Stony Coral Tissue Loss Disease (SCTLD) and the possible risks to Hawai'i

ALIEN AQUATIC ORGANISM TASK FORCE OCT 20TH, 2022

SCTLD: The Most Lethal Coral Disease

- ► High rate of mortality
- ▶ High prevalence
- Effects multiple coral taxa, life stages and sizes
- Spreads quickly along reefs, to adjacent reefs, and across large distances
- ▶ Persistent over time
- Many unknowns

Effects of SCTLD

- Different from bleaching SCTLD is death of the coral itself
- Coral is likely to perish in weeks or months if there is no intervention
- Signs of disease vary between taxa but start as tissue loss
- ► Tissue loss occurs rapidly at a rate of up to 40 cm² / day
- No causative pathogen has been identified yet

Susceptibility of Corals to SCTLD

- Not all corals equally effected by SCTLD
- Mortality rates can be up to 94% depending on species
- Some Pacific corals from Panama have been studied – no Hawaiian corals yet
- Latest updates on susceptible corals available via AGGRA

High	Medium	Presumed	Low
Colpophyllia natans (boulder brain coral)	Orbicella annularis (lobed star coral)	Agaricia agaricites (lettuce coral)	Porites astreoides (mustard hill coral)
Dendrogyra cylindrus (pillar coral)	Orbicella faveolata (mountain ous star coral)	Agaricia spp. (plate/s aucer corals)	Porites porites (finger coral)
Dichocoenia stokesii (elliptical star coral)	Orbicella franksi (boulder star coral)	Mycetophyllia spp. (cactus coral)	Porites divaricata (thin finger coral)
Diploria labyrinthiformis (groo ved brain coral)	Montastraea cavernosa (large- cup star coral)	Madracis arenterna (pencil coral)	Porites furcata (branched finger coral
Eusmilia fastigiata (smooth flower coral)	Solenastrea bournoni (smooth star coral)	Favia fragum (golfball coral)	Acropora palmata (elkhorn coral)
Meandrina meandrites (maze coral)	Stephanocoenia intersepta (blushing star coral)	Helioseris cucullata (sunray lettuce coral)	Acropora cervicornis (staghorn coral)
Pseudodiploria strigosa (symmetrical brain coral)	Siderastrea siderea (starlet coral)	Mussa angulosa (spiny flower coral)	Oculina spp. (bush corals)
Pseudodiploria clivosa (knobby brain coral)		Scolymia spp. (disc coral)	Cladocoraarbuscula (tube coral)
		Isophyllia spp. (sinuous cactus coral; rough star coral)	

Emergence of SCTLD

- First identified as mysterious coral disease outbreak near Miami, Florida in fall of 2014
- Has since spread throughout Florida Reef Tract and has reached the Keys and Dry Tortugas National Park

Today

Jamaica, Mexico, St. Maarten, St. Thomas, Dominican Republic, Turks and Caicos Islands, Saint-Martin, Belize, St. Eustatius, St. John, Puerto Rico, Grand Bahamas, Grand Cayman, US and British Virgin Islands, Cayman Islands, Guadeloupe, St. Lucia, Honduras, Martinique, and Dominica

940 km

Earth star Geographics

Vectors of SCTLD Spread

- Direct contact between corals
- Contact between corals and other intermediary species
- Local water movement and ocean currents
- Reef sediments
- Equipment contaminated with SCTLD
- Ballast water
- ► Hull fouling?

SCTLD and Ballast Water

- Novel emergence of SCTLD in ports indicate ballast water may be one source of spread
- Ballast water has been previously known to spread disease
- UV sterilization does not eliminate SCTLD pathogen from water

Rosenau et al. 2021

Prevention of SCTLD

- Decontamination of dive gear, research equipment, etc.
- Monitoring and surveillance for SCTLD – catch it early
- Regulation of vessel traffic ballast water & potentially hull fouling

General Guidelines for Disinfection

DO

- ✓ Inspect dive gear and equipment and remove debris
- Move from "cleanest" site first to "dirtiest" last
- Decontaminate dive gear at end of day
- Decontaminate dive gear between sites, countries, & sensitive areas
- Properly dispose of disinfectant & rinse waste into sink, tub, or shower
- X Don't leave debris on dive gear
- X Don't move from a diseased to a healthy site
- **★** Don't forget to disinfect gear between sites, countries, sensitive areas, & end of day

X Don't dispose of disinfectant & rinse waste into ocean or storm drain

Collaboration Against SCTLD

- Huge international collaborative effort between U.S. States and Territories and other Caribbean countries
- ▶ 100s of scientists conducting research on prevention, intervention and progression of the disease
- Over 2000 corals rescued in Florida and sent across the US
- Resources available to the Pacific if SCTLD arrives

Intervention Against SCTLD

- Many treatments have been tried amputation, culling, chlorine, probiotics, antibiotics, and coral removal/rescue
- Most effective so far are antibiotic application and coral rescue, though studies are ongoing
- Antibiotics are costly, don't prevent disease, and may have future side effects
- Coral rescue is very labor intensive

Current Hawai'i Actions Against SCTLD

- Learning from Florida and the Caribbean to formulate a plan and prepare Hawaiii
- Collaborating with Pacific territories on preparedness and prevention
- Increasing capacity for response
- DAR is exploring emergency rulemaking for vessels traveling to Hawai'i from SCTLD-affected areas

Reminder: Best Action is Prevention!

- Caribbean reefs have seen massive decline in coral populations, and dramatic shifts in reef structure
- Response has been expensive and extremely time consuming

Physical functionality of Caribbean reefs based on temporal trends (Alvarez-Filip et al. 2021)

Prevention in Hawai'i

- ► Total estimated value of the main Hawaiian Islands reefs is \$33.6 billion
- ► Hawaiian reefs provide 7 million meals via nearshore fisheries
- Also provide cultural, social, recreational, biological and ecological value
- Intervention and restoration are expensive and do not guarantee reefs will recover

Questions?

Contact Me:

Lizzy Monaghan

Aquatic Biologist IV, Division of Aquatic Resources

Ballast Water and Biofouling Coordinator

elizabeth.a.monaghan@hawaii.gov

