FINAL REPORT

Archaeological Monitoring Plan In Support of Construction of the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea, Kaʻohe Ahupuaʻa, Hāmākua District, Island of Hawaiʻi, State of Hawaiʻi

TMK: (3) 4-4-015: 09 (por.)

Prepared for:

TMT Observatory Corporation
1200 E. California Boulevard
Pasadena, CA 91125

May 2013
FINAL REPORT
Archaeological Monitoring Plan In Support of Construction of the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea, Ka'ōhe Ahupua'a, Hāmākua District, Island of Hawai'i, State of Hawai'i
TMK: (3) 4-4-015: 09 (por.)

By
Sara Collins, Ph.D.,
Patrick McCoy, Ph.D.,
and
Stephan D. Clark, B.S.

Prepared by
Pacific Consulting Services, Inc.
720 Iwilei Road, Suite 424
Honolulu, HI 96817

Prepared for
TMT Observatory Corporation
1200 E. California Boulevard
Pasadena, CA 91125

May 2013
TABLE OF CONTENTS

- LIST OF FIGURES ... ii
- LIST OF TABLES ... ii
- INTRODUCTION ... 1
 - PROJECT LOCATION AND DESCRIPTION ... 4
 - TMT Observatory ... 4
 - The Batch Plant Staging Area .. 4
 - Hawaiian Electric Company (HELCO) Substation ... 5
 - TMT Access Way ... 5
- ENVIRONMENTAL BACKGROUND .. 7
 - TOPOGRAPHY & SOILS ... 7
 - RAINFALL & VEGETATION .. 7
- HISTORICAL BACKGROUND ... 8
 - TRADITIONAL LAND USE HISTORY .. 8
 - HISTORIC & RECENT LAND USE HISTORY ... 9
 - PREVIOUS ARCHAEOLOGICAL STUDIES .. 10
 - Historic Properties in the Astronomy Precinct ... 16
 - Historic Properties in the Mauna Kea Access Road Management Corridor and near the HELCO Substation ... 18
- ARCHAEOLOGICAL MONITORING PROCEDURES .. 25
 - ANTICIPATED FINDS ... 25
 - EXTENT OF ARCHAEOLOGICAL MONITORING ... 25
 - TREATMENT OF CULTURAL MATERIALS .. 26
 - TREATMENT OF HUMAN REMAINS ... 32
 - HALTING OF EXCAVATION ACTIVITY .. 32
 - PRE-CONSTRUCTION CONFERENCE ... 33
 - LABORATORY WORK .. 33
 - REPORT PREPARATION .. 33
 - COLLECTIONS ARCHIVING .. 33
 - CULTURAL MONITORING .. 34
 - INADVERTENT DISCOVERIES ... 34
- REFERENCES CITED ... 35
LIST OF FIGURES

Figure 1. Project Area Location on U.S.G.S. 2002 Mauna Kea and Ahumoa Quadrangle.. 2
Figure 2. Location of the Project APE Components.. 3
Figure 3. Photograph of Batch Plant Staging Area. ... 6
Figure 4. Photograph of HELCO Compound Near Hale Pōhaku. 6
Figure 5. Locations of Historic Properties, including Traditional Cultural Properties, and Find Spots in the Mauna Kea Science Reserve. .. 15
Figure 6. Locations of Historic Properties and Find Spots in the Astronomy Precinct and Surrounding Areas.. 17
Figure 7. Location of Historic Properties in the Mauna Kea Access Road Corridor...... 20
Figure 8. Location of Find Spots in the Mauna Kea Summit Access Road Management Corridor.. 21
Figure 9. Locations of Historic Properties (Site 16244, Features1-140) in the Hale Pōhaku Area.. 24
Figure 10. Section 1, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea................................. 27
Figure 11. Section 2, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea................................. 28
Figure 12. Section 3, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea................................. 29
Figure 13. Section 4, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea................................. 30
Figure 14. Section 5, Design Plans for the Mauna Kea Access Way and Observatory to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea................. 31

LIST OF TABLES

Table 1. Previous Archaeological Research and Cultural Resource Management Studies in the Mauna Kea Science Reserve and Astronomy Precinct. 11
Table 2. Find-Spots in the Astronomy Precinct.. 16
Table 3. Historic Properties Recorded in the Mauna Kea Access Road Corridor........ 19
Table 4. Find Spots Recorded in the Mauna Kea Access Road Survey Area. 22
Table 5. List of Specific Activities that Require Archaeological Monitoring. 26
INTRODUCTION

At the request of the Parsons Brinkerhoff, Inc. (Parsons), Pacific Consulting Services, Inc. (PCSI) prepared this Archaeological Monitoring Plan (AMP) in support of construction of the Thirty Meter Observatory (TMT) in the Astronomy Precinct on Mauna Kea (Figure 1). The TMT project area is located within the approximate 525-acre Astronomy Precinct and within Area E on Mauna Kea (Figure 2). The tax map key (TMK) for the Astronomy precinct is: (3) 4-4-015: 09 (por.). The purpose of this AMP is to ensure that: (1) any recorded surface sites or subsurface historic properties that may be encountered during construction of the TMT are documented fully, including an evaluation of significance; (2) appropriate recommendations on what to do with any new finds that are made; (3) and that human skeletal remains, if discovered, are protected in compliance with Hawaii Revised Statutes (HRS), Chapter 6E-8 and Title 13 of the Hawaii Administrative Rules (HAR), Subtitle 13 (State Historic Preservation Division Rules), Chapter 279 (Rules Governing Standards for Archaeological Monitoring Studies and Reports) and Chapter 300 (Rules of Practice and Procedure Relating to Burial Sites and Human Remains), and in accordance with the Office of Mauna Kea Management’s (OMKM’s) Burial Treatment Plan (BTP).

The preparation of an AMP and archaeological monitoring of the TMT is also required and authorized in the Mauna Kea Comprehensive Management Plan (CMP-Ho‘akea 2009) as well as in its archaeological sub-plan, the Cultural Resources Management Plan (CRMP-McCoy et al. 2009). In the Mauna Kea CMP, two Management Actions require on-site archaeological monitors during construction projects.

Management Action C-5 requires on-site monitors (e.g., archaeologist, cultural resources specialist) during construction (CMP-Ho‘akea 2009:7-51). Thus, an archaeological monitor shall be on-site to monitor any impacts, real or potential, on cultural resources.

Management Action C-6 requires preparation of an AMP to be reviewed and approved by SHPD and subsequent archaeological monitoring during construction projects. In the event that a human burial is inadvertently discovered during construction, the contractor will immediately stop work in the area and contact the State Historic Preservation Division (SHPD), the Office of Mauna Kea Management (OMKM), and the Kahu Kū Mauna (KKM). If an inadvertently discovered burial is determined to be historic in age, SHPD has jurisdiction over its treatment and disposition (CMP-Ho‘akea 2009: 7-51).

OMKM’s Burial Treatment Plan (BTP), which will supersede Management Action C-6 when it is approved, indicates that determinations on the treatment and disposition of inadvertently discovered burial sites will be made by the Department of Land and Natural Resources (DLNR) in consultation with the OMKM, the Hawaii Island Burial Council (HIBC), the Office of Hawaiian Affairs (OHA), and any recognized descendants.

In a discussion on inadvertent discoveries in the CRMP, McCoy et al. (CRMP-2009:Section 4.3.2.2; pg 4-45) state that if any historic properties are found (including burial and non-burial sites) in the construction project’s area of potential effect (APE-U.H. Hilo 2010a) they will be classified as inadvertent discoveries per HAR 13-280 now that the archaeological survey of the Science Reserve, including the Astronomy Precinct, has been completed. These two archaeological inventory surveys were completed in 2010 (McCoy and Nees 2010; McCoy et al. 2010a) and approved by SHPD.
Figure 1. Project Area Location on U.S.G.S. 2002 Mauna Kea and Ahumoa Quadrangles.
Figure 2. Location of the Project APE Components.
It should be noted that, while burials are found on the rims of cinder cones in the Mauna Kea Science Reserve and the adjacent Mauna Kea Ice Age Natural Area Reserve (NAR), they are also found well away from cinder cones in lower elevations in both the Mauna Kea Science Reserve and in the NAR. The nearest burials to the proposed TMT Observatory site in Area E include a possible burial on Pu‘u Wekiu, approximately 1.1 miles (1.75 kilometers) to the southeast and several burials on a flattened cinder cone approximately 1.25 miles (2.0 kilometers) to the west of Area E.

The proposed TMT Observatory site in Area E is not located in close proximity to a cinder cone, but the access way is situated along the base of one of the cinder cones located in Kūkahau‘ula, a Traditional Cultural Property in the summit region.

