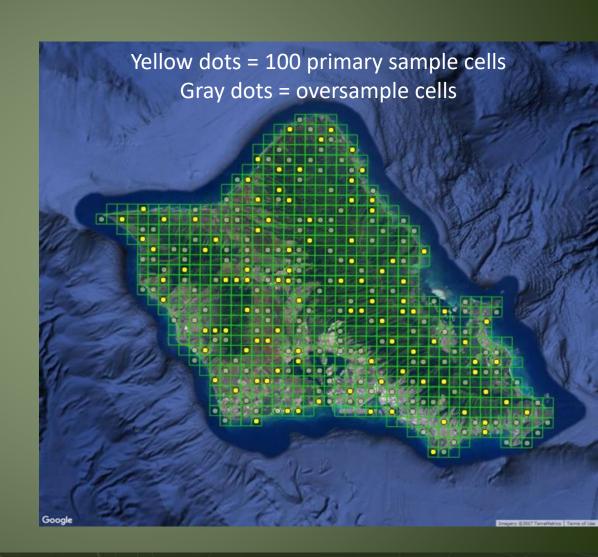


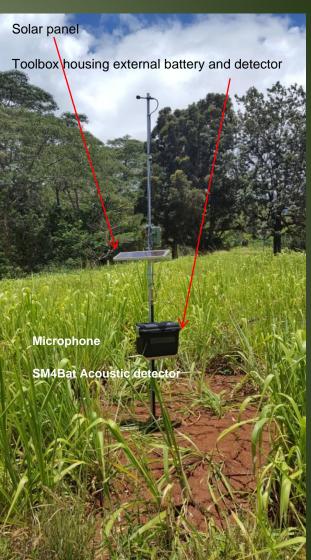
Environmental & Statistical Consultants


# Hawaiian Hoary Bat Occupancy and Distribution on Oahu – Project Status Update

Joel Thompson, Leigh Ann Starcevich, Erica Adamczyk, and Donald Solick

ESRC Bat Workshop March 5, 2020

#### **OBJECTIVES AND STUDY DESIGN**


- 5-year study period to look at distribution and seasonal/annual changes in occupancy
- Designed for island-wide inference
- 2.3 km<sup>2</sup> grid cells across the island
- Spatially Balanced
   Generalized Random
   Tessellation Stratified
   Sample (GRTS)



#### **ACOUSTIC SAMPLING METHODS**

- Wildlife Acoustics
   SM4Bat detectors
- Monitored year round
- Checked at ~2-week to 2month intervals (location dependent)
- Kaleidoscope Pro and Analook used to filter/analyze acoustic data
- Microphones updated From SMM-U1 to SMM-U2 in 2019





#### OBJECTIVES (Years 1-2): SEASONAL DISTRIBUTION ACROSS OAHU

- Basic information where, when, how often
  - Where were bats detected and during which season
  - Average number of detections per detector night
  - Proportion of detector nights bats were detected at individual sites
- Seasons were defined based on reproduction periods (Menard 2001 and Gorresen et al. 2013)
  - lactation season = mid-June to Aug
  - post-lactation season = Sept to mid-Dec
  - pre-pregnancy season as mid-Dec to March
  - pregnancy season as April to mid-June

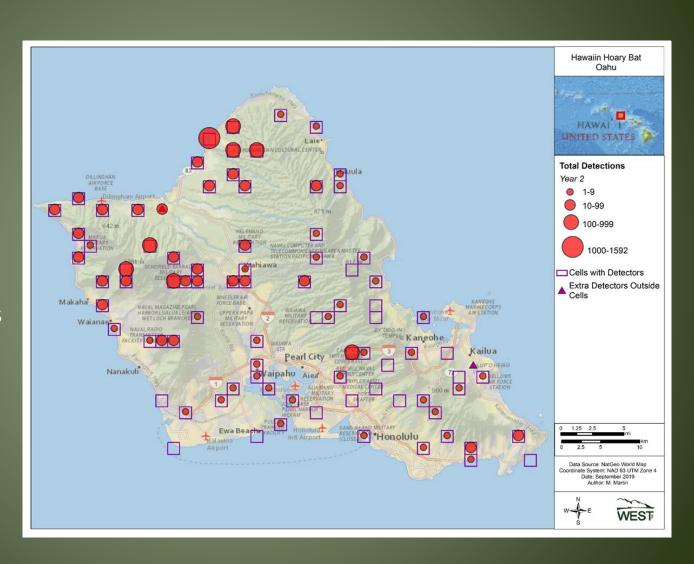
#### **OCCUPANCY ANALYSIS**

- Single season occupancy models not considered
- Examined two multi-season occupancy models:
  - 1. Multi-season dynamic occupancy model that assumes detections are independent (MacKenzie et al. 2006)
  - **2. Multi-season dynamic occupancy model** that assumes detections are correlated (Hines et al. 2010, 2014)
- Multi-season models parameterized changes in occupancy as a function of extinction, colonization, and probability of detection
- Occupancy analysis conducted with unmarked package (Fiske and Chandler 2011) in R and in Program PRESENCE (Hines 2006)
- Site-level covariates: elevation, the percentage of trees, and human population density in each grid cell
- Visit-level covariates: season, month

