State of Hawai‘i
DEPARTMENT OF LAND AND NATURAL RESOURCES
Division of Aquatic Resources
Honolulu, Hawai‘i 96813

August 11, 2017

Board of Land and Natural Resources
Honolulu, Hawai‘i

Request for Authorization and Approval to Issue a Papahānaumokuākea Marine National Monument Research Permit to Dr. Christopher Bird, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Hawai‘i Institute of Marine Biology, University of Hawai‘i, for Access to State Waters to Conduct Intertidal Biodiversity Survey Activities

The Division of Aquatic Resources (DAR) hereby submits a request for your authorization and approval for issuance of a Papahānaumokuākea Marine National Monument research permit to applicants Dr. Christopher Bird, Assistant Professor, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Research Professor, Hawai‘i Institute of Marine Biology, University of Hawai‘i, pursuant to § 187A-6, Hawai‘i Revised Statutes (HRS), Chapter 13-60.5, Hawai‘i Administrative Rules (HAR), and all other applicable laws and regulations.

The research permit, as described below, would allow entry and management activities to occur in Papahānaumokuākea Marine National Monument, including the NWHI State Marine Refuge and the waters (0-3 nautical miles) surrounding the following sites:

- Ni‘hoa Island
- Mokumanamana (Necker)
- French Frigate Shoals
- Gardner Pinnacles

The activities covered under this permit would occur between September 1, 2017 and August 31, 2018.

The proposed activities are largely a continuation of work previously permitted and conducted in the Monument.

The application proposes to conduct annual intertidal monitoring, near-shore surveys, and collecting limited biological samples within the intertidal zone at Nihoa, Mokumanamana, Lalo/French Frigate Shoals (specifically La Perouse Pinnacle), and ‘Ōnūnui and ‘Ōnūki/Gardner Pinnacles. Surveys include biodiversity mapping, species presence/absence, and relative abundances within and among sites across the emergent islands. Select ‘opīhi and hā‘uke‘uke will be harvested to examine the reproductive state and patterns of population connectivity in the intertidal zone. Post-cruise studies include sequencing of genomic DNA from muscle tissue in order to assess connectivity and stock structure. The project integrates widely accepted ecological survey techniques with Hawaiian observation methods (Native Hawaiian practices permit number PMNM-2017-024). Standardized survey protocols were
developed collaboratively by contemporary marine scientists and Hawaiian practitioners. The permittees and up to ten project personnel are authorized to enter the Monument aboard Motor Vessel (MV) Searcher and conduct activities on a research cruise scheduled for early September.

Collections List

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Distribution</th>
<th>Sampling</th>
<th>Nihoa</th>
<th>MMM</th>
<th>FFS</th>
<th>GP</th>
<th>Preserve Tissue For Genetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellana melanostoma</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td></td>
<td></td>
<td><1% of pop, up to 25</td>
</tr>
<tr>
<td>Cellana exarata</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td></td>
<td></td>
<td><1% of pop, up to 144</td>
</tr>
<tr>
<td>Cellana sandwicensis</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Colobocentrotus atratus</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>1000 pinches</td>
</tr>
<tr>
<td>Misc Algae</td>
<td>algae</td>
<td>various</td>
<td>Non-lethal</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: no more than 1000 pinches (using no more than the thumb, pointer and middle fingers, an area < 4cm², i.e. 2 x 2 cm) of turf algae will be collected at each site.

To safeguard Monument resources the applicant would abide by the following PMNM Best Management Practices (BMPs) while conducting the aforementioned activities within the PMNM: Best Management Practices for Boat Operations and Diving Activities (BMP #004); General Storage and Transport Protocols for Collected Samples (BMP #006); Marine Wildlife Viewing Guidelines (BMP #010); and Disease and Introduced Species Prevention Protocol for Permitted Activities in the Marine Environment (BMP #011).

The applicant’s proposed activities directly support the Marine Conservation Science (MCS) Monument Management Plan Action Plan activities:
MCS-1.1: Continue to characterize types and spatial distributions of shallow-water marine habitats to inform protection and management efforts.
MCS-1.2: Continue monitoring of shallow-water coral reef ecosystems to protect ecological integrity.
The activities described above may require the following regulated activities to occur in State waters:

- Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging any living or nonliving Monument resource
- Drilling into, dredging, or otherwise altering the submerged lands other than by anchoring a vessel; or constructing, placing, or abandoning any structure, material, or other matter on submerged lands
- Discharging or depositing any material or matter into the Monument
- Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special Preservation Area or Midway Atoll Special Management Area

REVIEW PROCESS

The permit amendment was sent out for review and comment to the following scientific and cultural entities: Hawai‘i Division of Aquatic Resources, Hawai‘i Division of Forestry and Wildlife, Papahānaumokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the original permit application has been posted on the Monument Web site since May 24, 2017 giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument’s Public Notification Policy.

Questions:

1. Under description of proposed activities it reads “When the ship leaves the island, no supplies will be left behind”. Request clarification that activities are restricted to intertidal zone.

 All proposed activities will only occur in the intertidal zone and near-shore waters.

2. Where can data be located from previous trips to the Monument?

 PMNM has been provided the raw data from previous trips. As manuscripts are published, data will be deposited in public repositories. The following thesis is available which details the genomic diversity of Cellana exarata from Nihoa to the Big Island of Hawai‘i

 MS Thesis, Marine Biology, Texas A&M University – Corpus Christi 2015
 Ms. Patricia Cockett, Population composition of an exploited Hawaiian fishery

3. The applicants mention that they in addition to publications they report on the results of their findings to “Monument managers as quickly as possible through the brown-bag luncheons, semi-annual reports…” Can the applicants provide us with a list of the key reports and presentations that they’ve given to managers and co-trustees? Also, can we ask them to let us know roughly when the “semi-annual mini symposium during which all researchers involved in this project present” will occur? How many times has this happened? And is it typically at the same location?

Each year the ‘Opihi Partnership will provide an updated presentation to the ONMS Reserve Advisory Council, the NH Cultural Working Group (when possible) and the Monument Management Board upon request. Members of the ‘Opihi Partnership that participate in the annual intertidal cruise are more than happy to update other groups, when requested. In addition, the PMNM annual and summary permit reports are submitted each year prior to requesting a permit for the subsequent year. An ‘Opihi Partnership/Intertidal Monitoring workshop will be held on Monday, July 17, 2017 to gather individuals and organizations active in monitoring intertidal areas throughout Hawai‘i to collaborate, network and discuss critical next steps to improve coordination of our collective efforts to malama Hawai‘i’s intertidal and nearshore ecosystems.