PROJECT LOCATION AND DESCRIPTION

The TMT project area is located within the approximate 525-acre Astronomy Precinct on Mauna Kea. The Astronomy Precinct is located within the Mauna Kea Science Reserve within Ka‘ohe Ahupua‘a in the Hamakua District of Hawai‘i Island (see Figure 1). The tax map key (TMK) for the Astronomy precinct is: (3) 4-4-015: 09 (por.). The Mauna Kea Science Reserve (TMK: (3) 4-4-15:09) was established in 1968 when the Board of Land and Natural Resources (BLNR) approved a 65-year lease (Lease No. S-4191) to the University of Hawai‘i (UH) for a 13,321-acre scientific complex on the top of Mauna Kea. The Science Reserve, which encompasses all of the land above the roughly 12,000 ft elevation, has an average radius of 2.5 miles from the UH 88-inch telescope located on the summit. The boundary on the northeast side of the Science Reserve extends further down the mountain to include Pu‘u Makanaka and two other large cinder cones which appear to have been viewed at the time as potential observatory sites. The TMT project’s Area of Potential Effect (APE) consists of several component parts, including the observatory site itself, the Batch Plant Staging Area, TMT Access Way, and Hale Pōhaku. Figure 2 shows the locations of the APE components. These are described below.

TMT Observatory

The proposed footprint of the TMT Observatory consists of an approximate five-acre area located in the Mauna Kea Astronomy Precinct, near the end of an existing 4-wheel drive road (see Figure 2). The TMT Observatory will consist of the 30-meter telescope itself, the instruments that are attached to it to record data, the enclosing dome, the attached building housing support and maintenance facilities, and parking lot (U.H. Hilo 2010a). A half-acre of the five acres has previously been disturbed by an existing 4-wheel drive road and an equipment testing site. The TMT Observatory would be located on what is referred to as the 13-North (13N) site in TMT Observatory Site within the Astronomy Precinct of the MKSR. TMT Observatory Site is located about one-half mile northwest of the eleven existing observatories located on or near the Mauna Kea summit.

The Batch Plant Staging Area

The Batch Plant Staging Area is an approximate 4-acre area northwest of where the Mauna Kea Access Road forks to form the Loop Road near the summit (Figure 3; see Figure 2). It is just outside the boundaries of the Astronomy Precinct but within the Mauna Kea Science Reserve (TMK: [3] 4-4-015: Portion 09). The Batch Plant will be used as a construction staging area for temporary storage of building materials and for a concrete batch plant, as it has been during past construction projects (U.H. Hilo 2010a).
Figure 3. Photograph of Batch Plant Staging Area.

Figure 4. Photograph of HELCO Compound Near Hale Pōhaku.
The Batch Plant Staging Area is adjacent to the southwestern boundary of the Traditional Cultural Property (TCP) known as Kūkahau'ula (Site 21438; McCoy and Nees 2010). The Batch Plant area has undergone considerable ground disturbance over the years due to a series of construction-related activities.

No historic properties are known to be present in this area and none has been recorded during previous surveys. The locations of two traditional shrines – SIHP Nos. -16164 and -16165 – were originally recorded in 1982 more than 500 feet west of the disturbed area (U.H. Hilo 2010a); their locations were verified during the survey for the TMT Project (McCoy and Nees 2010; Hammatt 2010).

Hawaiian Electric Company (HELCO) Substation

The third area in which work associated with the TMT construction will occur is at the HELCO Substation (CDUP No. HA-1573, Tax Map Key 4-4-015:01) (see Figure 2). HELCO would upgrade the two transformers within its Hale Pōhaku Substation (Figure 4), which is located approximately 2,000 feet southwest of the main headquarters building at Hale Pōhaku and about 1,000 feet from Mauna Kea Access Road (U.H. Hilo 2010). The new transformers would replace the existing transformers, and the existing fenced compound would not be expanded. Thus, no new ground disturbance is required to implement this upgrade.

In addition to the work within the substation, HELCO plans to upgrade existing electrical service from the transformer compound near Hale Pōhaku to the existing utility boxes across the road from the Submillimeter Array (SMA) building. This will be accomplished by replacing existing wire conductors with new higher-capacity conductors in the existing underground conduits. The new wires would be pulled through the existing underground conduits. The conduits are located approximately 50 feet west of the Mauna Kea Access Road for most of the distance to the summit area; one portion of the power line alignment follows a former access road alignment that is now within the Mauna Kea Ice Age Natural Area Reserve (NAR). Because existing pull boxes are available approximately every 300 feet along the conduit, no new ground disturbance would result from these upgrades, but HELCO would need to access the pull boxes to install the new cable.

Since none of the work at the HELCO Substation or at the existing underground conduits requires ground disturbance, it is anticipated that no archaeological monitoring of these activities will be necessary.

TMT Access Way

Road access to the TMT observatory site in Area E will be provided by improving the existing 4-wheel drive road from the point where it diverges from the existing Mauna Kea Loop Road (U.H. Hilo 2010a). This includes one segment across the base of Pu‘u Hau‘oki and another that extends through the existing SMA complex and Area E (see Figure 2).

Currently, utility services exist along the Mauna Kea Access Road to a point near the intersection of the Mauna Kea Loop Road and the Submillimeter Array (SMA) roadway. The proposed TMT Access Way will start at that point and extend to the TMT Observatory. This access way will follow either existing 4-wheel drive roads or the wider roads that serve the SMA facility. The TMT Access Way will be limited to a single lane over the southernmost portion of the Access Way (the portion that crosses Pu‘u Hau‘oki; the remainder is two lanes (U.H. Hilo 2010a).
ENVIRONMENTAL BACKGROUND

TOPOGRAPHY & SOILS

Mauna Kea, the highest (13,796 ft above sea level) and second largest of the five shield volcanoes that form the island of Hawai‘i, is estimated to be between 600,000 and 1.5 million years old (Moore and Clague 1992; DePaolo and Stolper 1996; Wolfe et al. 1997; Sharp and Renne 2003). The earliest stage of volcanism consists of a basaltic shield. The latest stage, which caps the mountain, consists of andesitic lavas (Macdonald and Abbott 1970:142; Wolfe and Morris 1996; Wolfe et al. 1997; Sherrod et al. 2007). Even though the last eruption occurred sometime between 4,580 and 8,200 years ago (Sherrod et al. 2007:470), the U.S. Geological Survey (USGS) considers Mauna Kea to be an active post-shield volcano (U.S. Geological Survey 2002).

The summit region resembles a stony alpine desert. The soils, like those in alpine environments generally, are poorly developed (Ugolini n.d.). In the absence of a vegetative cover and, thus, a surface organic layer, the ground surface in many places is a desert pavement (Ugolini 1974:189).

RAINFALL & VEGETATION

The climate of the higher elevations on Mauna Kea is like all mountain climates – kaleidoscopic – consisting of a great number of individual elements that are continually changing through space and time. It exhibits all of the universal changes that occur in the atmosphere with increasing altitude (e.g., decreasing temperature, air density and water vapor) in addition to local effects directly related to latitude and the "mountain mass effect" (Barry 1981; Price 1981).

The summit region climate is both dry and cold, but there are few available statistics for evaluating annual and cyclical variability. At this latitude (19-20 degrees N) there is little difference in the mean minimum and mean maximum temperature ranges throughout the year in contrast to pronounced diurnal variation. Precipitation at the higher elevations frequently averages less than one inch in every month of the year, primarily in the form of sleet, hail and snow, which rarely accumulates below the 3,050 m elevation, however. The prevailing winds are from the east-northeast. Fog and other forms of ground condensation are not uncommon and appear to be generally associated with increased cloudiness at midday (Powers and Wentworth 1941).

The modern climate is periglacial, a term that is inconsistently used with reference to a variety of cold climates as well as geomorphologic regimes (Davies 1972:9; Embleton and King 1975:2). Mauna Kea is an example of what Tricart (1970) has called the "low latitude mountain variety" of periglacial climate. There are frequent frosts but they are of low magnitude or intensity, penetrating to only shallow depths (Davies 1972:13).

Features attesting to a modern periglacial environment include permafrost (Woodcock 1974), gelifluction lobes and terraces (Ugolini n.d.), stone stripes and polygons, and potlid or ring crack fractures on smoother rock surfaces. Intensive freeze-thaw cycles are also evidenced in the splitting and upheaving of rocks on the edges of lava flows that also exhibit the plucking and abrasive effects of glacial ice movement (Gregory and Wentworth 1937; Wentworth and Powers 1941).
HISTORICAL BACKGROUND

Located within Ka'oehe Ahupua'a in the Hāmākua District of Hawai'i Island, the summit of Mauna Kea was traditionally described as an abode of the ancestral akua (gods, goddesses, deities). Native Hawaiians believed that the pu‘u (cinder cones) and other features of the summit such as Lake Waiau were the physical manifestations of these deities. The Mauna Kea Summit Region Historic District includes a concentration of significant historic properties that are linked through their setting, historic use, traditional associations, and ongoing cultural practices. The historic properties recorded during the archaeological inventory survey (McCoy and Nees 2010) include shrines, adze quarry complexes and workshops, burials, stone markers/memorials, temporary shelters, historic campsites, traditional cultural properties (TCPs), a historic trail, sites of unknown function, and isolated artifact finds.

