Kwon	Linnea Heu
Bridget Mowalt	Lono Bray
Britany Edwards	Maggie Costigan
Carolyn Moore	Margaret Campbell
Cathy Robinson	Mark Cosslett
Chastity Cadaoas	Mary Detrick
Chaunnel "Pake" Salmon	Meghan Au
Claudia Herfurt	Nancy Davlantes
Dav Dinner	Nathaniel Diego
Dav Dinner David Bishaw	
David Bishaw	Nathaniel Diego
David Bishaw Dharma (Darlene) Wease	Nathaniel Diego Normand Dufresne
David Bishaw Dharma (Darlene) Wease Douglas Phillips	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda Gary Gunder	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda Gary Gunder Glen Venezio	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen K wan Castaneda Gary Gunder Glen Venezio Harvey Tanaka	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen K wan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor Jeanette Evans	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen K wan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary Sieglinde Gangl
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor Jeanette Evans Jeff Sacher Jessica Dela Cruz	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen K wan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor Jeanette Evans Jeff Sacher	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary Sieglinde Gangl
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eileen Kwan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor Jeanette Evans Jeff Sacher Jessica Dela Cruz	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary Sieglinde Gangl Testy Testerson
David Bishaw Dharma (Darlene) Wease Douglas Phillips Eiken K wan Castaneda Gary Gunder Glen Venezio Harvey Tanaka Janet Taylor Jeanette Evans Jeff Sacher Jessica Dela Cruz Kanoe Kapu	Nathaniel Diego Normand Dufresne Odette Rickert Paul Moss Phyliss and Lanny Younger Rev. Susan Sanford Robin Stetson Satya Anubhuti Shannon Doidge Shien-lu Stokesbary Sieglinde Gangl Testy Testerson Thomas Tizard

Name	Name	
Donna CM Worden	Akiemi Glenn	
Gerald Taber	Amy Wrecking	
Kealoha Yoshioka	Anthony Estrada	
Sabrina Baxter-Thrower	Berton Harrah	
Name	Carol Lee Averil	
Katy Fogg	Curt Sumida	
Lori Buchanan	Daniel Greider	
Loui Cabebe	Daphne Gray	
Maia Wageaner	Dave Kisor	
Name	David Mulnix	
Carolyn Lunel	Diana Fischer	
Cynthia Simms	Elisha Belmont	
Jenna Sabogal	Jennifer Fong	
Tim Brause	Jenny Burnstad	
	Joseph Houlahan	
Name	Judith Waters	
Denise Mederios	Kathie-Lynn Allen	
Elaine Belle-Glover	Kimo Stowell	
Katy Fogg	Kuapapakai Graff	
Keoki Baclayon	Leimomi Wheeler	
Pablo Yurkievich	Lisa Bedinger	
Name	Maya Moiseyev	
Esta Marshall	Pamela Punihaole	
Olena Asuncion	Ravi Grover	
Riki Pestana	Rose Zellers	
Taki i estand	Ruth Osias	
	Sarah Thornton	
	Stephen Scribner	
	Steve Hirakami	
	Susan Bender	
	Testy Testerson Wailua Lind	
	Waimea Williams	
		
A 1-1- II1	Name	
Adele Henkel Alison Yahna	Kimo Kekahuna Kitty Daniel	
Andrew Binstock	Lanny Sinkin	
Andy Ah Po	Lila Liebmann	
Arlene Kato	Madeleine Migenes	
Barbara West	Mark Alapaki Luke	
Becky Moylan Brandy MaDougall	Mary Dias Michael Swordlow	
Brandy McDougall Cha Smith	Michael Swerdlow Miguel Godinez	
Chelle Wright	Pam Daugherty	
Cheryl Rosenfeld	Pamela Palencia	
Christine Walters	Paul Massey	

Paul Miller Peter Sanderson

Richard Powers

Rose Cabanlit

Scott Jarvis

Sharlynn Paet

Silvia Vance

Suzanne Garrett

Testy Testerson

Thomas Ah Yee Toni A. Wolfson, RN

Valerie Loh

Wanda Brown

Warren Kundis

Skye Loe Suzanna Ohoiner

Pohakamalamalama Palmer Raynette Lopez

Name			
Amiee Tomasello	Laura Marsh		
Andrea Anixt	Leiana Lobre		
Andrew Benson	Maha Conyers		
Ann Egleston	Mahina Patterson		
Barb Kay	Margaret Pilago		
Bonnie Winkler	Marti Townsend		
Bryan Matsumoto	Mike Hendrickson		
Charles Lawson	NaniFay Pagnilawan		
Dean Otsuki	Nina Puhipau		
Dennis Lynch	Palani Vaughm, Jr.		
Dita Ramler	Patricia Blair		
Donnalee Sing	Pualani Baptista		
Ehulani Kane	Randy Bautista		
Emily Yeh	Royelen Lee-Boykie		
Fairin Woods	Sandra Morey		
Gina Covina	Sharon Torbert		
James Long	Shary Crocker		
Jeffrey Lagrimas	Sheila Ward		
Katherine Wilder	Tasha Goldberg		
Kerry Beck	Testy Testerson		
Kimberly Dark	Toni A. Wolfson, RN		
Keoki Fukumitsu	Wendy Raebeck		

This page intentionally left blank.