Guest Presenter, Bird, Na Mamo O Muolea, Hāna, Maui, Hawai‘i 2012-17
1 day per year. Debrief board members on results of surveys and discuss strategies for successful mgmt. of resources

Scientific Advisor, Bird, Lahainaluna Hawaiian Immersion School, Lahaina, Maui 2017
2 days. Helped develop presentation about the crashed ‘opih fishery to educate children about sustainability and conservation of ‘opih. Prepare and help organize k-12 school groups for intertidal surveys.

‘Opihi Planning Meeting, NOAA, TNC, Cons. Int., UHawaii, Opihi Meeting, Kihei, Maui2017
Share results and plan ‘Opihi Summit at the Hawai‘i Conservation Conference

Guest Presenter, Bird, Haleakala Natl Park, Kipahulu, Maui, Hawai‘i 2017
1 day, Debrief park staff on results of surveys and discuss strategies for successful mgmt. of resources

Consultant, Bird, Hawai‘i Dept. of Aquatic Resources, O‘ahu, Hawai‘i 2016
1 days, Debrief community-based mgmt. staff on intertidal survey methods in the field

Na Mamo O Muolea Limu Festival, Hāna, Maui, Hawai‘i 2015-16
4 days, Present research on ‘opihī conservation, educate adults and children about sustainable harvest of ‘opihī

Guest Educator, Bird, Kulia I Ka Pono Summer Camp, Hāna, Maui, Hawai‘i 2014,16
2 days, Educate high school students from Kamehameha Schools about sustainable harvest of marine life

Guest Speaker, Bird, Lana‘i ‘Opīhi Workshop, Lana‘i, Hawai‘i 2010

Guest Speaker, Hanauma Bay Lecture Series, Hawai‘i Kai, Hawai‘i 2009

Formal Presentations
24th Annual Hawai‘i Conservation Conference, Honolulu, HI 2017
Community-managed “Rest Areas” and its effectiveness on the ‘opihī fishery Bennett BW**, Bird CE

Aquatic Science Meeting (ASLO) Honolulu, HI 2017
The effectiveness of community-managed “Rest Areas” on the ‘opihī fishery Bennett BW**, Bird CE

Bird, International Conference on Conservation Genetics in Mekong, Can Tho, Vietnam 2017
Population genomics and the conservation of Hawaiian ‘opihī

LSAMP Undergraduate Research Symposium, Corpus Christi, TX 2016
Phenotypic variations in marine protected area limpets Cruz M*, Hajovsky P*, Hogan JD, Bird CE

Community-based management of the Hawaiian limpet Thomas J*, Bennett BW**, Bird CE

Little effect of harvesting pressure on the adaptive capacity of Hawaiian limpets Gurski LM**, Bird CE

Bird, International Coral Reef Symposium, Honolulu, HI 2016
From Monitoring to Community-based Management: Results from the ‘Opipi Partnership

International Coral Reef Symposium, Honolulu, HI
2016
Genome-wide genetic diversity is greatest in the smallest populations of Hawaiian ‘opipi
Cockett PM**, Gurski LM**, Bird CE

Benthic Ecology Meeting, Portland, ME
2016
Genome-wide genetic diversity is greatest in the smallest populations of Hawaiian ‘opipi
Cockett PM**, Gurski LM**, Bird CE

Bird, Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI
2015
Impact of humans on ‘opipi populations

24th Annual National McNair Conference and Graduate Fair, Milwaukee, WI
2015
Phenotypic variations in marine protected area limpets
Cruz M*, Hajovsky P*, Hogan JD, Bird CE

Bird, Ocean Sciences (ASLO), Honolulu, HI
2014
Selection drives sympatric population divergence in Hawaiian ‘opipi

Bird, NOAA Fisheries, Pacific Islands Marine Regional Office, Honolulu, HI
2013
SAFE Talk: Toward sustainable ‘opipi fisheries

Pathways Student Research Symposium, Kingsville, TX
2013
Biogeographic patterns in the reproductive timing of broadcast-spawning limpets
Cockett PM**, Bird CE

2013
Biogeographic patterns in the reproductive timing of broadcast-spawning limpets
Cockett PM**, Bird CE

Bird, NOAA Hawaiian Islands Marine Mammal Sanctuary, Hawai‘i Kai, HI
2012
‘Opipi conservation and fishery management
Bird, The Nature Conservancy, Honolulu, HI
2012
‘Opihi conservation and fishery management

Bird, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI
2011
Selection and population partitioning in Hawaiian limpets

Bird, Hawai‘i Conservation Conference, Honolulu, HI
2010
The ‘opihī Partnership: Scientific perspective and findings

University of Hawai‘i, Ecol, Evol, & Cons Biology Program, Honolulu, HI
2009
Speciation of endemic, sympatric Hawaiian limpets

Press
West Hawaii Today, West Hawaii Today
July 2014
Interesting finds in northwestern Hawaiian Islands ‘opīhi

Various News Outlets, kiiitv.com
March 2014
New DNA mapping technique could help preserve fish populations

Various News Outlets, Star Advertiser
March 2014
Scientists urge lawmakers to protect Hawaii opīhi

Various News Outlets, Huff Post
October 2013
Saving the ‘fish of death’ – there’s an app for that

Various News Outlets, Hawaii News Now
September 2012
Researchers make ground breaking opīhi discovery

Various News Outlets, Honolulu, Hawai‘i
October 2011
Papahanāumokuākea coastal resource assessment expedition.
KITV News, Honolulu, KHON News, Honolulu, Honolulu Star-Advertiser Newspaper

Various News Outlets
July 2011
“Scientists discover that Hawai‘i is not an evolutionary dead end for marine life”
University of Hawai‘i at Mānoa Press Release, Phys.org, Innovation of Nano Patent
Honolulu Magazine, Honolulu, Hawai‘i, "The ‘Opīhi Shellfish Story" by David Thompson

Honolulu Magazine, Honolulu, Hawai‘i
December 2010
“The ‘opīhi Ohana” by Sheila Sarhangi

4. In Section 8 of the permit application under objective 4 & 5, it is stated “Bouin’s solution, a tissue fixing agent, will be stored in plastic screw cap tubes inside of plastic containment containers (5gal buckets). 70% ethanol will be stored in plastic screw cap tubes inside of plastic containment containers (5gal buckets). Bouin’s fixative is composed of saturated aqueous picric acid, formalin, and glacial acetic acid. Waste will be disposed of at the University of Hawai‘i on O‘ahu or Texas A&M University – Corpus Christi." Will the solution be made before transporting into the Monument? Will the solution be kept aqueous? Dry picric acid can be very explosive under the right conditions.