Much of what is known concerning the traditional culture history of the summit region of Mauna Kea was summarized by Holly McEldowney in a 1982 report, based on a review of early journal accounts and maps, ethnographic collections, and the Boundary Commission Book for Hawai‘i (McEldowney 1982). More recent research by Kepa Maly (1998, 1999) and Charles Langlas (Langlas et al. 1997; Langlas 1999), both of whom have conducted oral interviews in addition to archival research, have provided additional information on the traditions associated with Mauna Kea and its cultural and spiritual significance for Hawaiians today. A major compilation of native traditions, historical accounts, and oral history interviews on Mauna Kea and surrounding lands can be found in a study entitled “Mauna Kea—Ka Piko Kaulana o Ka ‘Aina (Mauna Kea—the Famous Summit of the Land) by Maly and Maly (2005), which was commissioned by the Office of Mauna Kea Management (OMKM). The overview that follows is based on these studies, which should be consulted for more detailed information.

TRADITIONAL LAND USE HISTORY

The place names in the summit region are a mix of traditional names and modern names (see discussion in McEldowney 1982 and Tables 1.1 and 1.2 from her report). The origin and meaning of some names is unknown. The name Mauna Kea itself is open to various interpretations. The commonly accepted, literal translation as “White Mountain” appears in this early account by the Rev. William Ellis who toured the island of Hawai‘i in 1823:

The snow on the summit of the mountain, in all probability, induced the natives to call it Mauna-Kea, (mountain white), or, as we should say, white mountain. They have numerous fabulous tales relative to its being the abode of the gods, and none ever approach the summit—as, they say, some who have gone there have been turned to stone. We do not know that any have been frozen to death; but neither Mr. Goodrich, nor Dr. Blatchely and his companion, could persuade the natives, whom they engaged as guides up the side of the mountain, to go near its summit (Ellis 1979:292).

As already noted, the reference to Mauna Kea as the abode of the gods is emphasized in some native Hawaiian traditions in which the word “Kea” is taken to be an abbreviated form of Wākea, the male god who procreated with Papa to form the mountain. In an account of Queen Emma’s trip to the lake in 1881 or 1882 and the mele that were written about that trip, Kihei and Mapuana de Silva present some more detail about the names of the mountain and the lake. They note, following Puakea Nogelmeier, that Emma’s poets refer to the summit as Piko o Wākea and that:
Although Maunakea is popularly translated as “white mountain,” Kea is also an abbreviated form of Wākea, the sky father who, with Papa, the earth mother, stands at the apex of Hawaiian genealogy. Mauna Wākea is thus viewed traditionally as the sacred meeting point of sky and earth, father and mother, Wākea and Papa. Emma’s poets were well-acquainted with the older name and its lasting significance; they refer to Waiau as “ka piko on Wākea”—as the mountain’s navel/genital/umbilical/connecting-point/center (de Silva and de Silva 2006: footnote 7).

The name for the summit, which unlike many mountain summits does not consist of a single peak, is now widely accepted as Kūkahau’ula (“Kūkahau’ula of the red-hewed dew or snow”) instead of the formerly used name Pu’u Wekiu. On present evidence the name Kūkahau’ula referred to both a legendary figure and to a character in traditional histories and genealogies. The latter includes references to Kūkahau’ula as the husband of Lilinoe and as an ‘aumakua (family deity) of fishermen (Hibbard 1999). The place name evidence indicates that the “summit” was at the very least a legendary place or wahi pana (Pukui and Elbert 1971). Maly and Maly (2005:vi) give the name as Pu’u o Kūkahau’ula, which they say was “named for a form of the god Kū, where the piko of new-born children were taken to insure long life and safety. This practice is still participated in at the present time.” According to Maly and Maly (2005:vi):

The name Pu’u o Kūkahau’ula is the traditional name of the summit cluster of cones on Mauna Kea, appearing in native accounts and cartographic resources until c. 1932. The recent names, Pu’u Wekiu, Pu’u Hau’oki and Pu’u Haukea, have, unfortunately, been used since the 1960s (since the development of astronomy on Mauna Kea), and have displaced the significant spiritual and cultural values and sense of place associated with the traditional name, Pu’u o Kūkahau’ula.

Other traditional place names that appear on the earliest maps and in journal accounts include Pu’u Lilinoe and Pu’u Waiau (Table 2.1). Contrary to popular belief, Pu’u Poli’ahu is a modern name applied by the surveyor W.D. Alexander in 1892 (McEldowney 1982:114).

HISTORIC & RECENT LAND USE HISTORY

At the completion of the Māhele in 1848, King Kamehameha III executed two additional legal instruments covering lands under his control. These instruments created what are known as Crown Lands and Government Lands (Chinen 1958: 25-26). During the Māhele, only four native tenants who made claims for land rights for Ka’ohe Ahupua’a were identified, and all of these claims were well below the summit at lower elevations. By the close of the Māhele, one native tenant was granted land in lower portions of Ka’ohe Ahupua’a.

On present evidence the slopes of Mauna Kea, above the limits of agriculture and permanent settlement, were a vast montane “wilderness” probably known to only a small number of Hawaiians engaged in primarily “special purpose” activities, such as bird-catching, canoe making, stone-tool manufacture, or burial of the dead (McEldowney 1982). Ethnographic information relating to a specific locality in this and other mountainous regions in Hawai‘i is either incomplete, or, as is more frequently the case, lacking altogether.
Little is known ethnographically about the uses of the alpine and sub-alpine zones on Mauna Kea except for brief accounts about adze manufacture and burials. Most of what is known regarding traditional land uses is the result of archaeological investigations undertaken since the mid-1970s.

PREVIOUS ARCHAEOLOGICAL STUDIES

There have been numerous archaeological studies conducted on Mauna Kea, including the Mauna Kea Science Reserve, the Astronomy Precinct, and the Mauna Kea Access Road easement corridor. These studies are summarized in Table 1 and briefly discussed below. The locations of these studies are not presented in this AMP. The reader is referred to McCoy and Nees (2010: Section 3) for more detailed results and detailed maps showing the location of these studies.

In a discussion on astronomy and the existing observatories in the CRMP, McCoy et al. (2009:4-21) states that:

> …while no archaeological surveys were conducted prior to the construction of the summit road in the mid-1960s there is no indication that any archaeological sites on the summit were destroyed at that time, or any time thereafter in the construction of the 13 existing observatories (McCoy 1999a:31). This conclusion is based in part on interviews conducted by Kepa Maly with people involved in the construction of the summit road. His informants did not recall any historic properties being found on the summit during the construction of the first jeep road (Maly 1999: Appendix A-123).

The boundaries of the Science Reserve changed in 1981 when 2,033.2-acres of land were withdrawn from the lease for the creation of the Mauna Kea Ice Age Natural Area Reserve (NAR). The Science Reserve now encompasses an area of roughly 11,288 acres.

The first archaeological investigations in the Mauna Kea Science Reserve were carried out in 1975-76 in the context of a National Science Foundation funded research project on the Mauna Kea Adze Quarry (McCoy 1977, 1990; Cleghorn 1982; Allen 1981; Williams 1989). A reconnaissance survey undertaken in 1975 to determine the boundaries of the quarry, a National Historic Landmark, found one site just inside the Science Reserve boundaries on the eastern side of the summit road, between the ca. 12,250 and 12,300 ft elevations. The site, Site No. 50-10-23-16204 (Site 18204) as defined at the time, using the site definition criteria employed in the quarry project, consists of five shrines, 25 open-air enclosures (shelters) and a diffuse lithic scatter of adze manufacturing by-products (McCoy 1977, 1999b). Two other sites were found in the Science Reserve in the 1976 field season, which involved more intensive survey and site recording. Site 16163 is a shrine with a diffuse scatter of flakes located on a ridge top at the ca. 12,880 ft elevation. The second site, Site 16195, are the remains of two stone mounds on the rim of Pu’u Lilinoe. These would appear to be the remnants of the burial interment features noted by W.D. Alexander’s survey party in 1892.

The first major survey in the Science Reserve was conducted by the Bishop Museum over 5 1/2 days between July 12 and 17, 1982 for the Hawaii Institute for Astronomy (IfA) and encompassed roughly 1,000 acres of land on the summit and northern slope of the mountain, down to the ca. 13,000-ft elevation. Few, if any, archaeological sites were predicted to occur within the boundaries of the project area, given the high altitude
Table 1. Previous Archaeological Research and Cultural Resource Management Studies in the Mauna Kea Science Reserve and Astronomy Precinct.