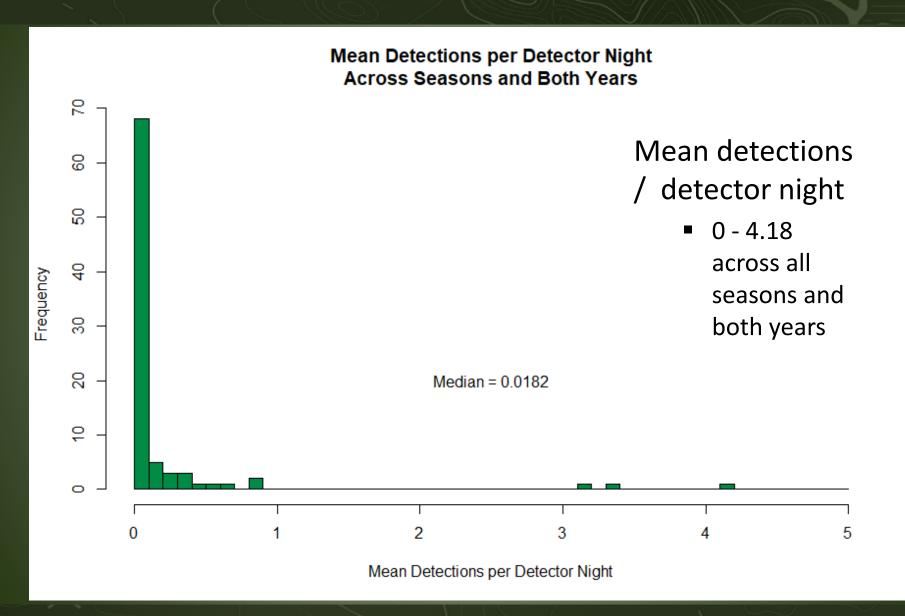
#### OCCUPANCY ANALYSIS

- Assumption: detections for a given site during different survey occasions are independent
- Correlation among detections were assessed using the join count chi-square test (Wright et al. 2016)
  - Assuming independent detections
  - Assuming a first-order Markov model
- Nightly data highly correlated → took systematic random samples of 7, 10, 14, and 21 days and assessed correlation for each model
- Assessed separately by season

#### SAMPLE SIZE - DISTRIBUTION


- 87 detectors in the field
- 85 detectors in GRTS cells
- Data collected from all 87 detectors during at least some portion of the study
- A few detectors lost due to theft and some data loss due to equipment malfunction

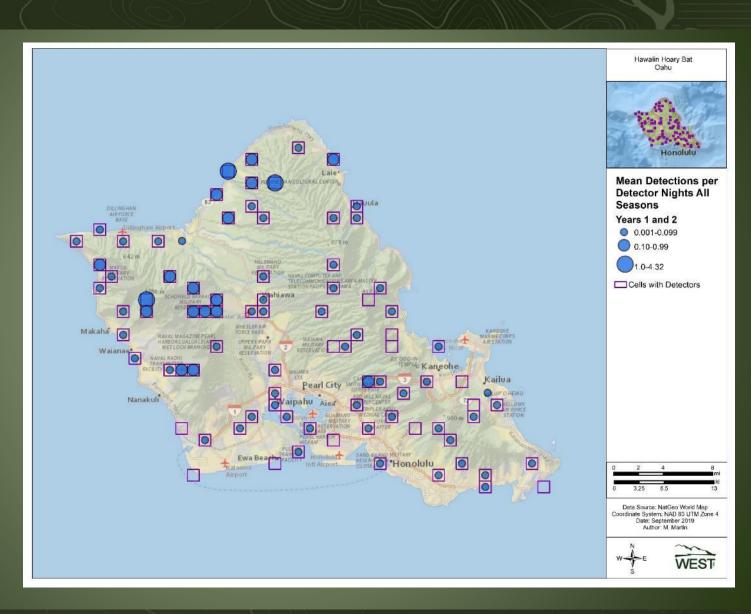



#### **RESULTS - DISTRIBUTION**

June 2017 – Oct 2019

- 106 800 detector nights
- >12,000 detections
- 0 2,551 detections per site (median = 11)
- 77 of 87 (89%)detectors with ≥1detection