The solution will be made prior to transporting to PMNM and will be aqueous.

5. Sustenance fishing is not listed, but is in associated Morishige’s application (PMNM-2017-024). Since it will be on the same boat, do they plan on partaking in the bounty of the sustenance fishing?

Yes. All participants on the intertidal cruise will be covered under both the Native Hawaiian Practices permit (Morishige) and Research permit (Bird-Toonen) once approved. However, Bird does not eat ‘opīhi.

6. Morishige’s permit application (PMNM-2017-024) discusses a technique to differentiate females from males; can the applicant please expand on the technique? What happens to the males? What handling/chemical use protocols and MSDS are used in the technique?

I will identify sex of opīhi using three methods:
1. Dissection of opīhi and visual inspection of gonads. The testes are generally yellowish to orangish and the ovaries are generally tan, brown or green. However, using this method in the NWHI, we obtain highly skewed sex ratios.

2. The reproductive organs will be cut in half. One half will be placed on a 200um nitex mesh in seawater. The eggs will fall through the mesh if the gonad is an ovary and can be visualized with the naked eye. No eggs = male. Past cruises indicate that the opīhi will have sizable gonads and eggs during this period of this cruise (September)

3. The other half of the gonad will be fixed in Bouin’s solution and then transferred to 70% ethanol. The gonads will be transported back to the lab where the gonad will be sectioned and visualized using light microscopy and sex will be determined by identifying oocytes (female) or spermatocytes (male).
COMMENTS / RECOMMENDATIONS:

1. Prior to the cruise, the researchers should review the diving and boating protocols for the Monument, and while performing in-water surveys, should avoid touching corals.
 Agree and noted.

2. Results will be similar to the type of results achieved in the past several years. Adds another year of data.
 Agree and noted.

3. Understanding biological connections between islands and in context with places outside of the monument is valuable. Population estimates are valuable.
 Agree and noted.

4. Applicant has a lot of expertise and experience.
 Noted and thanks for the comment.

5. Very successful project that has operated for several years. The science plan is sound. Researchers are capable. Recommend for permit
 Noted and thanks for the comment.

Additional reviews and permit history:

Are there other relevant/necessary permits or environmental reviews that have or will be issued with regard to this project? (e.g., MMPA, ESA, EA) Yes ☒ No ☐
If so, please list or explain:

- The proposed activities are in compliance with the National Environmental Policy Act.
- The proposed activities are in compliance with the National Historic Preservation Act.
- A request to the National Marine Fisheries Service (NMFS) for Section 7 informal consultation coverage pursuant to the Endangered Species Act of 1973 was initiated via email on July 10, 2017 to have the proposed activities considered under PMNM’s programmatic Section 7 informal consultation (Letter of concurrence dated 13 April 2015). On July 13, 2017, NMFS PIRO sent an e-mail to PMNM that concurred with the PMNM’s assessment that the proposed activity is within the scope of the PMNM programmatic consultation between NMFS and the PMNM.
- An informal review of all aforementioned activities following section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA; 16 U.S.C. 1855(b)) was completed on July 5, 2017 by NOAA National Marine Fisheries Service (NMFS) Pacific Islands Regional Office (PIRO) for the Habitat Conservation Division. NMFS PIRO Marine National Monument Program concluded adequate PMNM Best Management Practices are in place (e.g., Marine Wildlife Viewing Guidelines and
Protocols for Boat Operations and Diving Activities, thus project activities (swimming, snorkeling, collecting a limited number of intertidal resources for research in the Monument, and accessing basaltic islands/atolls below the high-tide mark) would not adversely affect Essential Fish Habitat (EFH).

- The Department has made an exemption determination for this permit in accordance chapter 343, HRS, and Chapter 11-200, HAR. See Attachment (“DECLARATION OF EXEMPTION FROM THE PREPARATION OF AN ENVIRONMENTAL ASSESSMENT UNDER THE AUTHORITY OF CHAPTER 343, HRS AND CHAPTER 11-200 HAR, FOR PAPAHĀNAUMOKUĀKEA MARINE NATIONAL MONUMENT RESEARCH PERMIT TO DR. CHRISTOPHER BIRD, TEXAS A&M UNIVERSITY – CORPUS CHRISTI, AND DR. ROBERT TOONE, HAWAI‘I INSTITUTE OF MARINE BIOLOGY, UNIVERSITY OF HAWAI‘I, FOR ACCESS TO STATE WATERS TO CONDUCT INTERTIDAL BIODIVERSITY SURVEY ACTIVITIES UNDER PERMIT PMNM-2017-023.”)

Has Applicant been granted a permit from the State in the past? Yes ☒ No ☐
If so, please summarize past permits:

- The applicant was granted permits PMNM-2011-041, PMNM-2012-049, PMNM-2014-026, PMNM-2015-026 and PMNM-2015-026 A1 respectively, for similar work.

Have there been any violations:
 a) violations: Yes ☐ No ☒
 b) late/incomplete post-activity reports: Yes ☐ No ☒

Are there any other relevant concerns from previous permits? Yes ☐ No ☒

STAFF OPINION

DAR staff is of the opinion that the applicants have properly demonstrated valid justification for their application and should be allowed to enter the NWHI State waters and conduct the activities therein as specified in the application with certain special instructions and conditions, which are in addition to the Papahānaumokuākea Marine National Monument Research Permit General Conditions. All suggested special conditions have been vetted through the legal counsel of the Co-Trustee agencies (see Recommendation section).

MONUMENT MANAGEMENT BOARD OPINION

The MMB is of the opinion that the applicants have met the findings of Presidential Proclamation 8031 and this activity may be conducted subject to completion of all compliance requirements. The MMB concurs with the special conditions recommended by DAR staff.
RECOMMENDATION:

1. That the Board authorize and approve a Research Permit to Dr. Christopher Bird, Texas A&M University-Corpus Christi, and Dr. Robert Toonen, Hawai‘i Institute of Marine Biology, University of Hawai‘i, with the following special conditions:

 a. This permit is not to be used for nor does it authorize the sale of collected organisms. Under this permit, the authorized activities must be for noncommercial purposes not involving the use or sale of any organism, by-products, or materials collected within the Monument for obtaining patent or intellectual property rights.

 b. The permittee may not convey, transfer, or distribute, in any fashion (including, but not limited to, selling, trading, giving, or loaning) any coral, live rock, or organism collected under this permit without the express written permission of the Co-Trustees.

 c. To prevent introduction of disease or the unintended transport of live organisms, the permittee must comply with the disease and transport protocols attached to this permit.

 d. Tenders and small vessels must be equipped with engines that meet EPA emissions requirements.

 e. Refueling of tenders and all small vessels must be done at the support ships and outside the confines of lagoons or near-shore waters in the State NWHI Marine Refuge.

 f. That the permittee provide, to the best extant possible, a summary of their Monument access, including, but not limited to, any initial findings to the DLNR for use at educational institutions and outreach events.