<table>
<thead>
<tr>
<th>Year</th>
<th>Project</th>
<th>Study</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Hawaii Institute for Astronomy</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1982a; McEldowney 1982</td>
</tr>
<tr>
<td>1982</td>
<td>Caltech Telescope</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1982b</td>
</tr>
<tr>
<td>1983</td>
<td>Mauna Kea Observatory Power Line</td>
<td>Reconnaissance</td>
<td>MKFR, MKSR and NAR</td>
<td>Kam and Ota 1983</td>
</tr>
<tr>
<td>1984</td>
<td>NSF Grant-in-Aid Survey</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1984</td>
</tr>
<tr>
<td>1987</td>
<td>Summit Road Improvement</td>
<td>Reconnaissance</td>
<td>MKSR & Access Rd.</td>
<td>Williams 1987; McCoy 1999b</td>
</tr>
<tr>
<td>1988</td>
<td>VLBA Telescope</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>Hammatt and Borthwick 1988</td>
</tr>
<tr>
<td>1990</td>
<td>Subaru Telescope</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>Robins and Hammatt 1990</td>
</tr>
<tr>
<td>1990</td>
<td>Gemini Telescope</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>Borthwick and Hammatt 1990</td>
</tr>
<tr>
<td>1991</td>
<td>Independent Research</td>
<td>Reconnaissance of Pu‘u Makanaka</td>
<td>MKSR</td>
<td>McCoy field notes</td>
</tr>
<tr>
<td>1992</td>
<td>Smithsonian Astrophysical Observatory</td>
<td>Relocation of two known sites</td>
<td>MKSR</td>
<td>McCoy 1993</td>
</tr>
<tr>
<td>1995</td>
<td>SHPD site relocation and GPS recording</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1999a</td>
</tr>
<tr>
<td>Year</td>
<td>Project</td>
<td>Study</td>
<td>Location</td>
<td>References</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1997</td>
<td>SHPD transect survey</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1999a</td>
</tr>
<tr>
<td>1999</td>
<td>SHPD survey of Pu’u Wekiu</td>
<td>Reconnaissance</td>
<td>MKSR</td>
<td>McCoy 1999a</td>
</tr>
<tr>
<td>1999</td>
<td>Hawaii Defense Access Road and Saddle Road</td>
<td>TCP Assessment</td>
<td>Mauna Kea summit region</td>
<td>Langlas 1999</td>
</tr>
<tr>
<td>1999</td>
<td>Mauna Kea Science Reserve Master Plan</td>
<td>Cultural Impact Assessment</td>
<td>MKSR</td>
<td>PHRI 1999</td>
</tr>
<tr>
<td>2000</td>
<td>Mauna Kea Science Reserve Master Plan</td>
<td>Summary Report</td>
<td>MKSR</td>
<td>McCoy 1999a</td>
</tr>
<tr>
<td>2005-2007</td>
<td>PCSI AIS of the Science Reserve including Astronomy Precinct</td>
<td>Inventory Survey</td>
<td>MKSR</td>
<td>McCoy and Nees 2010; McCoy et al 2010a</td>
</tr>
<tr>
<td></td>
<td>PCSI AIS of the Ice Age NAR</td>
<td>Inventory Survey</td>
<td>NAR</td>
<td>McCoy and Nees 2012 (Draft Report)</td>
</tr>
</tbody>
</table>

MKSR=Mauna Kea Science Reserve; MKFR=Mauna Kea Forest Reserve, NAR=Natural Area Reserve
location and presumed absence of exploitable resources, including adze-quality stone, which was believed to be restricted to the south slope of the mountain. A total of 22 sites were recorded in this survey (McCoy 1982a). For field purposes, all but one site, an open-air shelter, were classified as "shrines," earlier defined by Buck (1957:527) as "a convenient term to designate a simple altar without a prepared court." The open-air shelter, which contained modern debris, was later deleted from the historic places inventory because of the belief that it is a modern feature. The number of historic properties found in the 1982 survey has thus been changed to 21.

A survey of the Caltech Telescope site was conducted at the same time as the larger survey. No sites were found within the proposed project area, but two sites were found in close proximity (McCoy 1982b).

In 1983 SHPD conducted a reconnaissance survey of a proposed underground power line from Hale Pohaku to the summit. The survey, which did not identify any historic properties, was undertaken before the final alignment had been determined, however.

Archaeological survey of the Science Reserve was resumed in 1984 by the Bishop Museum with the support of a National Historic Preservation Grant-in-Aid. The 1984 survey, which was carried out over a period of six days between July 23 and 28, was aimed at completing an inventory of archaeological remains on the east-southeast flank of the mountain adjoining the proposed northern boundary of the Mauna Kea Adze Quarry (McCoy 1978). The survey strategy and methodology were the same as those employed in the 1982 fieldwork. A total of 21 dispersed and aggregated sites was recorded in the survey (McCoy 1984), which covered ca. 1,000 acres on the eastern slope of the mountain. Time did not permit survey of the upper slopes and summit of Pu'u Mahoe as originally planned.

In 1988 Cultural Surveys Hawaii, Inc. conducted a reconnaissance survey of two areas that were being considered as alternative sites for the National Radio Astronomy Observatory (now called the Very Long Base Array). No archaeological sites were found in the survey of the first area, an area of about 15 acres located between the 11,560 and 11,840 ft elevations near the junction of the summit road and a utility road (Hammatt and Borthwick 1988:1). Four archaeological sites were recorded in the survey of the second alternative site, an area of some 100 acres located on the east side of the summit road at the 12,100 to 12,225 ft elevations. Three of the sites (11076, 11077, and 11079) were interpreted as possible shrines; the fourth site (11078) is a small rock shelter (Hammatt and Borthwick 1988:21).

Two archaeological surveys were undertaken in the Science Reserve in 1990, both by Cultural Surveys Hawaii, Inc. The first involved a resurvey of a portion of Pu'u Hau'oki for the proposed Japan National Large Telescope (JNLT-- later renamed the Subaru Telescope). No sites were found in this survey, which covered an area of 5.1 acres (Robins and Hammatt 1990). The second survey was done for the proposed Galileo Telescope; two alternative locales were inspected, both of them located on what the authors called the “summit ridge” (Borthwick and Hammatt 1990). One of the observatory sites was utilized by the Gemini Observatory after the Galileo team selected a site outside of Hawai'i for their telescope (Paul Gillett, personal communication, May 31, 2012). No archaeological sites were found in either area.

In 1991 an unofficial one-day reconnaissance of the top of Pu'u Makanaka was undertaken by Holly McEldowney and Marc Smith of SHPD and Patrick McCoy (Mountain Archaeology Research Corp.) to re-find previously reported burials. The survey, which was interrupted by bad weather, found a number of burials, none of which
were mapped, however (McCoy 1991 field notes). A single state site number was assigned to the burials on the *pu'u* at that time.

As part of their Section 106 compliance, Mountain Archaeology Research Corp. was contracted by the Smithsonian Institution Astrophysical Observatory in December 1992 to re-find two previously recorded sites in the general vicinity of one of the pads. The two sites (Sites 16164 and 16165), which were found in the 1982 survey and described as shrines were found to be located well outside of the observatory footprint. Flagging of the two sites was recommended as a precautionary measure (McCoy 1993).

In 1995 the State Historic Preservation Division, with financial support from the Hawaii Institute for Astronomy, initiated a project designed to result in a historic preservation management plan for the Science Reserve. The first task, which was begun in 1995, involved the re-finding and GPS mapping of the sites recorded in the 1982 and 1984 surveys. In the course of the fieldwork 18 new sites were found and recorded (McCoy 1999a).

In 1997 SHPD undertook a reconnaissance survey of five previously un-surveyed areas aimed at obtaining a better idea of site distribution patterns for both management and research purposes. The 1997 survey area included three transects on the north, northwest and southwest slopes of the mountain from the summit area to the lower boundary of the Science Reserve at the ca. 12,000 ft elevation and two other areas—Pu'u Poepoe and a small piece of land located near the Science Reserve boundary down slope of the CalTech observatory. A total of 29 new sites were found in the 1997 project, which was conducted over a period of six days (McCoy 1999a).

The 1997 survey also began the process of recording what were initially referred to as “locations” but are now being termed “find spots”—a general term referring to man-made remains that are either obviously modern features (e.g., camp sites with tin cans, pieces of glass and other modern material culture items), or features that cannot be classified with any level of confidence as historic sites because of their uncertain age and function (e.g., a pile of stones on a boulder).

Archaeological surveys undertaken between 1975 and 1999 identified a total of 93 sites (McCoy 1977, 1982a, 1984, 1990, 1999a; Hammatt and Borthwick 1988; Borthwick and Hammatt 1990) in an area encompassing some 3,711 acres, which represents roughly 33% of the 11,288 acre Science Reserve. With the exception of a survey undertaken as part of a research project on the Mauna Kea Adze Quarry Complex, all of these surveys were reconnaissance level studies, which by definition are limited in terms of coverage and completeness.