#### RESULTS – MEAN DETECTIONS PER NIGHT



#### DISTRIBUTION – ANNUAL DETECTION RATES

# Mean detections per detector night

- Year 1
  - 0 4.37 across all seasons
- Year 2
  - 0 5.19 across all seasons



### **RESULTS: TOTAL CALLS TOP 20**

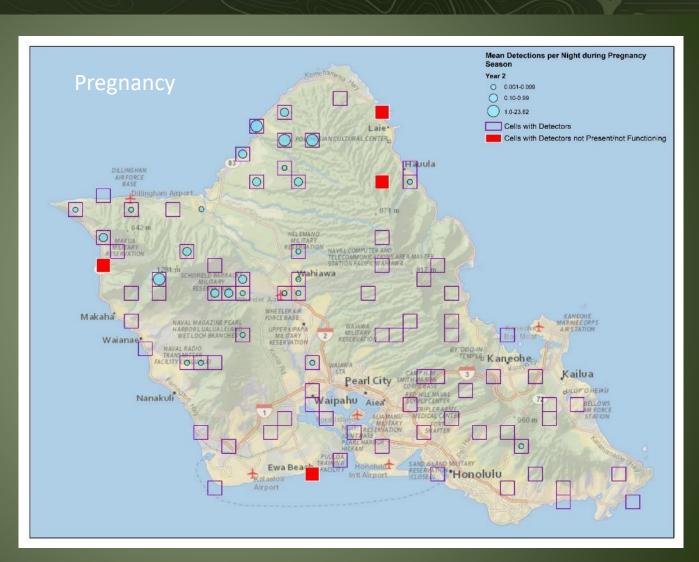
|          |                   |            |                           |                    | Zasawa Na Vice                           | -ARREST A-                                    |
|----------|-------------------|------------|---------------------------|--------------------|------------------------------------------|-----------------------------------------------|
| Site ID  | Site Name         | Detections | Nights with<br>Detections | Detector<br>Nights | Mean<br>Detections Per<br>Detector Night | Proportion of Detector Nights with Detections |
| Site-053 | Kumaipo LZ        | 2551       | 247                       | 610                | 4.18                                     | 0.40                                          |
| Site-075 | Peerson           | 2386       | 272                       | 715                | 3.34                                     | 0.38                                          |
| Site-039 | Pupukea           | 2391       | 215                       | 767                | 3.12                                     | 0.28                                          |
| Site-101 | Pupukea Paumalu   | 348        | 163                       | 413                | 0.84                                     | 0.39                                          |
| Site-023 | Waimea Valley     | 630        | 241                       | 754                | 0.84                                     | 0.32                                          |
| Site-103 | Schofield Forest  | 483        | 116                       | 743                | 0.65                                     | 0.16                                          |
| Site-013 | KAW Gate          | 357        | 157                       | 698                | 0.51                                     | 0.22                                          |
| Site-041 | Schofield 3       | 339        | 180                       | 730                | 0.46                                     | 0.25                                          |
| Site-115 | Waianae Valley    | 274        | 63                        | 714                | 0.38                                     | 0.09                                          |
| Site-061 | Mt Kaala          | 294        | 206                       | 767                | 0.38                                     | 0.27                                          |
| Site-079 | Makua Ridge       | 229        | 113                       | 724                | 0.32                                     | 0.16                                          |
| Site-097 | Malaekahana SP    | 152        | 14                        | 509                | 0.30                                     | 0.03                                          |
| Site-021 | Lualualei 1       | 183        | 76                        | 660                | 0.28                                     | 0.12                                          |
| Site-105 | Aiea Loop Trail 1 | 170        | 37                        | 745                | 0.23                                     | 0.05                                          |
| Site-057 | McCarthy Field    | 147        | 109                       | 767                | 0.19                                     | 0.14                                          |
| Site-083 | Lualualei 2       | 128        | 71                        | 680                | 0.19                                     | 0.10                                          |
| Site-025 | Schofield         | 127        | 94                        | 767                | 0.17                                     | 0.12                                          |
| Site-029 | KAW Rd            | 84         | 70                        | 598                | 0.14                                     | 0.12                                          |
| Site-087 | Schofield 1       | 86         | 67                        | 718                | 0.12                                     | 0.09                                          |
| Site-081 | KAW 2             | 66         | 60                        | 710                | 0.09                                     | 0.08                                          |