Respectfully submitted,

Maria Carnevale
Papahānaumokuākea Marine National Monument

APPROVED FOR SUBMITTAL

SUZANNE D. CASE
Chairperson
Papahānaumokuākea Marine National Monument
RESEARCH Permit Application

NOTE: This Permit Application (and associated Instructions) are to propose activities to be conducted in the Papahānaumokuākea Marine National Monument. The Co-Trustees are required to determine that issuing the requested permit is compatible with the findings of Presidential Proclamation 8031. Within this Application, provide all information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Papahānaumokuākea Marine National Monument (Monument).

ADDITIONAL IMPORTANT INFORMATION:

- Any or all of the information within this application may be posted to the Monument website informing the public on projects proposed to occur in the Monument.

- In addition to the permit application, the Applicant must either download the Monument Compliance Information Sheet from the Monument website OR request a hard copy from the Monument Permit Coordinator (contact information below). The Monument Compliance Information Sheet must be submitted to the Monument Permit Coordinator after initial application consultation.

- Issuance of a Monument permit is dependent upon the completion and review of the application and Compliance Information Sheet.

INCOMPLETE APPLICATIONS WILL NOT BE CONSIDERED
Send Permit Applications to:
NOAA/Inouye Regional Center
NOS/ONMS/PMNM/Attn: Permit Coordinator
1845 Wasp Blvd, Building 176
Honolulu, HI 96818
nwhpermit@noaa.gov
PHONE: (808) 725-5800 FAX: (808) 455-3093

SUBMITTAL VIA ELECTRONIC MAIL IS PREFERRED BUT NOT REQUIRED. FOR ADDITIONAL SUBMITTAL INSTRUCTIONS, SEE THE LAST PAGE.
Papahānaumokuākea Marine National Monument
Permit Application - Research
OMB Control # 0648-0548
Page 2 of 23

Papahānaumokuākea Marine National Monument
Permit Application Cover Sheet

This Permit Application Cover Sheet is intended to provide summary information and status to
the public on permit applications for activities proposed to be conducted in the
Papahānaumokuākea Marine National Monument. While a permit application has been received,
it has not been fully reviewed nor approved by the Monument Management Board to date. The
Monument permit process also ensures that all environmental reviews are conducted prior to the
issuance of a Monument permit.

Summary Information
Applicant Name: Chris Bird; Rob Toonen
Affiliation: Department of Life Sciences, Texas A&M University – Corpus Christi; Hawai‘i
Institute of Marine Biology, University of Hawai‘i at Mānoa

Permit Category: Research
Proposed Activity Dates: August 1, 2017 – July 31, 2018
Proposed Method of Entry (Vessel/Plane): Vessel
Proposed Locations: Nihoa, Mokumanamana, FFS (La Perouse Pinnacle), Gardner Pinnacle

Estimated number of individuals (including Applicant) to be covered under this permit: 15
total people will be covered to conduct activities under this permit, co-listed under the Native
Hawaiian Practices applications submitted by Kim Morishige

Estimated number of days in the Monument: 15

Description of proposed activities: (complete these sentences):
a.) The proposed activity would...
Examine the biodiversity of the Hawaiian intertidal and shallow subtidal ecosystem, and
study the basic ecology of ‘ōpīhi populations within the NWHI. We propose to continue
conducting the first comprehensive biodiversity mapping survey of the intertidal zone in the
NWHI and quantify species presence/absence and relative abundances within and among
sites across the basaltic emergent islands. We also seek to examine population connectivity
of intertidal species in comparison to the broad survey of coral reef organisms sampled to
date. We find different patterns of larval exchange among the ‘ōpīhi which suggests that
intertidal species may differ from the average seen in subtidal taxa, and that has important
management implications that need to be confirmed. We propose to examine the
reproductive status ‘ōpīhi populations across the NWHI to better understand natural
population dynamics and potential mechanisms of speciation in these economically,
ecologically and culturally important limpets.
This work will be tightly linked with the Native Hawaiian cultural practice application and is a joint collaborative study among Na Mamo o Muole'a, the Nature Conservancy, the Hawai‘i Institute of Marine Biology, Nā Maka o Papahānaumokuākea, and the NOAA Papahānaumokuākea Marine National Monument. We will perform the standardized ‘ opihi monitoring protocol developed through this collaboration, which is inclusive of Hawaiian methods of monitoring, has was specifically developed (and is continuously being refined) to monitor intertidal populations associated with ‘ opihi across the Main and Northwestern Hawaiian Islands. To date, communities on every island, save Ni‘ihau, have been involved and through these efforts the NWHI have been surveyed for intertidal species composition, population size and age structure of organisms associated with ‘ opihi. Here we request a permit to conduct the sixth year of surveys and monitoring within the NWHI, with a primary focus on mapping opih population sizes.

b.) To accomplish this activity we would …. Conduct standardized transect and rapid mapping surveys developed collaboratively among the partners listed above to integrate quantitative scientific data collection with Native Hawaiian observational data. Specifically, we will lay a minimum of 15 belt transects per island to assess size distribution, population density, community structure, species range, distribution, and rugosity for all identifiable organisms within the intertidal zone. Rapid mapping surveys will be conducted where the number of opih (separate counts for Cellana exarata and Cellana sandwicensis) and presence/absence for other inver: species are recorded in two meter wide belt transects at 10s-100s of georeferenced points around each island. Using this method, we were able to census all ‘ opihi residing on Mokupapapa each survey year.

