DLNR Virtual Field Trips: Lehua Islet NGSS, Nā Hopena A'o, and 'Āina Aloha Standards Alignment'

Alignment Summary

The Lehua Islet Virtual Field Trip offers students an educational experience that they simply could not experience on an in-person field trip: a journey to a seabird sanctuary 17 miles west of Kaua'i and just north of Ni'ihau, filled with ground-nesting seabirds and world-class conservation projects. Students will explore this unique environment, learn about bird and plant species, discover conservation tools used to protect seabirds, and learn directly from field biologists what it takes to be a scientist helping to protect Hawai'i's natural resources.

As an educator, you can use this field trip in multiple ways: **Take a trip as a class** by connecting a computer to a large screen in your classroom and journeying through each "stop" on the field trip, clicking on the hotspots to reveal videos, images, and text. Make sure to link a speaker so students can hear the videos. Alternatively, **assign students to explore individually** on their devices at school or at home. If your class has a **virtual reality headset** that has a web browser, you can visually explore these locations (however, the educational hotspots are disabled in VR mode). Note that the hotspots often contain links to species profile pages on the websites of DLNR, University of Hawai'i, or Bishop Museum, allowing students to learn more if you'd like them to research particular species. This field trip contains roughly one hour of video footage, and exploring all of the hotspots, imagery, and text will likely take your class around two hours.

The guiding questions and alignments below are designed to facilitate integration with your curriculum goals. The alignments below are targeted for **Next Gen Science Standards**, **Nā Hopena A'o**, and 'Āina Aloha, but you may also discover additional connections with Hawaiian Studies, Social Studies, and language curricula.

Guiding Questions

What geographical and biological factors make Lehua a good place for seabirds to nest?

- How did the introduction (and later removal) of rabbits and rats impact seabirds on Lehua?
- What tools and methods do biologists use on Lehua to track the health of seabird populations?
- What relationship did Native Hawaiians have with Lehua, prior to the island being used by the US Coast Guard?
- What is it like to be a biologist working on Lehua, and why do you think biologists choose to do this work?

NGSS Alignment

The standard codes below have been hyperlinked to direct you to a description of the standard.

NGSS Code	Discipline & Core Ideas	Subitem	Relevant DCIs	Field Trip Connections to DCIs
<u>K-</u> <u>ESS2-2</u>	ESS: Earth and Space Sciences- 2: Earth's Systems	2: Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs	ESS2.E: Biogeology: Plants and animals can change their environment. ESS3.C: Human Impacts on Earth Systems: Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things.	Stop 10 ("Along the eastern arm") includes a hotspot titled "Let's talk about poop." It discussed how birds on Lehua change the environment by adding nutrient-rich guano, sustaining plant and animal life on Lehua and in its surrounding waters. At the same stop, a hotspot labeled "Changes in the ocean since removing rats" discusses some of the marine changes we expect to see as the amount of guano produced on the island increases.

<u>K-</u> <u>ESS3-1</u>	ESS: Earth and Space Sciences- 3: Earth and Human Activity	1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live.	ESS3.A: Natural Resources Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.	Stop 10 ("Along the eastern arm") includes a hotspot titled "Ahu and use of Lehua by Native Hawaiians," which discusses human use of natural resources on Lehua, including susbsistence gathering of eggs and birds.
<u>K-</u> <u>ESS3-3</u>	ESS: Earth and Space Sciences- 3: Earth and Human Activity	3: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.	ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (secondary)	The largest impact on Lehua from humans was the introduction of rats and rabbits. Much of the field trip discusses the restoration of the island, a monumental effort to reduce and correct the impacts humans have had on this island. For ETS1.B, students could develop solutions related to keeping invasive species off Lehua. What laws could be written, and what guidelines could be given to boat operators or scientists visiting Lehua to ensure pests don't arrive? What could biologists do to monitor for and remove invasive species that slip through the laws and guidelines you created?