#### **DISTRIBUTION - SEASONAL DETECTION RATE**

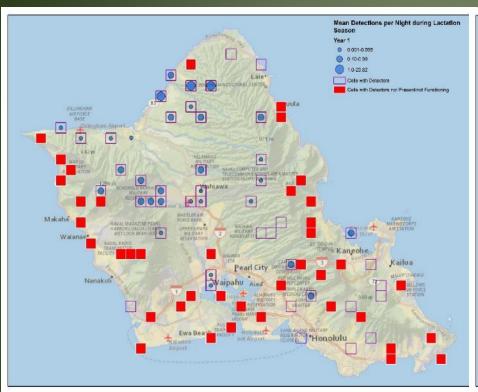
### Year 1

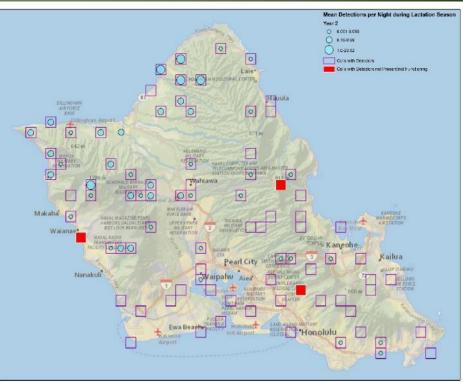
Mean detections per detector night

- 0 4.37 all seasons
- 0 21.8 within seasons




#### DISTRIBUTION - SEASONAL DETECTION RATE


## Year 2


Mean detections per detector night

- 0 5.19 all seasons
- 0 23.82 within seasons

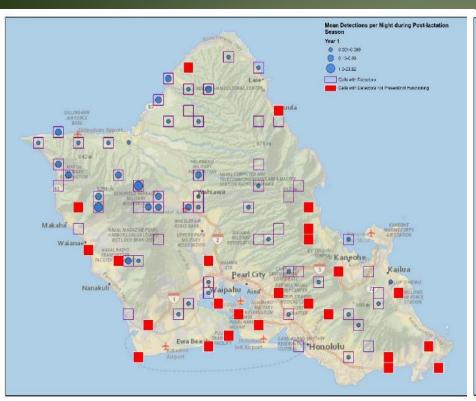


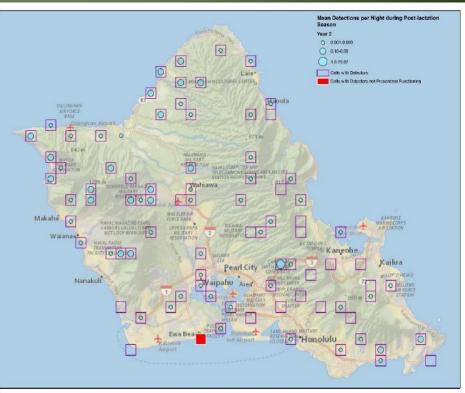
#### DETECTION RATE - YEAR TO YEAR SEASONAL COMPARISONS





Lactation Year 1


Lactation Year 2


Mean detections / detector night

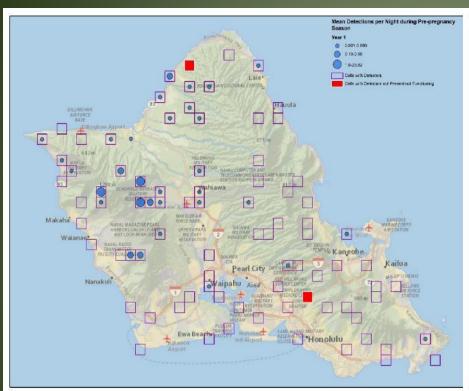
• Year 1: 0 - 21.8 (avg = 0.65)

• Year 2: 0 - 16.7 (avg = 0.46)

#### DETECTION RATE - YEAR TO YEAR COMPARISONS






Post-Lactation Year 1


Post-Lactation Year 2

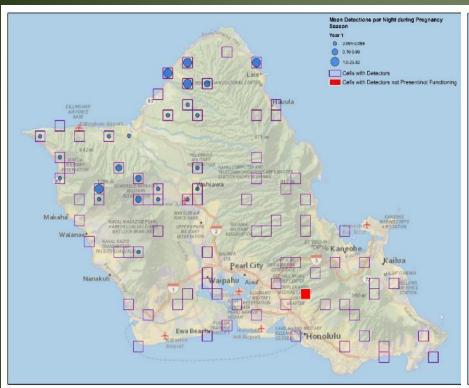
#### Mean detections / detector night

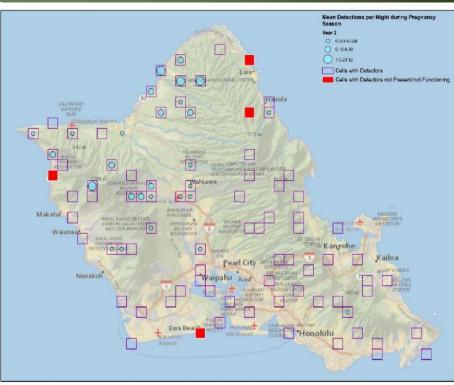
- Year 1: 0 2.96 (avg = 0.18)
- Year 2: 0 1.43 (avg = 0.11)

#### DETECTION RATE - YEAR TO YEAR COMPARISONS






Pre-Pregnancy Year 1


Pre-Pregnancy Year 2

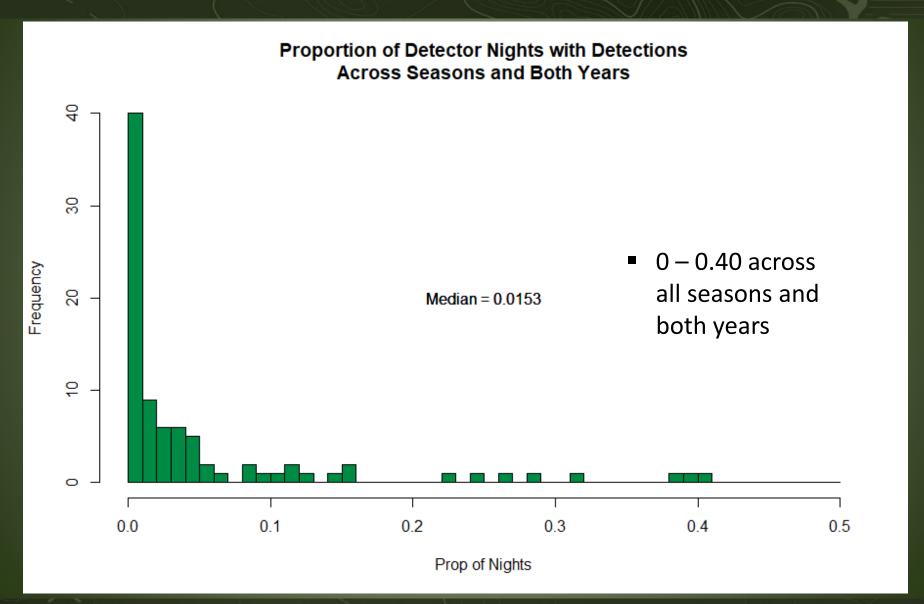
#### Mean detections / detector night

- Year 1: 0 13.1 (avg = 0.23)
- Year 2: 0 2.1 (avg = 0.04)