The need for an archaeological inventory survey of the entire Mauna Kea Science Reserve, including the Astronomy Precinct, was recognized by the Office of Mauna Kea Management (OMKM) early in 2005. PCSI was contracted by OMKM in 2005 to undertake such a survey and to develop a cultural resource management plan. The survey was undertaken over a period of 14 weeks in the summers of 2005-2007. A total of 263 historic properties were found during the survey (McCoy and Nees 2010). This included 95 previously recorded sites and two Traditional Cultural Properties (TCP), including Kūkahau‘ula (Site 21438) and Pu‘u Līlīnoe (Site 21439) which were given site numbers by SHPD in 1999. The locations of historic properties, including TCP's, and “find spots” in the Science Reserve are shown in Figure 5.

In late 2009, Cultural Surveys Hawaii conducted an archaeological inventory survey for Area E, the designation for the proposed locale for the construction of the TMT.
Figure 5. Location of Historic Properties, including Traditional Cultural Properties, and Find Spots in the Mauna Kea Science Reserve.
(Hammatt 2010 in U.H. Hilo 2010b), and the Batch Plant Staging Area. While no new historic properties were found, two potential historic properties were encountered in Area E or in the Batch Plant Staging Area. After consultation with Dr. Patrick McCoy of PCSI, Hammatt concluded that they were not historic properties, and therefore were not assigned SIHP numbers.

Hammatt (2010: 56) concluded that the proposed TMT project would not impact any specific archaeological sites. He noted that that the nearest sites, Sites 16166, 16167, and 16172 (all shrines) were at a distance of over 200 feet from the project, and thus there would be no adverse impacts to these three sites. Hammatt also discusses physical and visual impacts to Kūkahau‘ula (Site 21438) as well as off-site measures to mitigate these impacts.

Historic Properties in the Astronomy Precinct

Construction of the TMT will primarily affect two areas within the Astronomy Precinct. The site proposed for the TMT Observatory is nearly one-half mile northwest of the TCP named Kūkahau‘ula, and the Access Way leading to the observatory would intersect the northwestern edge of the TCP for approximately 800 feet. Kūkahau‘ula has been described and referred to as a traditional cultural property (TCP) by the SHPD.

Kūkahau‘ula includes the summit cinder cones (referred to separately as Pu‘u Wēkū, Pu‘u Kea, and Pu‘u Hau‘oki) and covers roughly 463 acres, of which nearly one third is within the Astronomy Precinct. The Kūkahau‘ula TCP is associated with the activities of Native Hawaiian deities as identified in numerous legends and oral histories, and plays an important role in ongoing traditional and religious practices carried out by modern-day Native Hawaiians. Kūkahau‘ula is a contributing property to the Mauna Kea Summit Region Historic District (McCoy and Nees 2010; McCoy et al. 2010a).

Six archaeological sites were located within the boundaries of the Astronomy Precinct (McCoy and Nees 2010; McCoy et al. 2010a). Table 2 below summarizes the four previously recorded sites, Sites 16166, 16167, 16169, and 16172, and two newly recorded sites, Sites 21447 and 21449. Figure 6 shows the location of historic properties and find-spots in the Astronomy Precinct.

Table 2. Find-Spots in the Astronomy Precinct.

<table>
<thead>
<tr>
<th>Year. No.</th>
<th>Approximate Elevation (ft. asl)</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously Recorded Find-Spots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997.07</td>
<td>13,308</td>
<td>Stacked (2) rocks on a boulder</td>
<td>Marker</td>
</tr>
<tr>
<td>Newly Recorded Find-Spots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005.03</td>
<td>13,271</td>
<td>Stacked (3) rocks</td>
<td>Marker</td>
</tr>
<tr>
<td>2005.05</td>
<td>13,220</td>
<td>Stacked rocks</td>
<td>Marker</td>
</tr>
<tr>
<td>2005.06</td>
<td>13,202</td>
<td>Possible upright</td>
<td>Unknown</td>
</tr>
<tr>
<td>2005.07</td>
<td>13,000</td>
<td>Possible uprights</td>
<td>Unknown</td>
</tr>
<tr>
<td>2005.08</td>
<td>13,140</td>
<td>Two uprights near weather station</td>
<td>Unknown</td>
</tr>
<tr>
<td>2005.09</td>
<td>13,016</td>
<td>Stacked rocks</td>
<td>Marker</td>
</tr>
</tbody>
</table>
Figure 6. Locations of Historic Properties and Find Spots in the Astronomy Precinct and Surrounding Areas.
Four previously identified sites and one previously identified find-spot were re-found during the archaeological inventory survey of the Astronomy Precinct. The previously identified sites, all of which were found during the 1982 reconnaissance survey (McCoy 1982a; McEldowney 1982), were evaluated in terms of the completeness and adequacy of the existing maps and descriptions. A number of the maps were either redrawn or annotated with new observations.

Four archaeological sites are located near the proposed Access Way and TMT Observatory. Three historic shrines, first identified during a 1982 survey, are in the vicinity, as well as one terrace:

1. SIHP No. -16172 is located about 225 feet north of the proposed TMT Observatory site and consists of a single upright shrine with several support stones.

2. SIHP No. -16167 is located approximately 500 feet east of the Access Way and about 1,300 feet southeast of the proposed TMT Observatory site and is a shrine consisting of one, possibly two, uprights placed in a bedrock crack. In 1995, the site was revisited and both stones were found in a vertical position.

3. SIHP No. -16166 is approximately 350 feet east of the Access Way and 1,600 feet southeast of the proposed TMT Observatory site and is a multi-feature shrine with a total of eight, possibly nine uprights arranged in two groups. When the site was revisited in 1999 it was noted that several of the uprights had been reset in a vertical position along the edge of the outcrop.

4. SIHP No. -21449 was documented in 2005; it is located in Area E approximately 200 feet east of the Access Way and 700 feet south of the proposed TMT Observatory site. This site was tested to determine the presence/absence of cultural materials and to hopefully obtain information that would aid in determining the site’s function. No cultural materials or features were encountered during excavation, and no human burials or isolated human skeletal remains were present. After the excavation, it was concluded that the terrace was likely a natural gelification terrace (McCoy and Nees 2010a: 6-1).

“Find spots” are cultural resources that are either obviously modern features (e.g., camp sites with tin cans, pieces of glass and other modern material culture items), or features that cannot be classified with any level of confidence as historic sites because of their uncertain age and function (e.g., a pile of stones on a boulder). Seven find-spots were identified in the Astronomy Precinct in 2005 (see Figure 6), including a previously identified find-spot found during a 1997 survey (McCoy 1999a). This find-spot was relocated during the 2005 survey. The number of such finds, which the State Historic Preservation Division (SHPD) first started to record in 1997 as a way of tracking changes in the cultural landscape and distinguishing old from new cultural remains (“sites”), appears to be increasing, especially in areas close to existing roads.

Historic Properties in the Mauna Kea Access Road Management Corridor and near the HELCO Substation

An archaeological inventory survey of the 400-yard wide easement along the Mauna Kea Access Road (TMK: [3] 4-4-015: por. 01), managed by the University of Hawaii (UH), was undertaken by PCSI for the Office of Mauna Kea Management in 2009 (McCoy et al. 2010b). One previously recorded site (50-10-23-10,314) and three new
sites (50-10-23-27,867, 27,868 and 27,869) were identified in 2009. Table 3 below is from McCoy et al. (2010b) and summarizes the documented sites in the access road corridor. Figure 7 shows the locations of historic properties in the Mauna Kea Access Road corridor.

Table 3. Historic Properties Recorded in the Mauna Kea Access Road Corridor.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Site Type</th>
<th>Number of Features</th>
<th>Site Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-10-23-10314</td>
<td>Lithic scatter</td>
<td>1</td>
<td>Adze and octopus lure sinker workshop</td>
</tr>
<tr>
<td>50-10-23-27867</td>
<td>Mounds</td>
<td>4</td>
<td>Possible burial</td>
</tr>
<tr>
<td>50-10-23-27868</td>
<td>Mound</td>
<td>1</td>
<td>Possible burial</td>
</tr>
<tr>
<td>50-10-23-27869</td>
<td>Mounds</td>
<td>2</td>
<td>Possible burial</td>
</tr>
</tbody>
</table>

The previously recorded site is a lithic scatter comprised of the by-products of adze manufacture and octopus lure sinker manufacture. The site, which is interpreted as a workshop, is part of the larger Pu‘u Kalepeamao Site Complex (Site 50-10-23-16,244) that has been interpreted as a logistical support camp occupied on the ascent and descent from the Mauna Kea Adze Quarry Complex (Site 50-10-23-4136-McCoy et al. 2010b). The three new sites are inferred to be possible burials based on their location, architectural characteristics of the structural remains, size and morphological similarity to known and suspected burial features in the higher elevation areas on Mauna Kea.