1-LS1-1	LS: Life Sciences- 1: From Molecules to Organisms: Structures and Processes	1: Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	LS1.A: Structure and Function All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow.	Many of the plants seen in this virtual field trip are low-profile, creeping plants that stay low to the ground. Students may consider why plants have adapted this growth form. Answers include Lehua's shallow or non-existent soils, the scarcity of water on the island, and the high amount of wind.
1-LS1-2	LS: Life Sciences- 1: From Molecules to Organisms: Structures and Processes	2: Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.	LS1.B: Growth and Development of Organisms Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive.	At Stop 2 in the video "Meet the 'ā" we see parents sitting on eggs or on top of their hatched chicks. Why do parents do this? In one photo an 'ā chick is on the nest by itself. Students may speculate that the parent is away from the nest gathering food for their chick. At Stop 7 in the video "Meet the 'ou," we learn that 'ou like to nest in tiny crevices in rocks. This protects their chicks, which tend to be plump and would make a good meal for predators.
2-LS4-1	LS: Life Sciences- 4: Biological Evolution: Unity and Diversity	2: Make observations of plants and animals to compare the diversity of life in different habitats.	LS4.D: Biodiversity and Humans There are many different kinds of living things in any area, and they exist in different places on land and in water.	Students may consider why ground-nesting seabirds are found mostly on off-shore islets rather than our main Hawaiian Islands (answer: there are fewer predators like rats, cats, and mongoose). They may also consider why some seabirds met in this virtual field trip like to live in open burrows (like the koa'e 'ula or 'ua'u kani) and why others like to

				live in very small crevices (like the 'ou).
3-LS1-1	LS: Life Sciences- 1: From molecules to Organisms: Structures and Processes	1: Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.	LS1.B: Growth and Development of Organisms Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles.	Students may use the species they meet in this field trip to develop models of life cycles. The seabird profiles linked to in the "Meet the species" videos may have information about the time of year that different species nest and lay eggs, as well as information about when they fledge (leave the nest) and begin hunting for their own food at sea, then eventually mate and produce eggs.
3-LS2-1	LS: Life Sciences- 2: Ecosystems: Interactions, Energy, and Dynamics	Construct an argument that some animals form groups that help members survive.	LS2.D: Social Interactions and Group Behavior Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size (Note: Moved from K–2).	At Stop 6 we learn about the tool called "social attraction." Pretending that there is already a group of 'ewa'ewa on the island draws in more 'ewa'ewa. Why do birds flock together? Being in a group may help them alert one another to the presence of predators or find mates.

3-LS4-4	LS: Life Sciences- 4: Biological Evolution: Unity and Diversity	4: Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.	LS2.C: Ecosystem Dynamics, Functioning, and Resilience When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (secondary) LS4.D: Biodiversity and Humans Populations live in a variety of habitats, and change in those habitats affects the organisms living there.	Students may consider the changes caused to the environment of Lehua when rats and rabits were introduced to the island. They can make a claim about the merit of the solution used by biologists: rat eradication using a rat bait dropped by helicopter (see stop 9 and the video titled "Conservation tool: Restoration by removing rabbits and rats."
4- ESS2-1	ESS: Earth and Space Sciences- 2: Earth's Systems	Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.	ESS2.A: Earth Materials and Systems: Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology: Living things affect the physical characteristics of their regions.	The Stop 5 hotspot "Hiking along the Western Arm" and the Stop 8 hotspot "Keaulepe: Keyhole" show heavily eroded areas. In an earlier hotspot, Lehua was described as a tuff cone, formed from volcanic ash produced during an eruption. Students may consider the formation of tuff, the wind and rain that fall on Lehua, and the resulting erosion in the island's terrain.

4-LS4-1	LS: Life Sciences- 4: Biological Evolution: Unity and Diversity	1: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction	LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.	Students may consider the various body structures that seabirds use to live in their environment. One example can be found in stop 7 in the video "Meet the 'Ou," which talks about tubenose birds and the tubes they have on their beaks to eject saltwater. In Stop 2, the video "Meet the Koa'e 'Ula" discusses the red tail streamers that adults grow. The length of these streamers are likely related to attracting a mate. In Stop 4 (the peak), the video about molī discusses the hook at the end of their beak being used to pick up food items from the water.
<u>5-</u> <u>ESS3-1</u>	ESS: Earth and Space Sciences- 3: Earth and Human Activity	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.	ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments.	Students can learn about science ideas to protect the environment in the videos labeled "Conservation Tools", including song meters (Stop 5), social attraction (Stop 6), burrow checks (Stop 7), and game cameras (Stop 8). At Stop 12 they learn about conservation careers and what it is like to be a field biologist.