#### DETECTION RATE - YEAR TO YEAR COMPARISONS



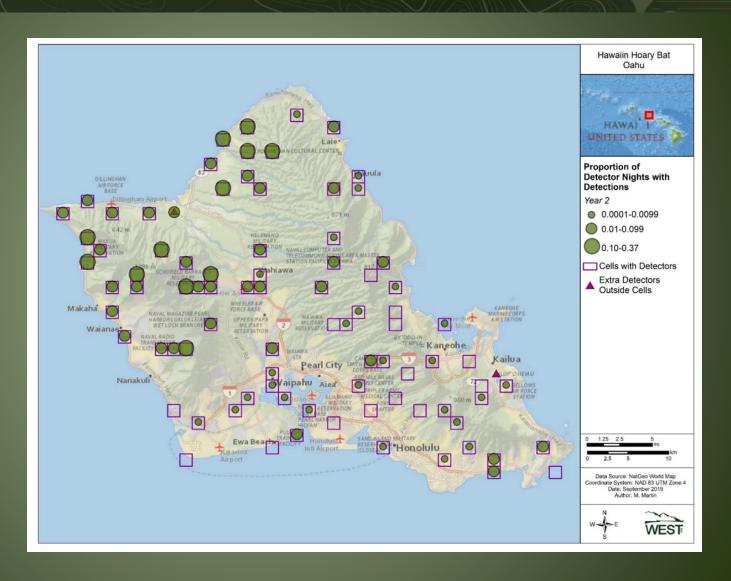


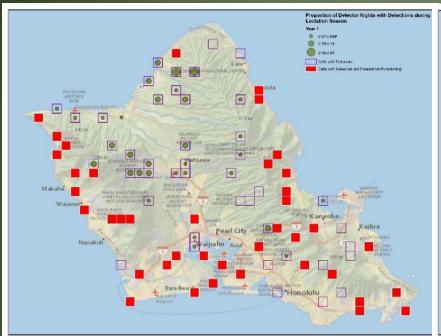

Pregnancy Year 1

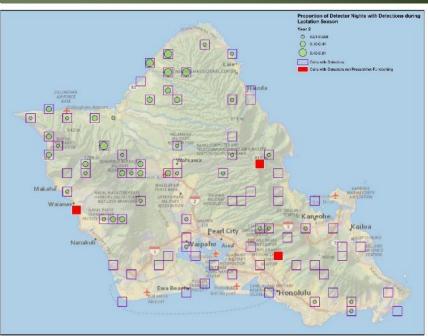
Pregnancy Year 2

#### Mean detections / detector night

- Year 1: 0 3.8 (avg = 0.15)
- Year 2: 0 7.9 (avg = 0.21)


### RESULTS – Proportion of Nights With Detections





#### PROPORTION OF NIGHTS WITH DETECTIONS

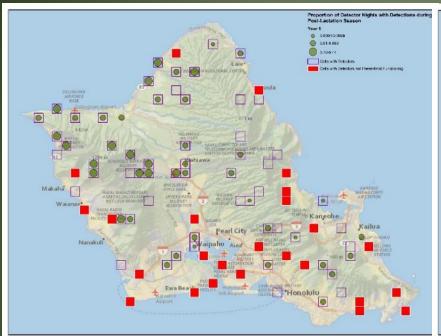
- Year 1
  - 0 0.52 across all seasons

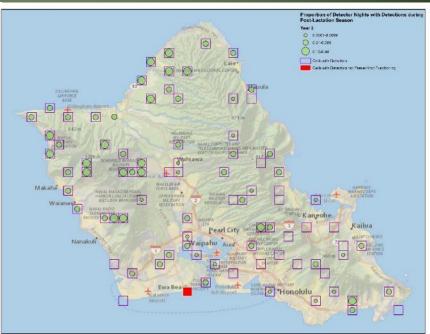
- Year 2
  - 0 0.37 across all seasons








Lactation Year 1


Lactation Year 2

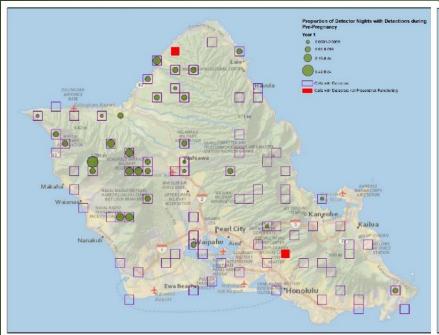
#### **Proportion Nights With Detections**

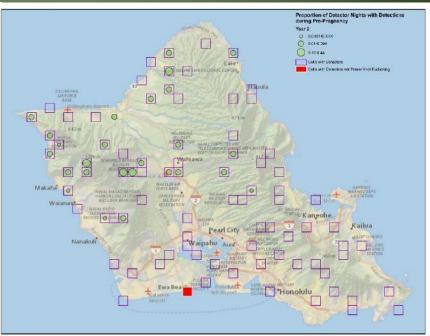
• Year 1: 0 - 0.84(0.11)

• Year 2: 0 - 0.72 (0.08)