We will collect ‘ opihi and ha‘uke‘ uke to examine reproductive state and patterns of population connectivity in the intertidal zone and compare that directly to the patterns found in subtidal species. The size and state of ‘ opihi and ha‘uke‘ uke gonads will be determined in the laboratory after the cruise. Genomic DNA isolated from invertebrate muscle tissues will be sequenced in order to assess connectivity and stock structure. Messenger RNA, the products of gene expression, will be isolated from gonad tissue in order to identify and compare the sperm-egg recognition proteins (methods described below), and in the accompanying Native Hawaiian Practices Permit Application filed by Kim Morishige. When the ship leaves the island, no supplies will be left behind. The samples we request to be collected for this work are summarized in Appendix 1. All data will be stored and analyzed at Texas A&M University Corpus Christi and the Hawaii Institute of Marine Biology by Chris Bird and Rob Toonen, respectively. Tissue samples, DNA and RNA sampled from animals will need to be additionally processed at specialized laboratories at Texas A&M University – College Station, ARQ Genomics in Austin, TX, and Simon Fraser University in Vancouver, BC. These data will be useful to both the Monument, as well as to local and governmental resource managers in the Main Hawaiian Islands to make effective decisions on managing the resources.

c.) This activity would help the Monument by …
Providing baseline knowledge of one of the least studied ecosystems which is potentially most threatened by climate change. Sea level rise is underway, and the first community to feel the effects of climate change will be the one that lives at the interface of land and sea and experiences the greatest extremes of both environments: the intertidal. Limited knowledge of this ecosystem restricts our understanding of climate change impacts and suitable responses. Further, knowing which species occur and where they live is fundamental to the management of natural resources in any ecosystem, and the Hawaiian intertidal zone is poorly characterized in general. We will also confirm whether or not the intertidal species show a distinct pattern of population connectivity across the archipelago than do the subtidal ones surveyed to date. These data will provide quantitative data on the species present in these ecosystems, their biodiversity, population dynamics and connectivity and also contribute to the ongoing debate about how new species arise in the sea. The tight collaboration of the team comprised of cultural practitioners, research scientists, and resource managers will ensure that the findings are of relevance to a broad group of stakeholders and of direct relevance to the people of Hawai‘i.

Other information or background:
Littoral habitats, those lying between the low-tide line and the upper limit of aquatic species on the shore, are among the most studied and well-known aquatic habitats on the planet. A primary exception to that generalization is that this zone is one of the least studied in Hawai‘i despite eight (8) consecutive years of surveying in the Hawaiian Islands by members of the ‘Opihi Partnership. The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However in Hawai‘i, mean significant wave height exceeds tidal range most of the time, and may be a primary structuring force for littoral communities as outlined in Bird (2006) and Bird et al (2013). The patterns of distribution and abundance of organisms on rocky shores, in particular the upper and lower limits of species, along vertical gradients of exposure have been studied extensively in other regions of the globe. Hypotheses addressing the causes of biotic zonation and community structure have evolved from strictly physical to an inseparable combination of physical and biological factors, including physiological tolerance (Connell 1961a b), species interactions (Bruno & Bertness 2001, Menge & Branch 2001), and all other forms of biotic factors.

A fundamental advance in the understanding of biotic zonation on rocky shores was the demonstration that species interactions also affected zonation patterns, where biotic factors generally affect the lower limit of distribution and physical factors affect the upper limit of distribution (Connell 1961a b, Paine 1967). A number of exceptions to this generalization have been demonstrated, many of which highlight the more general effect of biological interactions on the realized distribution of a species. Ultimately, the inseparable interaction between physical and biological factors define the realized limits of species (Denny & Wethey 2001), and intertidal communities are unique in that organisms must cope with some of the most severe extremes of both marine and terrestrial environments. This has led to debate about whether these species are so hardy that they are resistant to change, or whether they live in such extreme environments that climate change will impact them more (e.g., Stillman 2003). Available data from long-term surveys of the intertidal community in California suggest the latter: intertidal
communities are one of the first to show ecosystem impacts of climate change that can already be documented and are expected to accelerate given future climate change scenarios (e.g., Barry et al 1995; Sagarin et al. 1999).

Section A - Applicant Information

1. Applicant

Name (last, first, middle initial): Chris Bird; Rob Toonen

Title: Assistant Professor, Texas A&M University – Corpus Christi; Research Professor, HIMB, University of Hawaii at Manoa

1a. Intended field Principal Investigator (See instructions for more information):

2. Mailing address (street/P.O. box, city, state, country, zip):

 [Redacted]

For students, major professor’s name, telephone and email address:

3. Affiliation (institution/agency/organization directly related to the proposed project):
 Life Sciences, Texas A&M University - Corpus Christi
 HIMB, University of Hawai‘i at Mānoa

4. Additional persons to be covered by permit. List all personnel roles and names (if known at time of application) here (e.g. John Doe, Research Diver; Jane Doe, Field Technician):

 [Redacted]
We expect that the final list of cruise personnel will be available in July 2017 and will be submitted via an updated PMNM Compliance Information Sheet at that time. We seek a crew of 10 people drawn from across the partners listed above and these are the same participants as those on the Native Hawaiian Practices Permit Application filed by Kim Morishige.

Tentative List for 2017 Opihi Cruise

Chris Bird (Ph.D., Asst Professor, TAMUCC),
Kim Morishige (Researcher; UH Manoa & NHP Permittee)
Tia Brown (PMNM Resource Manager & Monitor)
TBD Community Representative from Hana
TBD Community Representative from Kipahulu
TBD Community Representative from Kauai
TBD Community Representative from Milolii
TBD Community Representative from Kalaemano
TBD Kuala Student Representative
TBD Community Representative/EMT Safety Officer

Section B: Project Information

5a. Project location(s):

- [x] Nihoa Island
- [x] Necker Island (Mokumanamana)
- [x] French Frigate Shoals
- [x] Gardner Pinnacles
- [] Maro Reef
- [] Laysan Island
- [] Lisianski Island, Neva Shoal
- [] Pearl and Hermes Atoll
- [] Midway Atoll
- [] Kure Atoll
- [] Other

<table>
<thead>
<tr>
<th>Ocean Based</th>
<th>Land-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow water</td>
<td>Deep water</td>
</tr>
</tbody>
</table>

NOTE: Shallow water is defined by water less than 100 meters in depth.

☐ Remaining ashore on any island or atoll (with the exception of Sand Island, at Midway Atoll and field camp staff on other islands/atolls) between sunset and sunrise.

NOTE: There is a fee schedule for people visiting Midway Atoll National Wildlife Refuge via vessel and aircraft.

Location Description:
Intertidal areas of all islands checked above. Will not go on land above the splash zone of any island and will conduct all research/survey work in nearshore waters and within the tidal zone (below the high tide).

