What’s Lurking in O‘ahu, HI Harbors?: Marine Bioinvasions in the 21st Century

Justin Goggins¹, Kimberly Fuller¹, James Carlton², Gregory Ruiz³, Jonathan Geller⁴, Brian Neilson¹

¹Hawaii Department of Land and Natural Resources, Division of Aquatic Resources, USA ²Williams College - Mystic Seaport Maritime Studies Program, Mystic, CT, USA, ³Smithsonian Environmental Research Center, Edgewater, MD, USA, ⁴Moss Landing Marine Laboratories, Moss Landing, CA, USA

Introduction

Hawaiian marine ecosystems are highly susceptible to invasion by non-native species due to biogeographical isolation, lack of natural predators, extensive harbor and port habitats, and a year-round growing season ¹. It is estimated that over 460 introduced (333) and cryptogenic (130) species are established in Hawai‘i’s marine waters ², arriving primarily through ship vectors (biofouling, solid ballast, and ballast water) ², ³, ⁴. Introduced species have the potential to impact biodiversity, ecosystem function, and ecosystem services. Early detection is important in preventing the establishment of non-native species, for once an alien species is established the cost and effort to remove them increases drastically over time (and may be unfeasible for most marine species) ⁴. The objectives of this study were to 1) monitor O‘ahu harbors’ biofouling community, 2) compare results to previous harbor biofouling studies, and 3) determine if new species have established including possible Japanese species arriving on marine debris following the 2011 Japanese tsunami.

Materials and Methods

Study Sites

- Ten PVC panels (~13 cm²) were deployed at eleven sites within nine harbors and piers around Oahu
- Deployment depth: one meter below the mean low water line
- Time frame: three months from September to December 2015
- Salinity and temperature depth profiles were taken during deployment and retrieval for each site
- Panel retrieval: all organisms were sorted into general taxonomic groups
- Specimens were vouchered for taxonomic identification and genetic analysis

Results

- Over 1,000 organisms were collected, resulting in 126 positively identified species
- 53 species (42%) were known introduced species
- 73 species (58%) were:
 - 27 native species
 - 13 cryptogenic species
 - 32 species of unknown biogeographical status in Hawaii (presumably native)
 - 1 species establishment unknown (EU: non-natives with unknown continued presence and reproduction ¹)

- Over 100 species were collected, resulting in 126 positively identified species
- 53 species (42%) were known introduced species
- 73 species (58%) were:
 - 27 native species
 - 13 cryptogenic species
 - 32 species of unknown biogeographical status in Hawaii (presumably native)
 - 1 species establishment unknown (EU: non-natives with unknown continued presence and reproduction ¹)

- No new Japanese biofouling species were detected in the surveys

Conclusions

- This survey established a baseline for future harbor monitoring and created an up-to-date comprehensive database for marine invasive species on O‘ahu
- As expected, commercial and military ports had more introduced fouling organisms than small piers and boat harbors
- One new non-native species was found in this study which had not been previously recorded from Hawai‘i, the amphipod Autonoë seurati, probably introduced by ships from the Indo-West Pacific
- The North American bryozoan Celleporaria brunnea was found in Haleiwa Harbor and Honolulu Harbor in this study
- It was previously documented in 1999 on a barge being towed from California to Hawai‘i but was not considered to be established ¹. It was then found in fouling communities during the 2006 SERC Hawai‘i surveys
- No new Japanese biofouling species were detected in the surveys

Next Steps:

- Analyze the Next Generation Sequencing data (DNA analysis technique) and cross reference with taxonomic species lists
- Continue building a barcode database of Hawai‘i’s biofouling species
- Develop a risk assessment model to identify potential threats to Hawaiian nearshore habitats
- Assess changes in community composition over time, as well as movement of established introduced species into other harbors or neighboring islands, and connectivity to foreign ports

Acknowledgments

This project was made possible by funding provided by: The State of Hawai‘i, Department of Land and Natural Resources, The Japan Gift Fund to the Pacific States, the Smithsonian Environmental Research Center, and Moss Landing Marine Laboratories.

We would like to acknowledge the contributions to this project by the following individuals and organizations: Bishop Museum Taxonomist: Holly Boek, Scott Godwin, Regina Kawamoto, and Kenneth Longenecker; Williams-Mytilus Taxonomist: Megan McCuller; Royal Ontario Museum Taxonomist: Dale Calder; SERC Staff: Linda McClain, Brianna Tracy, Erica Koppel, and Stacy Howard. DAR Staff: Kendall Tucker, Daniel Langer, Jason Mehlinger, Amber Headman, and Kristen Mhy. Hawaii Department of Boating and Recreation: Meghann Staln and staff.

Literature Cited