Post-Lactation Year 1


Post-Lactation Year 2

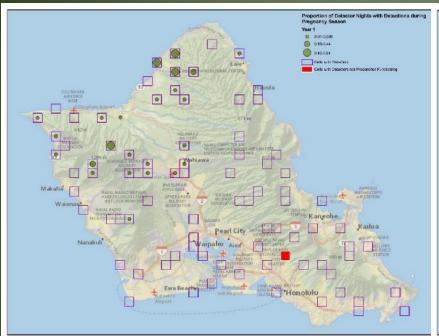
#### **Proportion Nights With Detections**

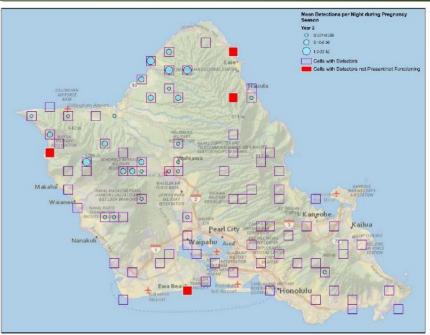
• Year 1: 0 - 0.45(0.08)

■ Year 2: 0 – 0.45 (0.06)






Pre-Pregnancy Year 1


Pre-Pregnancy Year 2

#### **Proportion Nights With Detections**

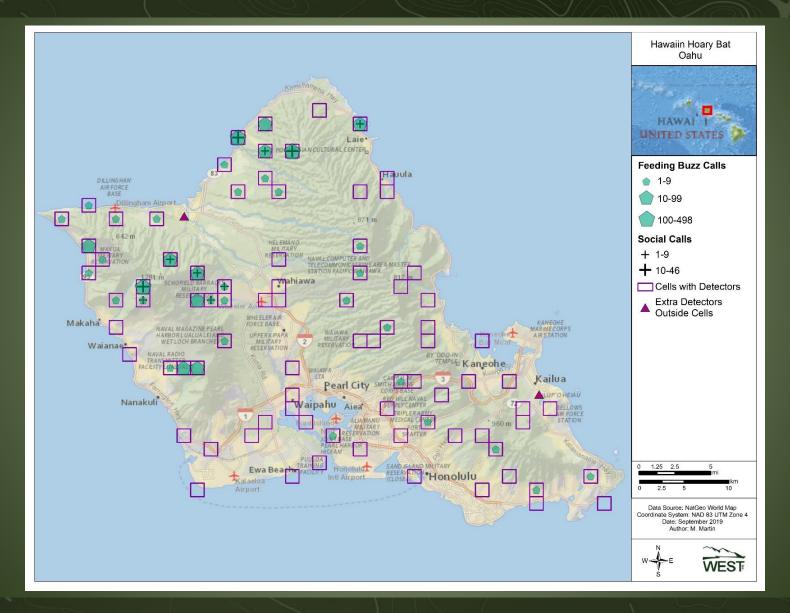
• Year 1: 0 - 0.57(0.03)

• Year 2: 0 - 0.31(0.02)





Pregnancy Year 1


Pregnancy Year 2

#### **Proportion Nights With Detections**

• Year 1: 0 - 0.71(0.04)

■ Year 2: 0 – 0.50 (0.05)

### FEEDING BUZZES and SOCIAL CALLS



Questions/Discussion regarding Distribution

#### OCCUPANCY ANALYSIS – INDEPENDENCE OF DATA

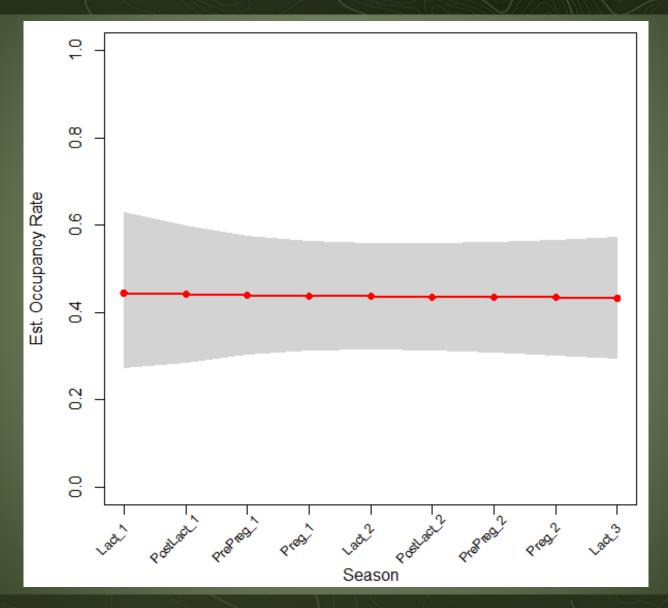
Join count test results for correlated detections, four seasons, and four sampling intervals across the first two survey years.