5b. Check all applicable regulated activities proposed to be conducted in the Monument:
Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging any living or nonliving Monument resource
Drilling into, dredging, or otherwise altering the submerged lands other than by anchoring a vessel; or constructing, placing, or abandoning any structure, material, or other matter on the submerged lands
Anchoring a vessel
Deserting a vessel aground, at anchor, or adrift
Discharging or depositing any material or matter into the Monument
Touching coral, living or dead
Possessing fishing gear except when stowed and not available for immediate use during passage without interruption through the Monument
Attracting any living Monument resource
Sustenance fishing (Federal waters only, outside of Special Preservation Areas, Ecological Reserves and Special Management Areas)
Subsistence fishing (State waters only)
Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special Preservation Area or Midway Atoll Special Management Area

6. Purpose/Need/Scope State purpose of proposed activities:
We wish to characterize yearly variation in ophi and other intertidal and shallow subtidal populations in PMNM. Further, new genetic techniques that allow us to more fully sequence the genomes of individuals require more stringent sample preservation protocols than were used in the past collections of specimens from PMNM. Using these newer population genomic techniques, we can ascertain a more highly resolved image of connectivity and self recruitment on the islands of PMNM, that include the assessment of unique selective pressures driving local adaptation on the inhabitants of each island.

The primary objectives of this research expedition are to: (1) collect complementary data on the intertidal ecosystem with a suite of research scientists, cultural practitioners, and resource managers; (2) establish a baseline survey of intertidal ecosystems, specifically focused on 'ophi species associations, relative abundance, reproductive cycles, and identity to better understand the implications and consequences of human activities on these communities; (3) determine the species present to characterize the biodiversity of the Hawaiian intertidal zone and their connectivity to one another across the archipelago; (4) to determine 'ophi size at reproductive maturity and reproductive characteristics such as gonad index, and molecular composition of sperm-egg recognition proteins in the absence of human predation, (5) explore the genomic signatures of adaptation to human activities and natural processes using 'ophi as a model system to elucidate the mechanisms by which divergent selection can lead to adaptive radiation of marine species.

Along these same lines we request permission to collect up to 3 voucher specimens of an individual organism that cannot be identified as a known species and/or may represent new geographic records or new species from the taxonomic groups under study as laid forth in the voucher specimen guidelines of the Monument. Voucher specimen(s) would be used for taxonomic study to determine the species identity and would be accessioned in an approved
repository such as the Bishop and/or Smithsonian museum permanent collections as recommended.

*Considering the purpose of the proposed activities, do you intend to film / photograph federally protected species? Yes ☐ No ☒

If so, please list the species you specifically intend to target.

For a list of terrestrial species protected under the Endangered Species Act visit:
http://www.fws.gov/endangered/
For a list of marine species protected under the Endangered Species Act visit:
http://www.nmfs.noaa.gov/pr/species/esa/
For information about species protected under the Marine Mammal Protection Act visit:
http://www.nmfs.noaa.gov/pr/laws/mmpa/

7. Answer the Findings below by providing information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Monument:

The Findings are as follows:

a. How can the activity be conducted with adequate safeguards for the cultural, natural and historic resources and ecological integrity of the Monument?

All activities in this permit application were previously permitted and have demonstrated no impact on the Monument’s cultural, natural and historic resources. Our research team consists of conservation biologists who are both teaching and studying the science of how best to manage and conserve biological diversity in the sea. As such, minimizing our impact to the ecosystem we are trying to conserve is naturally and inherently a top priority for any research we conduct, especially within the boundaries of the Monument. We believe that we have implemented every reasonable safeguard for the natural resources and ecological integrity of the Monument in our research, and we do not conduct research that could have a detectable impact on the ecosystem. We have an established track record of management-relevant research in this area and have not been able to detect any cumulative impacts of scientific collections to date (Selkoe et al. 2009). As outlined in greater detail below, our sample size, choice of species, and methodologies have all been selected to provide robust and scientifically rigorous information to managers with the least possible impact to the natural resources of the Monument. We will adhere to all rules, regulations and best practices established by the co-trustees for the Monument, including all quarantine requirements, wildlife viewing guidelines, and entry/exit notification procedures where applicable.

Additionally, our team has always tried and will continue to ensure that we have minimal impact on the cultural resources of Papahānaumokuākea. We rely on our colleagues who are cultural practitioners to take the lead on proper protocols for our voyage, and these are outlined in detail
in the accompanying permit application by Morishige. Each member of our team is aware of the unique ecological and cultural status of the Monument, and our on-going collaboration with the cultural practitioners continues to expand our understanding of Hawaiian protocol in conducting research within Papahānaumokuākea Marine National Monument.

In addition to following the lead of our cultural practitioner team-mates, we ask that each researcher take responsibility to prepare an appropriate offering in advance to ensure that they reflect on why they are on this trip, what is the purpose of the trip, and enter the Monument with the proper intent. It is respectful to provide an offering and to not go forth to take from the place with empty hands. However, given concerns regarding transport of materials into the Monument, it is also difficult to present a proper offering in the form of a gift. In previous years, we have used pure rainwater collected by hand to ensure a personal connection with the offering, and we believe that this is the best option for research scientists unfamiliar with the proper cultural protocols. This fresh-caught rainwater can be poured out as a personal offering in return for the privilege of collecting samples in the Monument by each member of our team. In addition we will follow the lead and participate to the best of our ability in protocols undertaken by our cultural colleagues in whatever preparation is appropriate for the voyage.

b. How will the activity be conducted in a manner compatible with the management direction of this proclamation, considering the extent to which the conduct of the activity may diminish or enhance Monument cultural, natural and historic resources, qualities, and ecological integrity, any indirect, secondary, or cumulative effects of the activity, and the duration of such effects?

As mentioned above, activities proposed herein have been permitted previously and were conducted without detectable impact in the past. Our expansion of the scope of the initial surveys to include biodiversity surveys and connectivity work in the intertidal is similar to the work that we have done previously for subtidal reef-associated organisms, and has been done without detectable cumulative impact to date. Our proposed survey of the reproductive status, spawning timing, and larval behavior of ‘opihis is likewise expected to have no detectable impact, but will provide valuable scientific and management information for the entire Hawaiian Archipelago. This type of research is directly mandated by the Proclamation, and is necessary to both maintain ecosystem integrity and provide for adaptive ecosystem management in the face of natural or anthropogenic disasters and global climate change. As outlined above and below, our activities have no detectable effect to diminish Monument resources, nor have any known indirect, secondary or cumulative effects on the ecosystem or resources therein. Because we are conservation biologists who are concerned about exactly these sort of impacts, we have voluntarily conducted a threat assessment of the activities in the Monument (Selkoe et al. 2008) and compiled a cumulative impact threat map of the Monument (Selkoe et al. 2009) which has been provided to the co-trustees for use in future management decisions.

c. Is there a practicable alternative to conducting the activity within the Monument? If not, explain why your activities must be conducted in the Monument.

We expect it is self-evident that there is no practical alternative to sampling within the Monument when the goal of the research is to understand the baseline ecosystem state of the
intertidal populations within the Monument. Likewise, surveys of biodiversity within
understudied habitats of the Monument which seek to determine the species present, their
abundance and distribution are only possible within the bounds of the region of interest. Finally,
these studies will be of both direct benefit to the resource management within the Monument
itself, and to the remainder of the Hawaiian Archipelago for ecologically, economically and
culturally important species such as 'opīhi.