<u>5-LS2-1</u>	LS: Life Sciences- 2: Ecosystems: Interactions, Energy, and Dynamics	1: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.	The birds met through this virtual field trip mostly rely on marine organisms for their food rather than eating the plants found on Lehua. But, they are still connected through cycles of energy and matter. In particular, birds contribute nitrogen, phosphorous, and other nutrients to the environment via their guano, which supports plants and marine life. This is discussed in Stop 10 in the hotspot "Let's talk about poop."
----------------	---	--	---	--

	l			
HS-	LS: Life	Use mathematical	LS2.A: Interdependent Relationships in Ecosystems:	Students may consider what factors limit
LS2-2	Sciences- 2:	representations to	Ecosystems have carrying capacities, which are	population growth on Lehua now that rabbits and
	Ecosystems:	support and revise	limits to the numbers of organisms and populations	rats are gone. On a small island, there is certainly
	Interactions,	explanations based on	they can support. These limits result from such	a carrying capacity for seabirds. But, this capacity
	Energy, and	evidence about factors	factors as the availability of living and nonliving	depends on factors like food in the surrounding
	Dynamics	affecting biodiversity	resources and from such challenges such as	ocean, the presence of native plants to provide
		and populations in	predation, competition, and disease. Organisms	habitat for roosting and nesting, and the amount of
		ecosystems of	would have the capacity to produce populations of	space on the island. As we expect seabird
		different scales.	great size were it not for the fact that environments	population sizes to increase, we can expect
			and resources are finite. This fundamental tension	increased competition for space and food
			affects the abundance (number of individuals) of	resources on the island.
			species in any given ecosystem.	
			LS2.C: Ecosystem Dynamics, Functioning, and	
			Resilience: A complex set of interactions within an	
			ecosystem can keep its numbers and types of	
			organisms relatively constant over long periods of	
			time under stable conditions. If a modest biological	
			or physical disturbance to an ecosystem occurs, it	
			may return to its more or less original status (i.e., the	
			ecosystem is resilient), as opposed to becoming a	
			very different ecosystem. Extreme fluctuations in	
			conditions or the size of any population, however,	
			can challenge the functioning of ecosystems in terms	
			of resources and habitat availability.	
			•	

HS-	LS: Life	6: Evaluate claims,	LS2.C: Ecosystem Dynamics, Functioning, and	A major biological disturbance to Lehua's
LS2-6	Sciences- 2:	evidence, and	Resilience	ecosystems occurred when rabbits and rats were
	Ecosystems:	reasoning that the	A complex set of interactions within an ecosystem	introduced. Students may consider whether
	Interactions,	complex interactions	can keep its numbers and types of organisms	Lehua's ecosystems were likely in balance and
	Energy, and	in ecosystems	relatively constant over long periods of time under	supported consistent bird populations before these
	Dynamics	maintain relatively	stable conditions. If a modest biological or physical	introductions, and what impacts these invasive
		consistent numbers	disturbance to an ecosystem occurs, it may return to	species had on plants and birds on the island
		and types of	its more or less original status (i.e., the ecosystem is	following their introduction.
		organisms in stable	resilient), as opposed to becoming a very different	
		conditions, but	ecosystem. Extreme fluctuations in conditions or the	
		changing conditions	size of any population, however, can challenge the	
		may result in a new	functioning of ecosystems in terms of resources and	
		ecosystem.	habitat availability.	

	1			
HS-	LS: Life	7: Design, evaluate,	LS2.C: Ecosystem Dynamics, Functioning, and	For LS2.C, students may consider how the
LS2-7	Sciences- 2:	and refine a solution	Resilience	introduction of invasive species (rabbits and rats)
	Ecosystems:	for reducing the	Moreover, anthropogenic changes (induced by	impacts the island's flora and fauna, and how
	Interactions,	impacts of human	human activity) in the environment—including habitat	climate change may impact this island. The virtual
	Energy, and	activities on the	destruction, pollution, introduction of invasive	field trip also discusses how Lehua may help bird
	Dynamics	environment and	species, overexploitation, and climate change—can	populations survive future changes in climate: bird
		biodiversity.	disrupt an ecosystem and threaten the survival of	populations that currently thrive on low-lying atolls
			some species.	in the Northwest Hawaiian Islands may need to
				shift south to Lehua and other relatively high
			LS4.D: Biodiversity and Humans	islands as sea levels rise.
			Biodiversity is increased by the formation of new	
			species (speciation) and decreased by the loss of	For LS4.D, students may explore the concept of
			species (extinction). (secondary)	speciation by researching the multiple species of 'ā
			Humans depend on the living world for the resources	described in this field trip (primarily in Stop 2,
			and other benefits provided by biodiversity. But	"Meet the 'ā"). How are brown booby, red-footed
			human activity is also having adverse impacts on	booby, and Cocos booby related? Cocos booby
			biodiversity through overpopulation, overexploitation,	was considered a subspecies of brown booby until
			habitat destruction, pollution, introduction of invasive	2024. What factors led to the decision to consider
			species, and climate change. Thus sustaining	Cocos booby its own species?
			biodiversity so that ecosystem functioning and	
			productivity are maintained is essential to supporting	
			and enhancing life on Earth. Sustaining biodiversity	
			also aids humanity by preserving landscapes of	
			recreational or inspirational value. (secondary)	
			(Note: This Disciplinary Core Idea is also addressed	
			by HS-LS4-6.)	
			,	