|                | Interval |       | Year 1              |         | Year 2              |         |
|----------------|----------|-------|---------------------|---------|---------------------|---------|
| Season         | (days)   | Model | Join count $\chi^2$ | p-value | Join count $\chi^2$ | p-value |
|                | 7        | Corr. | 13.89               | 0.029   | 699.87              | 0       |
| Loctotion      | 10       | Corr. | 146.86              | <0.001  | 11.65               | 0.062   |
| Lactation      | 14       | Corr. | 5.50                | 0.145   | 4.82                | 0.144   |
|                | 21       | Corr. | 1.38                | 0.475   | 2.83                | 0.194   |
|                | 7        | Corr. | 4.06                | 0.436   | 1.28                | 0.906   |
| Post-Lactation | 10       | Corr. | 5.56                | 0.152   | 2.15                | 0.627   |
| POSI-Lactation | 14       | Corr. | 2.09                | 0.395   | 0.94                | 0.402   |
|                | 21       | Corr. | 0.30                | 0.590   | 4.22                | 0.054   |
|                | 7        | Corr. | 2.79                | 0.893   | 0.08                | 0.367   |
| Dro Brognanov  | 10       | Corr. | 7.73                | 0.094   | 0.94                | 0.415   |
| Pre-Pregnancy  | 14       | Corr. | 1.51                | 0.382   | 0.49                | 0.694   |
|                | 21       | Corr. | 1.65                | 0.303   | 1.54                | 0.848   |
|                | 7        | Corr. | 10.48               | 0.187   | 4.82                | 0.417   |
| Prognancy      | 10       | Corr. | 2.32                | 0.625   | 2.28                | 0.313   |
| Pregnancy      | 14       | Corr. | 3.69                | 0.412   | 0.43                | 0.880   |
|                | 21       | Corr. | 0.21                | 0.990   | 0.81                | 0.715   |

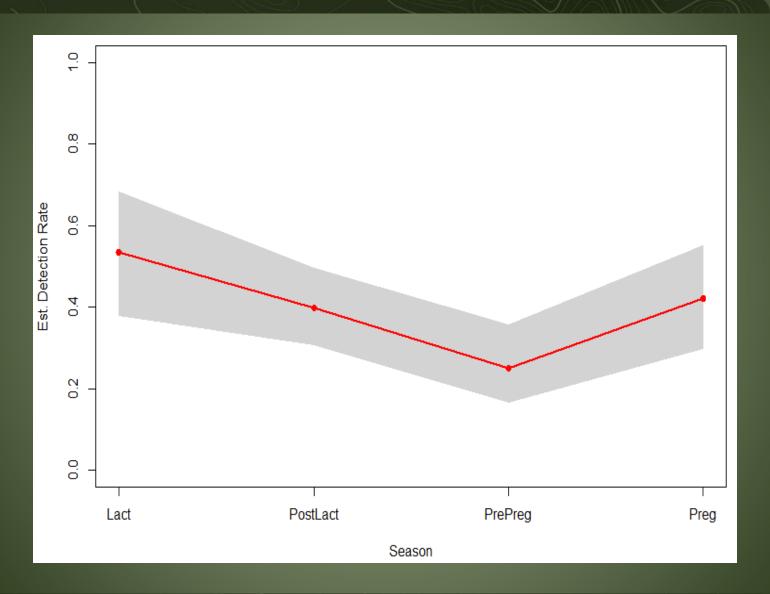
### SITE LEVEL COVARIATES FOR OCCUPANCE MODELING

| Site-level Covariate | Description                                                       |  |  |  |  |
|----------------------|-------------------------------------------------------------------|--|--|--|--|
| PopSqMi              | Human population per square mile (mi) in eacl grid cell.          |  |  |  |  |
| PopSqMiClass         | 0 if population density <64.60 people per square mi, 1 otherwise. |  |  |  |  |
| Elev                 | Mean site elevation in meters in each grid cell.                  |  |  |  |  |
| ElevClass            | 0 if Elevation <141.43 m, 1 otherwise.                            |  |  |  |  |
| PctTrees             | Percent tree cover in grid cell.                                  |  |  |  |  |
| PctTreesClass        | 0 if percent tree cover <20.68%, 1 otherwise.                     |  |  |  |  |

# RESULTS – MULTI-SEASON DYNAMIC OCCUPANCY MODEL FOR CORRELATED DETECTIONS


Multi-season model with detection probability modeled by season and PopSqMiClass generated the lowest AIC value based on the 2-year dataset

| Model                                                     | AIC     | Delta AIC | AIC wgt |
|-----------------------------------------------------------|---------|-----------|---------|
| psi,th0(),th1(),gam(),eps(),p(Season),th0pi(PopSqMiClass) | 2120.24 | 1.06      | 0.3031  |
| psi,th0(),th1(),gam(),eps(),p(Season),th0pi(PopSqMi)      | 2123.64 | 4.46      | 0.0554  |