Other features that are either modern or cannot be classified with any level of confidence as historic sites because of their uncertain age, such as many of the rock piles, were recorded as “find spots,” following a practice begun by the State Historic Preservation Division (SHPD) during a reconnaissance survey of selected areas of the Mauna Kea Science Reserve in 1997 (McCoy et al. 2010b).

Forty-four (44) find-spots were identified in the Access Road Corridor; Figure 8 shows their locations and Table 4 summarizes these structures and items. About half of these were found on top of a cinder cone just above Hale Pōhaku. According to McCoy et al. (2010b), the number of “find spots” is not wholly surprising given the proximity of this area to locales frequented by the public. The large number found at one location near Hale Pōhaku is unusual, but again not totally unexpected.

The 19.3-acre site at Hale Pōhaku (Tax Map Key 4-4-015:012) encompasses the Onizuka Center for International Astronomy (OCIA), the Visitor Information Station, and an old construction laborer camp. No activities related to construction of the TMT will take place within this parcel.

A number of archaeological investigations have been conducted at Hale Pōhaku, both in and outside of Parcel 012, beginning with a one-day reconnaissance survey by the Bishop Museum in 1979 for the Hale Pōhaku Mid-Level Complex Development Plan. No sites were found at that time (McCoy 1979).

Three more surveys were conducted by the Bishop Museum between July 1984 and June 1985 as part of the preparation of a supplemental Environmental Impact Statement (EIS) for a permit to build a new construction laborer camp (McCoy 1985b). Two shrines and five lithic scatters comprised of adze manufacturing by-products and octopus sinker manufacturing by-products were recorded in the surveys, which encompassed roughly
Figure 7. Location of Historic Properties in the Mauna Kea Access Road Management Corridor.
Figure 8. Location of Find Spots in the Mauna Kea Summit Access Road Management Corridor.
<table>
<thead>
<tr>
<th>Year. No.</th>
<th>Temporary Field No.</th>
<th>Approximate Elevation (ft. amsl)</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009.01</td>
<td>VP-2009-01</td>
<td>11,514</td>
<td>Stacked cobbles on outcrop</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.02</td>
<td>VP-2009-02</td>
<td>11,498</td>
<td>Two sets of stacked cobbles on boulder</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.03</td>
<td>VP-2009-03</td>
<td>11,482</td>
<td>Piled Rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.04</td>
<td>VP-2009-04</td>
<td>11,606</td>
<td>Piled and stacked mound</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.05</td>
<td>VP-2009-05</td>
<td>9,971</td>
<td>Wall</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.06</td>
<td>VP-2009-06</td>
<td>9,741</td>
<td>Stacked cobbles and one boulder on outcrop</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.07</td>
<td>VP-2009-07</td>
<td>10,069</td>
<td>Mound</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.08</td>
<td>VP-2009-08</td>
<td>9,673</td>
<td>Stacked boulders and cobbles on outcrop</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.09</td>
<td>VP-2009-09</td>
<td>9,717</td>
<td>Upright wrapped in twine; enclosure; manuport (waterworn cobble); possible cupboard</td>
<td>Modern cultural practices</td>
</tr>
<tr>
<td>2009.10</td>
<td>RN-2009-03</td>
<td>11,289</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.11</td>
<td>RN-2009-04</td>
<td>11,045</td>
<td>Stacked cobbles</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.12</td>
<td>RN-2009-05</td>
<td>10,677</td>
<td>Rock pile; Metal pipe</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.13</td>
<td>RN-2009-06</td>
<td>10,633</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.14</td>
<td>RN-2009-07</td>
<td>10,089</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.15</td>
<td>RN-2009-08</td>
<td>9,557</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.16</td>
<td>RN-2009-09</td>
<td>10,159</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.17</td>
<td>RN-2009-10</td>
<td>10,160</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.18</td>
<td>RN-2009-11</td>
<td>10,164</td>
<td>Piled rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.19</td>
<td>RN-2009-12</td>
<td>9,731</td>
<td>Rock Alignment</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.20</td>
<td>RN-2009-13</td>
<td>9,744</td>
<td>Offering area (modern)</td>
<td>Modern cultural practices</td>
</tr>
<tr>
<td>2009.21</td>
<td>This number was not assigned to a find spot.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009.22</td>
<td>RN-2009-01</td>
<td>11,530</td>
<td>Piled Rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.23</td>
<td>RN-2009-02</td>
<td>11,495</td>
<td>Piled Rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.24</td>
<td>RN-2009-027</td>
<td>9,600</td>
<td>Piled Rock (Scattered)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.25</td>
<td>RN-2009-028</td>
<td>9,600</td>
<td>Piled Rock (Scattered)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.26</td>
<td>RN-2009-029</td>
<td>9,600</td>
<td>Rock Alignment (Circular)</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.27</td>
<td>RN-2009-030</td>
<td>9,600</td>
<td>Piled Rock</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.28</td>
<td>RN-2009-031</td>
<td>9,600</td>
<td>Piled Rock on a Boulder</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.29</td>
<td>RN-2009-032</td>
<td>9,600</td>
<td>Rock Enclosure (with rock-alignment writing)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.30</td>
<td>RN-2009-033</td>
<td>9,600</td>
<td>Rock Alignment (“Y” shaped)</td>
<td>Marker</td>
</tr>
</tbody>
</table>
Table 4. Find Spots Recorded in the Mauna Kea Access Road Survey Area.

<table>
<thead>
<tr>
<th>Year No.</th>
<th>Temporary Field No.</th>
<th>Approximate Elevation (ft. amsl)</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009.31</td>
<td>RN-2009-034</td>
<td>9,600</td>
<td>Cremation inside Rock Alignment (Circular)</td>
<td>Burial; Burial Marker</td>
</tr>
<tr>
<td>2009.32</td>
<td>RN-2009-035</td>
<td>9,600</td>
<td>C-Shape with Rock Alignment across entrance</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.33</td>
<td>RN-2009-036</td>
<td>9,600</td>
<td>Piled Rock (Scattered)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.34</td>
<td>RN-2009-037</td>
<td>9,600</td>
<td>Scattered Cobbles</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.35</td>
<td>RN-2009-038</td>
<td>9,600</td>
<td>Piled Rock (Scattered, Rectangular)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.36</td>
<td>RN-2009-039</td>
<td>9,600</td>
<td>Piled Rock (Scattered)</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.37</td>
<td>RN-2009-040</td>
<td>9,600</td>
<td>Piled Rock (x2) Connected by an Alignment</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.38</td>
<td>RN-2009-041</td>
<td>9,600</td>
<td>Piled Cobbles</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.39</td>
<td>RN-2009-042</td>
<td>9,600</td>
<td>Piled Rock (Circular)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.40</td>
<td>RN-2009-043</td>
<td>9,600</td>
<td>Piled Rock (Scattered)</td>
<td>Marker</td>
</tr>
<tr>
<td>2009.41</td>
<td>RN-2009-044</td>
<td>9,600</td>
<td>Broken Cobbles</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.42</td>
<td>RN-2009-045</td>
<td>9,600</td>
<td>Cobble Alignment</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.43</td>
<td>RN-2009-046</td>
<td>9,600</td>
<td>Piled Rock (Scattered, Roughly Circular)</td>
<td>Unknown</td>
</tr>
<tr>
<td>2009.44</td>
<td>RN-2009-047</td>
<td>9,600</td>
<td>Possible Burial Mound</td>
<td>Burial; Burial Marker</td>
</tr>
<tr>
<td>2009.45</td>
<td>RN-2009-048</td>
<td>9,600</td>
<td>Piled Rock (Roughly Triangular)</td>
<td>Marker</td>
</tr>
</tbody>
</table>

40 acres on the west and east sides of the Mauna Kea Observatory Access Road between the ca. 9,080 and 9,200 ft elevations. The lithic scatters and shrines, one of which has octopus manufacturing by-products on it that have been interpreted as offerings, were designated the Pu’u Kalepeamoa Site (Bishop Museum site number 50-Ha-G28-87) after the name of one of the large cinder cones at Hale Pōhaku (McCoy 1985a, 1985b). This cone, through which the Access Road Corridor passes, is the source of the stone (primarily dunite and gabbro) used in the manufacture of the sinkers. The two shrines and some of the lithic scatters found in the 1984-85 work are located outside of the Mid-Level facility parcel, as are some other 9 recorded lithic scatters found in later work. SHPD arbitrarily assigned SIHP numbers to the two shrines and 12 lithic scatters (Cordy 1994) and to the site complex as a whole (Site 16244) which corresponds to the BPBM site number (Figure 9).

The subsequent discovery of lithic artifacts in the vicinity of the HELCO Hale Pōhaku Substation on Parcel 001 led to a data recovery project that involved additional survey and surface collections at 11 different lithic scatters and limited test excavations of two of the scatters (McCoy 1991). A total of 2,364 artifacts and 129 faunal remains were collected. In addition to the debris related to adze and octopus sinker manufacture some 20 special purpose bird cooking stones called pohaku ‘eho were found. Three radiocarbon dates from charcoal recovered in fire pits indicate that the site, which has
Figure 9. Locations of Historic Properties (Site 16244, Features 1-14) in the Hale Pōhaku Area.
been interpreted as a temporary camp occupied on the ascent to and descent from the Mauna Kea Adze Quarry, is of late pre-contact age (ca. AD 1600-1700).