HS-	LS: Life	Evaluate the evidence	LS2.D: Social Interactions and Group Behavior	At Stop 6 we learn about the tool called "social
LS2-8	Sciences- 2:	for the role of group	Group behavior has evolved because membership	attraction." Pretending that there is already a group
	Ecosystems:	behavior on individual	can increase the chances of survival for individuals	of 'ewa'ewa on the island draws in more 'ewa'ewa.
	Interactions,	and species'	and their genetic relatives.	Why do birds flock together? Being in a group may
	Energy, and	chances to survive		help them alert one another to the presence of
	Dynamics	and reproduce		predators or find mates.

			T	
HS-	LS: Life	Create or revise a	LS4.C: Adaptation	Lehua is an excellent model for seeing the impacts
<u>LS4-6</u>	Sciences- 2:	simulation to test a	Changes in the physical environment, whether	of human activity on biodiversity (through the
	Ecosystems:	solution to mitigate	naturally occurring or human induced, have thus	introduction of invasive species) and as well as the
	Interactions,	adverse impacts of	contributed to the expansion of some species, the	impacts of solutions to population decline. In the
	Energy, and	human	emergence of new distinct species as populations	videos labeled "Conservation Tools," students
	Dynamics	activity on biodiversity.	diverge under different conditions, and the decline-	learn about the tools scientists use to ensure that
			and sometimes the extinction-of some species.	invasive species are not found on the island and
			LS4.D: Biodiversity and Humans	that bird populations are healthy. In particular,
			Humans depend on the living world for the resources	students can see scientists actively trying to
			and other benefits provided by biodiversity. But	increase biodiversity on the island through social
			human activity is also having adverse impacts on	attraction. What other solutions might students
			biodiversity through overpopulation, overexploitation,	suggest to reducing human impacts on biodiversity
			habitat destruction, pollution, introduction of invasive	on Lehua?
			species, and climate change. Thus sustaining	
			biodiversity so that ecosystem functioning and	
			productivity are maintained is essential to supporting	
			and enhancing life on Earth. Sustaining biodiversity	
			also aids humanity by preserving landscapes of	
			recreational or inspirational value. (Note: This	
			Disciplinary Core Idea is also addressed by HS-LS2-	
			7.)	
			ETS1.B: Developing Possible Solutions	
			When evaluating solutions, it is important to take into	
			account a range of constraints, including cost, safety,	
			reliability, and aesthetics, and to consider social,	
			cultural, and environmental impacts. (secondary)	
			Both physical models and computers can be used in	
			Both physical models and computers can be used in	

		T
	various ways to aid in the engineering design	
	process. Computers are useful for a variety of	
	purposes, such as running simulations to test	
	different ways of solving a problem or to see which	
	one is most efficient or economical; and in making a	
	persuasive presentation to a client about how a	
	given design will meet his or her needs. (secondary)	
	, , , , , ,	

MS- ESS3-3	ESS: Earth and Space Sciences- 3: Earth and Human Activity	3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.	The past presence of invasive species on Lehua (rabbits and rats) is ultimately a human impact on the environment, since these species were introduced to Hawai'i by humans. The virtual field trip describes multiple monitoring tools used to detect potential invasive species on the island, as well as to monitor the health of bird populations. These include song meters (Stop 5) and game cameras (Stop 8). Students may design additional methods for monitoring or minimizing human impacts on Lehua.
MS- LS1-4	LS: Life Sciences- 1: From Molecules to Organisms: Structures and Processes	4: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.	LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.	Two examples of reproductive behaviors are found in the molī dance party hotspot in Stop 4 (albatross use dancing as a courtship display), and the growth of red streamers by koa'e 'ula discussed in the "Meet the Koa'e 'Ula" video in Stop 3. The length of the red streamers may be linked to mate attraction.