### OCCUPANCY AND DETECTION PROBABILITIES FOR TOP MODEL

|      |                    | Est. Occ. |        |                  | Est.<br>Detection |        |                  |
|------|--------------------|-----------|--------|------------------|-------------------|--------|------------------|
| Year | Season             | Rate      | SE     | 95% CI           | Prob.             | SE     | 95% CI           |
| 1    | Lactation          | 0.4465    | 0.0951 | (0.2750, 0.6317) | 0.5347            | 0.0795 | (0.3806, 0.6825) |
| 1    | Post-<br>Lactation | 0.4435    | 0.0798 | (0.2872, 0.5999) | 0.3977            | 0.0485 | (0.3076, 0.4954) |
| 1    | Pre-Preg           | 0.4410    | 0.0693 | (0.3051, 0.5769) | 0.2500            | 0.0485 | (0.1673, 0.3562) |
| 1    | Preg               | 0.4388    | 0.0635 | (0.3145, 0.5632) | 0.4204            | 0.0655 | (0.2998, 0.5512) |
| 2    | Lactation          | 0.4370    | 0.0614 | (0.3167, 0.5573) | 0.5347            | 0.0795 | (0.3806, 0.6825) |
| 2    | Post-<br>Lactation | 0.4354    | 0.0620 | (0.3138, 0.5570) | 0.3977            | 0.0485 | (0.3076, 0.4954) |
| 2    | Pre-Preg           | 0.4340    | 0.0644 | (0.3078, 0.5601) | 0.2500            | 0.0485 | (0.1673, 0.3562) |
| 2    | Preg               | 0.4328    | 0.0676 | (0.3004, 0.5652) | 0.4204            | 0.0655 | (0.2998, 0.5512) |
| 3    | Lactation          | 0.4317    | 0.0710 | (0.2925, 0.5710) | 0.5347            | 0.0795 | (0.3806, 0.6825) |

# OCCUPANY ESTIMATES AND 95% CONFIDENCE BANDS BY SEASON AND YEAR



# DETECTION PROBABILITY AND 95% CONFIDENCE BANDS BY SEASON



#### SAMPLE SIZE ASSESSMENT

Sample size approximation for 20% relative precision based on estimates of detection and occupancy rates for the 14-day interval Lactation data season, 7-day sample intervals for the other three seasons.

| Interval       | Est.<br>occupancy<br>rate (Ψ) | Est. availability rate given previous availability | Est. detection rate given availability | Est. detection rate (p) | Sample size<br>(α = 0.10) |
|----------------|-------------------------------|----------------------------------------------------|----------------------------------------|-------------------------|---------------------------|
| Lactation      | 0.45                          | 0.82                                               | 0.53                                   | 0.44                    | 84                        |
| Post-Lactation | 0.44                          | 0.82                                               | 0.40                                   | 0.33                    | 85                        |
| Pre-Preg       | 0.44                          | 0.82                                               | 0.25                                   | 0.21                    | 86                        |
| Preg           | 0.44                          | 0.82                                               | 0.42                                   | 0.35                    | 87                        |

#### INSIGHTS FROM FIRST 2 YEARS OF STUDY

- Temporal correlation among acoustic data is high
- Distribution (i.e., acoustic activity) appears to vary by season, but consistently more widespread during lactation and post-lactation periods (summer & fall)
- Feeding buzzes and social calls most prevalent in areas of highest activity
- Occupancy rates are inversely associated with population density,
   but not with tree cover or elevation
- Probability of detection varies quite a lot across seasons, while occupancy estimates have been consistent
- High degree of consistency in seasonal and annual detection rates and occupancy estimates across years
- Additional data should continue to improve models as we gain another transition among seasons

#### **NEXT STEPS**

- 1-2 more years of data to be collected and analyzed
- Remove a few detectors initially deployed to assess distribution
- Continue to monitoring same sites to ensure detection probability is accurately estimated and that habitat and detection variables are not confounded (MacKenzie 2006)
- Assess seasonal distribution relative to extinction and colonization rates (i.e., are the bats there and not detectable or is there distribution changing)
- Assess Bayesian approach to occupancy analysis to see if it may allow for better inclusion of habitat variables

# **QUESTIONS - DISCUSSION**



#### DRONE TRANSECT SURVEYS - PILOT STUDY

- Unmanned aerial vehicle and a high-resolution thermal camera
- Estimate density and abundance on a study area (e.g., within a cell) using line transect survey approach
- Transects optimized for coverage based on visual LOS
- Does density correlate with acoustic activity?

### SURVEYS WITH DRONES - PILOT STUDY JULY 2019

- 1.5 nights flying with Marcos on the Big Island
  - Testing of heights and speed
  - Few bats detected and all were skylit (drone on ground or ascending)
- 4 nights flying on Oahu 15-20 transects per night
  - 3 grid cells all on North Shore
  - Successful deployment at various heights and speeds
  - Few bats detected (only 1 or 2 on flights)
- Technique worked well in the field (consistent contouring automated flight)
- Multiple heights and speeds tested

# DRONE TEST – BAT FROM GROUND (Big Island)



# DRONE TEST – BAT FROM GROUND (Big Island)



# DRONE TRANSECT SURVEY – OWL (OAHU)



# DRONE TRANSECT SURVEY – BAT (OAHU)



# DRONE TRANSECT SURVEY – BAT? (OAHU)



# QUESTIONS - DISCUSSION



Special thanks to a number of helpful collaborators across the islands that have allowed access and provided assistance to gain access to sample sites: DOFAW, State Parks, HECO, City/County of Honolulu, Water Supply Board, YMCA, DOD & Army Natural Resources Group in particular, Kahuku Wind, Kawailoa Wind, USFWS, AEP and Auwahi Wind, Ulupalukua Ranch, Haleakala Ranch, Kaupo Ranch, DHHL, and number of other individuals and small businesses.



west-inc.com

Corporate Headquarters

415 West 17th Street, Suite 200, Cheyenne, WY 82001 307.634.1756