Cultural Surveys Hawaii conducted another reconnaissance survey at Hale Pōhaku (Parcel 012) on August 9, 1990. The survey, which was done in conjunction with the construction of dormitories for the Japan National Large Telescope (later renamed the Subaru Telescope), covered a portion of the area surveyed by the Bishop Museum in 1985. The survey, which relocated two lithic scatters, recommended data recovery investigations prior to construction of the dormitories (Robins and Hammatt 1990). The data recovery work was conducted October 19-20, 1993 by Cultural Surveys Hawaii. Two radiocarbon dates were obtained that support the idea of a late prehistoric camp site (Hammatt and Shideler 2002).

In March 2005 four septic tank excavations at Hale Pōhaku on Parcel 012 were monitored. The monitoring report noted that while all of the known surface features in the lease area have undergone data recovery and no longer exist, there is a possibility that buried cultural deposits might exist in some undisturbed areas (McCoy 2005).

There is one other historic property, the stone cabins constructed by the CCC in the 1930’s, in the Mid-Level Facility parcel that have recently been documented at the inventory survey level. The inventory forms for these buildings (Walden and Park 2010) have been reviewed and approved by SHPD.

ARCHAEOLOGICAL MONITORING PROCEDURES

This section describes the procedures to be used during archaeological monitoring of TMT construction activities that have a potential to impact historic properties on Mauna Kea.

ANTICIPATED FINDS

In view of the prior archaeological findings within the MKSR, pre-Contact and/or historic properties that have not been identified in past studies may be present within one or more portions of the project area. Such properties may include the following: isolated artifacts such as adzes or worked stone fragments; archaeological sites such as shrines, workshops, or camp sites; buried archaeological deposits; and buried human skeletal remains.

EXTENT OF ARCHAEOLOGICAL MONITORING

A qualified archaeologist will conduct **on-site full time monitoring** of all ground-disturbing activities potentially extending into previously undisturbed ground during construction of the TMT and Access Way. Table 5, derived in part from the Conservation District Use Application (CDUA- U.H. Hilo 2010b) provides a list of ground disturbing activities, estimated depths of these activities, and whether or not they require archaeological monitoring. It should be noted that archaeological monitoring of excavations that exceed 10.0 feet (ft), or 3.0 meters (m) in depth will not be necessary since the probability of encountering subsurface archaeological materials and features at this depth is considered to be minimal.
Table 5. List of Specific Activities that Require Archaeological Monitoring.

<table>
<thead>
<tr>
<th>Ground Disturbing Activity</th>
<th>Estimated Excavation Depths in Meters (m) and Feet (Ft)</th>
<th>Monitoring Necessary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling exploratory borings at the TMT Observatory site</td>
<td>3.1-50.3 m (10.0-165.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Cutting new access roads for boring locales</td>
<td>0.9-3.1 m (3.1 – 10.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Performing excavation activities and grading at the TMT Observatory site</td>
<td>0.9-10.7 m (3.0 to 35.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Performing fill activities in areas at the TMT Observatory site that require ground disturbing activities before they are filled (beyond where excavation activities took place)</td>
<td>0.9-3.1 m (3.0 – 10.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Performing excavation activities for the Access Way</td>
<td>2.1 m (7.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Excavation of utility trenches along the Access Way</td>
<td>0.8-1.5 m (2.5-5.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Performing fill activities in areas along the Access Way that require ground disturbing activities before they are filled (beyond where excavation activities took place)</td>
<td>0.9-3.1 m (3.0 – 10.0 ft)</td>
<td>Yes</td>
</tr>
<tr>
<td>Ground disturbance in areas that have been previously disturbed through construction and/or use (e.g., existing facilities or parking areas)</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Replacing transformers at existing HELCO facility</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Replacing conductors in existing conduits</td>
<td>NA</td>
<td>No</td>
</tr>
</tbody>
</table>

Figures 10 through 14 show five sections of the design plans for the TMT project and provides the locations of areas where ground disturbing activities will be occurring along the Access Way and within the TMT observatory site. Activities to be monitored include excavation and grading activities, cutting access roads, excavation of utility trenches that are scheduled to occur in previously undisturbed areas, and some fill activities where ground disturbing is expected to occur (see Table 5).

Treatment of Cultural Materials

If any archaeological materials are encountered during the monitoring of ground-disturbing activities, work will be stopped immediately in that area, and the monitoring archaeologist will investigate the nature of the discovery. If an intact cultural layer, living surface, structural components (e.g., foundations), archaeological sub-surface features (e.g., hearths, pits, postholes, etc.), artifacts, charcoal, or midden deposits/trash pits are encountered, then the following actions will be taken:
Figure 10. Section 1, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea.
Figure 11. Section 2, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea.
Figure 12. Section 3, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea.
Figure 13. Section 4, Design Plans for the Mauna Kea Access Way to the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea.
Figure 14. Section 5, Design Plans for the Mauna Kea Access Way and Observatory Site of the Thirty Meter Telescope in the Astronomy Precinct on Mauna Kea.
1. Selected, sorted charcoal samples from discrete fire features will be collected for radiocarbon analysis where appropriate (particularly if the charcoal appears in a prehistoric context).

2. Bulk samples of midden material will be collected, such as shell, bones, etc.

3. All prehistoric artifacts will be collected.

4. All historic artifacts will be collected unless large trash or refuse pits are encountered, in which case only diagnostic samples will be taken, such as bottle and ceramic bases containing maker’s marks.

5. Standard documentation will be carried out, including scale maps, profiles, photographs, detailed soil and provenience descriptions, and interpretation.

6. Photographs of excavations will be included in the monitoring report even if no historically significant sites are documented during the monitoring field work.

TREATMENT OF HUMAN REMAINS

If human remains are identified, work will immediately stop in the area that the archaeologist determines could contain the remains and related materials such as grave goods. Determinations on the treatment and disposition of the remains will be made by the DLNR in consultation with the OMKM, HIBC, OHA, and any recognized descendants. SHPD/DLNR and the OMKM will be notified immediately of the find. No further work will take place in that locale—including screening of back dirt, cleaning and/or excavation of the burial area, or exploratory work of any kind—unless explicitly requested by the SHPD. SHPD/DLNR, in consultation with the OMKM, the Kahu Kū Mauna, OHA, and the Hawai’i Island Burial Council, will determine if it is appropriate to remove and relocate any human remains encountered. If SHPD/DLNR authorizes removal of the human remains, the archaeological monitor will remove and inventory the remains in accordance with Hawaii Administrative Rules 13-300, and the remains will be stored temporarily at the SHPD/DLNR Hawai’i Island office until re-interment plans are finalized.

If a re-interment plan is needed, the company conducting the archaeological monitoring will prepare the re-interment plan and submit the plan to SHPD for review and approval. The re-interment site will be established in accordance with the HAR governing activities in the Conservation District (HAR 13-5), and with the concurrence of the Kahu Kū Mauna Council, the OMKM, and the SHPD.

The location of any authorized reburial site must be recorded by GPS, and reasonably detailed descriptions, including photographs, of the reburial sites must be provided to OMKM and to the SHPD for their records.

HALTING OF EXCAVATION ACTIVITY

The archaeological monitor has the authority to halt construction in the vicinity of the find, so that the provisions of the AMP can be carried out. The archaeological monitor and the TMT Site Superintendent will make it clear to the construction personnel that the archaeologist is authorized to halt work when it is deemed appropriate.
PRE-CONSTRUCTION CONFERENCE
Before works begins on the project, the on-site archaeological monitor will, with the cultural resource specialist (described below in Section VI), participate in a pre-construction conference. At that conference, the archaeological monitor will explain to the entire construction crew what materials may be encountered and the procedures to follow if archaeological materials are found, as well as the role of the archaeological monitor. At this time the archaeological monitor and the TMT Site Superintendent will make it clear to construction supervisors and all other members of the construction team that the archaeological monitor has the authority to stop work immediately, if necessary. Before supervisors, subcontractors, or other construction workers not present at the pre-construction conference are assigned to work on ground disturbing activities, they will meet with/be briefed by the on-site archaeological monitor so that they receive the same guidance as those who were present at the pre-construction conference. Additional steps during the pre-construction phase may also include having a land surveyor flag the limits of ground disturbance prior to the start of work in order to indicate clearly the areas that are off-limits to construction equipment and personnel.

LABORATORY WORK
Artifacts will be cataloged and analyzed, along with any samples of midden materials that were collected. Charcoal and other datable materials will be submitted for dating analysis, provided samples were collected in-situ from prehistoric contexts that show no signs of intermixing with historic materials; e.g., charcoal obtained from distinct fire features in solely pre-contact deposits.