MS- LS2-2	LS: Life Sciences- 2: Ecosystems: Interactions, Energy, and	2: Construct an explanation that predicts patterns of interactions among organisms across	LS2.A: Interdependent Relationships in Ecosystems Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each	This standard discusses interactions including predation, competition, and beneficial interactions. For predation, students will hear frequently about predation by rats limiting the number and types of seabirds on the island. Following rat eradication,
	Dynamics	multiple ecosystems.	organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared.	we expect the number and types of birds to increase (rat eradication is discussed throughout the field trip, but discussed in greatest detail at Stop 9). For competition, students may consider how the birds on the island relate to one another. Some, like 'iwa (Stop 5), steal food from one another. For beneficial interactions, the idea of social attraction (Stop 6) may be an opportunity for students to discuss intraspecies beneficial interactions and how birds of the same species benefit from being near one another.

MS- LS2-3	LS: Life Sciences- 2: Ecosystems: Interactions, Energy, and Dynamics	Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	LS2.B: Cycle of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.	Students learn in the Stop 10 hotspot "Let's talk about poop" about the cycling of nitrogen and phosphorous through seabird guano back into the plants and marine life around Lehua, which in turn supports the seabird's diet of fish, squid, and other marine organisms.
<u>MS-</u> <u>LS2-4</u>	LS: Life Sciences- 2: Ecosystems: Interactions, Energy, and Dynamics	4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.	LS2.C: Ecosystem Dynamics, Functioning, and Resilience Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations.	Lehua undergoes seasonal changes (students may notice that some photos show Lehua's vegetation as bright green, while other photos show it as a dull brown/yellow during the summer dry season). Another biological disruption to Lehua's ecosystems occurred when rabbits and rats were introduced. Students may consider the impacts that these invasive species had on plants and birds on the island, and the subsequent impacts of removing those invasive species from the island.

MS-	LS: Life	5: Evaluate competing	LS2.C: Ecosystem Dynamics, Functioning, and	For LS4.D, changes in seabird biodiversity in the
<u>LS2-5</u>	Sciences- 2:	design solutions for	Resilience	last 200 years have certainly influenced human
	Ecosystems:	maintaining	Biodiversity describes the variety of species found in	relationship to food resources. While Native
	Interactions,	biodiversity and	Earth's terrestrial and oceanic ecosystems. The	Hawaiians visited Lehua to collect eggs and birds
	Energy, and	ecosystem services.	completeness or integrity of an ecosystem's	for food (see Stop 10), nowadays we prohibit
	Dynamics		biodiversity is often used as a measure of its health.	harvesting native seabirds or their eggs for food.
			LS4.D: Biodiversity and Humans	As a thought exercise, students may consider what
			Changes in biodiversity can influence humans'	level of biodiversity and abundance we would need
			resources, such as food, energy, and medicines, as	to consider our bird populations "healthy," so that
			well as ecosystem services that humans rely on—for	they are no longer considered at-risk. Would it be
			example, water purification and recycling.	acceptable, then, to harvest seabirds or their eggs
			(secondary)	for food? What solutions would students suggest to
			ETS1.B: Developing Possible Solutions	increase bird diversity and abundance to such
			There are systematic processes for evaluating	levels, and what laws or guidelines would they
			solutions with respect to how well they meet the	place on hypothetical harvesting to ensure
			criteria and constraints of a problem. (secondary)	sustainable populations?

Alignment with Nā Hopena A'o Statements

<u>Hopena</u>	<u>Statement</u>	
Strengthened Sense of Belonging	a. Know who I am and where I am from	
	b. Know about the place I live and go to school	

2. Strengthened Sense of Hawai'i	b. Use Hawaiian words appropriate to their task
	c. Learn the names, stories, special characteristics and the importance of places in Hawai'i
	d. Learn and apply Hawaiian traditional world view and knowledge in contemporary settings
	e. Share the histories, stories, cultures and languages of Hawai'i
	g. Treat Hawai'i with pride and respect
	h. Call Hawai'i home

'Āina Aloha Competencies:

This link will direct you to the Office of Hawaiian Education (OHE) 'Āina Aloha competencies.

https://sites.google.com/k12.hi.us/ohehub/hawaiian-studies-program-hsp/%CA%BB%C4%81ina-aloha-a%CA%BBa-choice-board?authuser=0

Competency	Sub Competency	Competency Highlight
Aina Ulu: Growth Cycle	Kupu	Young and fresh learner
Kuana'ike: Ahupua'a	Kupu	Understanding the significance and importance of stewardship, systems and cycles

Honua: Pono	Hua	Advocates for living pono and contributes to aina well-being
-------------	-----	--