The exceptions that may not seem quite so self-evident is the examination of gonad index and
gamete recognition proteins. The reproductive work is needed to examine the baseline state of
the populations in the absence of human harvest and will provide important information about
spawning capacity, timing, ability of larvae to return to their source island, and adaptation of the
gamete recognition system to the high natural densities of 'opīhi in PMNM. We humans use our
senses to select our mate, but 'opīhi release their gametes into the water column and proteins
coating the sperm and eggs mediate mate choice. If eggs can be permissive or selective to
fertilization by sperm. If eggs are too permissive, the are fertilized by multiple sperm and the
embryo perishes. If the eggs are too restrictive, then the eggs remain unfertilized. In our most
recent surveys, we observe upwards of 100 fold higher 'opīhi densities in PMNM relative to
Oahu, and we expect that harvesting pressure will leave a distinct signature in the gamete
recognition proteins. Females on Oahu are either mostly permissive or else they do not produce
offspring. Gamete recognition proteins are also under strong positive selection and the
previously discovered levels of gene flow predict that each island might have particular strains of
males and females that are more compatible with each other than individuals from other
locations. In prior years, we found differences in the reproductive state of 'opīhi between islands
and species that could have important implications for the connectivity of populations among
islands. Our surveys of genomic and gamete recognition protein diversity can be used to assess
the ability of 'opīhi to adapt to human activities.

d. How does the end value of the activity outweigh its adverse impacts on Monument cultural,
natural and historic resources, qualities, and ecological integrity?

Given that we can detect no adverse effects of our activities on the resources of the Monument,
we believe that the end value of this research clearly outweighs whatever imperceptible impact
exists. We have an established track record of communicating our findings to the resource
managers and making sure that all research conducted within the Monument meets the bar of
management relevance. The proposed research will provide the first quantitative baseline survey
of intertidal ecosystems across the Hawaiian Archipelago and address questions of vulnerability
to climate change. Additionally, the reproductive work proposed herein will benefit both
population studies and resource management of 'opīhi stocks in Hawai‘i, but also contribute to
our understanding of how new species can arise in the sea. Finally, the intertidal zone is a
greatly understudied ecosystem that is likely to be one of the most directly and immediately
impacted by climate change because it experiences the extremes of both terrestrial and marine
environments daily. An understanding of the intertidal communities across this region will
identify potentially vulnerable locations and species, and (as outlined above) greatly increase the
decision-making capacity of the co-trustees in dealing with the reality of future climate change
within the Monument and the Hawaiian Archipelago in general.
e. Explain how the duration of the activity is no longer than necessary to achieve its stated purpose.

The expedition length is determined by limited funding, which makes it shorter than ideal, and is certainly no longer than is necessary to accomplish the research goals outlined in this permit application.

f. Provide information demonstrating that you are qualified to conduct and complete the activity and mitigate any potential impacts resulting from its conduct.

Chris Bird has a PhD in Ecology, Evolution, and Conservation Biology through the Botany Department at the University of Hawaii, was a Post Doctoral Fellow at the Hawaii Institute of Marine Biology from 2007-2012 working on the exact type of work entailed in this application, is an Assistant Professor at Texas A&M and has published ~20 research papers in peer-reviewed journals dealing specifically with the subject of conservation and management of Hawaiian natural resources, rocky shores in particular. Rob Toonen has a PhD in Population Biology, is a Research Professor at HIMB, and has published ~200 research papers in peer-reviewed journals dealing specifically with the subject of conservation and management of Hawaiian natural resources. With Rob Toonen and Celia Smith, Chris has been studying ‘opihia and Hawaiian intertidal communities since 1999, before to the establishment of the Monument. This research has been of considerable interest to both the science and management community of Hawai’i and has begun to receive international recognition for the insights we are gaining to understand divergent selection leading to speciation in the sea. This on-going project should be well known to the Monument co-trustees, and our research accomplishments are presented in regular meetings with the management community and semi-annual meetings. Our accomplishments and qualifications to perform this research are further documented in the included CVs. We will be responsible for the conduct of the scientific team and work closely with the cultural practitioner team to ensure a successful mission.

g. Provide information demonstrating that you have adequate financial resources available to conduct and complete the activity and mitigate any potential impacts resulting from its conduct.

This mission requires no specific funding beyond the cost of mounting the expedition to complete the research goals. The proposed field activities are funded in full by NOAA for the Papahānaumokuākea Marine National Monument. The data analysis and storage will be supported by the Monument as necessary, the Hawai‘i Institute of Marine Biology, and Texas A&M University. As a new faculty at Texas A&M, Chris Bird’s startup package includes funds for three graduate students, as well as ~$500,000 in equipment and supplies required to conduct research. The success of the unfunded ‘opihia partnership demonstrates our collective commitment to this effort and our ability to complete this sort of work voluntarily even in the absence of funding. We are able to leverage the existence of samples to obtain federal funding from a variety of sources, and have an established track record of doing exactly that. We also have a clearly established track record of completing and publishing the research conducted in the Papahānaumokuākea Marine National Monument on a reasonable time frame, and have
every intention to continue that tradition. Finally, we provide regular individual research updates to the management community and will also continue that effort in the future.

h. Explain how your methods and procedures are appropriate to achieve the proposed activity's goals in relation to their impacts to Monument cultural, natural and historic resources, qualities, and ecological integrity.

Our choice of sites are guided by personal safety and natural resource concerns within the Monument, but are constrained by the fact that intertidal communities that support 'ōpūhi populations are limited to basaltic emergent islands. Minimizing our impact on the natural resources of the Monument is critical to us because they are the focus of the study for purposes of conservation, and we absolutely do not want to detract from that system we are seeking to conserve. The methods and procedures we propose to use are widely accepted and are among the few that directly incorporate Native Hawaiian marine practitioners, resource managers and research scientists in collaborative study that is co-designed and jointly implemented. Our success in obtaining extramural funding, our rate of publication in high quality scientific journals, and the frequency with which those studies are cited all show that the work being performed is accepted, valued and endorsed by the global scientific community. Belt transects do not require any specialized equipment and are simple enough to be employed by community members without scientific training across the inhabited Main eight Hawaiian islands. All our work takes full account the unique value and seeks to minimize any potential for impact to the Monument resources.

i. Has your vessel been outfitted with a mobile transceiver unit approved by OLE and complies with the requirements of Presidential Proclamation 8031?