In the event human remains are inadvertently discovered and SHPD/DLNR authorizes their removal and relocation, as noted above, the human remains and associated items will be treated in accordance with Hawaii Administrative Rules (HAR) §13-300-32, and the remains will be stored temporarily at the SHPD/DLNR Hawai‘i Island office until re-interment plans are finalized.

REPORT PREPARATION
The archaeological monitor will compile daily monitoring logs. These logs will minimally include a description of daily activities, sites or features cleared and recorded, personnel on-site, problems encountered, and corrective action taken. Reports will be filed as appropriate with the SHPD detailing any new sites or features identified within the project area boundaries, if necessary and appropriate. Copies of all reports will also be provided to OMKM and Kahu Ku Mauna.

Following completion of monitoring fieldwork and any required laboratory analyses, a draft archaeological monitoring report will be prepared in conformance to HAR §13-279-5, and submitted to SHPD/DLNR, OMKM, and the Kahu Kū Mauna for review. The archaeological monitor will submit a final archaeological monitoring report after receiving any comments on the draft report.

COLLECTIONS ARCHIVING
All burial remains and associated materials will be given to the SHPD/DLNR Hawai‘i Island office for curation until re-interment plans are finalized. Non-burial materials will be stored temporarily at OMKM's facilities until an appropriate curation facility is available on Hawai‘i Island.
CULTURAL MONITORING

In accordance with the CMP and with the commitments described in the FEIS for the TMT (FEIS-U.H. Hilo 2010), TMT Observatory Corporation will hire a cultural resource specialist to work in conjunction with the archaeological monitor at all times and in all places or situations where on-site archaeological monitoring is required. Currently, there are no statutory or regulatory mandates for cultural resource specialist or monitors, nor are there any recognized policies or guidelines that set out standards for cultural monitoring. However, preliminary consultations with Kahu Kū Mauna have led to the following basic recommendations for the cultural resource specialist and monitoring during TMT construction work:

- A cultural monitor will be present on-site at all times whenever the archaeological monitor is present.
- Individuals selected to be cultural monitors will have the appropriate background in order to serve as a cultural monitor and as a cultural resource specialist for cultural matters. Such individuals are to serve as mediators among the various stakeholders.
- Cultural monitors will not be affiliated with the archaeological firm that is hired to provide archaeological monitoring support.
- Cultural monitors will participate in any pre-construction briefings with the archaeological monitors. In addition, cultural monitors will maintain regular records of attendance and activity on the job site.
- Cultural monitors will provide the Kahu Kū Mauna and OMKM with a report of activities and findings, if any, on a weekly basis.

INADVERTENT DISCOVERIES

If any historic properties should be found in the APE as defined above they will be classified as inadvertent discoveries per HAR 13-280 since the archaeological survey of the Science Reserve, including the Astronomy Precinct, has been completed (McCoy and Nees 2010). The process that will be followed if inadvertent discoveries are made during construction projects will involve:

- Stopping all construction within the immediate vicinity of the property.
- Notifying SHPD, having the significance of the property assessed, and proposing appropriate mitigation measures.
- If the property cannot be avoided due to construction or design constraints, it will be thoroughly documented before being destroyed.
- If it can be saved, appropriate measures are needed to protect the historic property during the remainder of the construction phase and when the facility is in use.
- Interested members of the Native Hawaiian community will be consulted for properties believed to be associated with Native Hawaiians (SHPD 2000:23).
REFERENCES CITED

Allen, Melinda Sue

Barry, Roger G.

Borthwick, Douglas F., and Hallett H. Hammatt

Buck, Sir Peter

Chinen, Jon J.

Cleghorn, Paul Lodge

Cordy, Ross

Davies, J.L.

DePaolo, D.J. and E.M. Stolper

de Silva, Kihei, and Mapuana

Ellis, William

Embleton, C., and C.A.M. King
Gregory, Herbert E., and Chester K. Wentworth

Ho‘ākea Communications, LLC dba Ku‘iwalu
2009 Mauna Kea Comprehensive Management Plan UH Management Areas. Prepared for the University of Hawai‘i.

Hammatt, Hallett, H.

Hammatt, Hallett, and Douglas Borthwick

Hammatt, Hallett H., and David W. Shideler

Hibbard, Don
1999 Letter of May 3, 1999 to Dr. Robert McLaren (IfA) Regarding Historic Preservation Review of the Proposed W.M. Keck Outrigger Telescopes Project.

Kam, Wendell, and Jason Ota

King, Thomas F.
2003 Declaration of Thomas F King, Ph.D. Exhibits A-B in Office of Hawaiian Affairs vs. NASA and University of Hawaii Institute for Astronomy.

Langlas, Charles
1999 Supplement to Archaeological, Historical and Traditional Cultural Property Assessment for the Hawai‘i Defense Access Road A-AD-6(1) and Saddle Road (SR200) Project.

Langlas, Charles, Thomas R. Wolfforth, James Head, and Peter Jensen
1997 Archaeological Inventory Survey and Historical and Traditional Cultural Property Assessment for the Hawai‘i Defense Access Road A-AD-6(1) and Saddle Road (SR200) Project, Districts of South Kohala, Hamakua, North Hilo and South Hilo, Island of Hawai‘i. Paul H. Rosendahl Ph.D., Inc., Hilo. Prepared for RUST Environmental and Infrastructure Inc., Phoenix, Arizona.
Macdonald, Gordon A., and Agatin T. Abbott

Maly, Kepa

Maly, Kepa, and Onaona Maly

McCoy, Patrick C.

1999b Neither Here Nor There: A Rites of Passage Site on the Eastern Fringes of the Mauna Kea Adze Quarry, Hawai‘i. Hawaiian Archaeology 7:11-34.

2005 Archaeological Monitoring of Four Septic Tank Excavations at the Mid-Level Facilities Located at Hale Pohaku, Mauna Kea, Ka‘ohe, Hamakua. Island of Hawai‘i (TMK: [3]:4-4-015:012. Prepared for the University of Hawaii Institute for Astronomy.

McCoy, Patrick, Sara Collins, Stephan D. Clark, and Valerie Park

McCoy, Patrick and Richard Nees
2010 Archaeological Inventory Survey of the Mauna Kea Science Reserve, Ka‘ohe Ahupua‘a, Hāmākua District, Island of Hawai‘i TMK: (3) 4-4-015: 01 (por.). Prepared for the Office of Mauna Kea Management by Pacific Consulting Services Inc.

McCoy, Patrick, Richard Nees, and Stephan D. Clark
2010a Archaeological Inventory Survey of the Astronomy Precinct in the Mauna Kea Science Reserve, Ka‘ohe Ahupua‘a, Hāmākua District, Island of Hawai‘i TMK: (3) 4-4-015: 01 (por.). Prepared for the Office of Mauna Kea Management by Pacific Consulting Services Inc.

38
McCoy, Patrick, Richard Nees, and Melanie Mintmier
2010b Archaeological Inventory Survey of the Mauna Kea Access Road Management Corridor Ka`ohe Ahupua`a, Hāmākua District, Island of Hawai`i (TMK: (3) 4-4-015: 01 (por.) Prepared for the Office of Mauna Kea Management by Pacific Consulting Services Inc.

McEldowney, Holly

Moore, James G., and D.A. Clague

NASA (National Aeronautics and Space Administration)

PHRI (Paul H. Rosendahl, Ph.D., Inc.)

Powers, W. E., and C. K. Wentworth

Price, Larry W.

Pukui, Mary Kawena, and Samuel Elbert

Robins, Jennifer, and Hallett H. Hammatt

Sharp, W.D. and P.R. Renne

Sherrod, D.R., J.M. Sinton, S.E. Watkins and K.E. Brunt
State Historic Preservation Division

Tricart, J.

Ugolini, F.C.

U.S. Geological Survey

University of Hawai‘i, Hilo

2010a Final Environmental Impact Statement, Thirty Meter Telescope Project, Island of Hawai‘i; Proposing Agency: University of Hawaii at Hilo.

2010b Conservation District Use Permit Application, Thirty Meter Telescope Project, Island of Hawai‘i; Applicant: University of Hawaii at Hilo.

Walden, Jackie and Valerie Park

2010 *Architectural Inventory Survey of Hale Pōhaku Rest Houses 1 and 2 and Comfort Station, Kaʻohe Ahupuaʻa, Hāmākua District, Island of Hawaiʻi TMK: (3) 4-4-015:12 (por.).* Prepared for the Office of Mauna Kea Management by Pacific Consulting Services Inc.

Wentworth, Chester K., and William E. Powers

Williams, Scott S.

Wolfe, Edward W., and Jean Morris, Compilers

Wolfe, Edward W., William S. Wise, and G. Brent Dalrymple

Woodcock, A.H.