We will be chartering the Searcher and the partner NOAA PMNM staff will ensure it meets the VMS type-approval requirement as stated in Monument regulations.

j. Demonstrate that there are no other factors that would make the issuance of a permit for the activity inappropriate.

There are no other factors that would make the issuance of the permit inappropriate. The activity is non-commercial. The end-value of the activity is informational and is intended solely to provide local and governmental managers with information critical to the conservation of natural resources.

8. Procedures/Methods:

The primary objectives of this research expedition are to:
(1) collect complementary data on the intertidal ecosystem with a suite of research scientists, cultural practitioners, and resource managers;
(2) establish a baseline survey of intertidal and shallow subtidal ecosystems, specifically focused on 'ōpūhi species associations, relative abundance, and reproductive characteristics to better
understand the implications and consequences of human impacts and natural processes on these communities;
(3) characterize the genetic diversity and connectivity of 'opihis populationst0 one another across the archipelago;
(4) to determine 'opihis size at reproductive maturity and reproductive characteristics such as gonad index, and sex ratio
(5) explore the genomic signatures of adaptation to human activities and natural processes using 'opihis as a model system to elucidate the mechanisms by which divergent selection can lead to adaptive radiation of marine species.

Objectives 1 & 2:
To accomplish these goals, we conduct 15-30 belt transects per island located randomly at sites selected based on access, safety and weather conditions. We also map 'opihis density and species presence/absence at 10s to 100s of georeferenced locations on each island. The transect methodology and data collection sheets come from a series of joint retreats between the resource management agency, NGO, research scientist and cultural practitioner partners to develop the collaborative protocol we implement. The data sheet and collaborative protocol, are described in more detail in Kim Morishige's permit application. In brief, we survey a series of belt transects per island, in which teams mark the start of the transect by recording the GPS waypoints. We then lay a transect sash chain perpendicular to the shoreline (mauka to makai), from the highest marine animal on the shore to 15 ft deep. We attach colored cable ties to the sash chain to divide the transect into zones, and count all 'opihis by size class within each zone. We count all other visually identifiable intertidal organisms associated with the 'opihis and record the species present and the abundance of each along the transect lines. Next we estimate the percent cover of each algae species and collect a voucher specimen from each type of algae to confirm algal id later in the laboratory under a microscope. If algal turfs are present, we collect a 1cm² voucher sample of each visually distinct turf type because turfs are typically composed of 10's of species and are not identifiable in the field. We then measure the x,y,z spatial coordinates of each zone boundary along the transect before measuring the "rugose" length of the transect laid to contour the exact surface distance of each zone. Each data sheet is double-checked and photographed in the field, and matched with a photograph of the entire transect and the conditions are recorded along with anything else noteworthy along the transect line. An additional photograph is taken every 25cm along the transect chain to capture each zone boundary. For the mapping, six individuals survey while 2 individuals watch waves, and 2 individuals collect data. All 'opihis are identified by species and counted, presence/absence data for invertebrates and edible limu are recorded, and a GPS coordinate is recorded and associated with the survey number in 2 m wide transects of shoreline (mauka to makai). Consecutive two meter transects are surveyed, unit by unit, until the entire accessible portion of the island is surveyed. At Mokupapapa, all opihis are counted. At Mokumanamana and Nihoa, if all sides of the island are mappable, then we survey all accessible shoreline at a boat access before moving to a new area. Each year, we map all areas that the waves permitted us to survey.

We also conduct a very near shore fish surveys conducted in PMNM. In order to survey shallow very near shore fish populations, we employ a system involving 4 snorkelers that swim parallel to the shore within 0-20 m of the shore line that was surveyed with transects. Each snorkeler has a different task. Snorkeler 1 surveys benthic fish. Snorkeler 2 surveys silver fish.
Snorkeler 3 surveys colorful fish. Each surveying snorkeler records the number of fish of each species that they see on the swimming transect and is equipped with a camera to photograph unknown species. In 2011-12 we developed lists of the most common fish observed in the very near shore habitat that we have used to develop data sheets for data recording. Snorkeler 4 video tapes the fish along the transect to serve as visual documentation of the different species present. The snorkelers are paired and swim side by side with a boat escort for safety. The length of the swimming transect is recorded from the boat using a gps and a stopwatch to give an idea of catch per unit effort, but our primary goal at this point is to record the species present. This approach covers both objective (1) and (2).

Objective 3, connectivity & genetic diversity of ‘opihis and ha’uke’uke:
We have continued to sample all species listed in Appendix 1 (collections table) for the first multispecies population genomic study in the Hawaiian Islands. PIs Chris Bird and Rob Toonen have optimized genomic survey protocols.

The target species we have identified for genetic assessment in 2017 are the ‘opihis and ha’uke’uke. We plan to collect 72 juveniles (<2 cm) and 72 adults (>2 cm) per species of ‘opihis and ha’uke’uke at Onu (Gardner Pinnacles), Nihoa and Mokumanamana, and transport them to the boat for immediate processing. On Mokuapapa, after confirming the census population size to be ~2900-3400 (see methods two paragraphs above), as we’ve determined from 2013 - 2016, only 15 individuals per size class will be collected (30 total) thereby ensuring that we collect ~ 1% of the population. On Puhahonu, if visited, we will use the mapping protocol to census the ‘opihis population, which is inhabited by *Cellana exarata/melanostoma*, according to previous DNA analysis. Assuming that the population size is similar to that in 2016 (~100,000), then the sampling will be conducted as outlined for Mokumanamana and Nihoa. Additionally, we plan to collect 72 adult and 72 juvenile *Colobocentrotus atratus* (ha’uke’uke). Our cut off is that we will not sample more than 1% of the population at any island, and abundance surveys from previous years indicate that ha’uke’uke populations are well in excess of 4800 individuals per island on Mokumanamana and Nihoa where we plan to collect. Also note that these ha’uke’uke can include those from Kim Morishige’s project/permit, further minimizing impact.

Adult and juvenile tissue samples will be preserved for nucleotide analysis by storage in RNA later reagent (a solution designed for and proven to be the best method of preventing the degradation of DNA and RNA in marine invertebrate samples). Remaining tissue will be frozen for later determination of mass. RNA later, a RNA and DNA tissue preservative, will be stored in plastic unbreakable microcentrifuge tubes inside of plastic containment containers (5 gal buckets). DNA extraction involves chaotrope salts, guanidine, SDS, sodium azides, and ethanol. Waste will be disposed of at the University of Hawai‘i on O‘ahu or Texas A&M University – Corpus Christi.

The collections of adults and juveniles allows the juveniles to be assigned genetically to their most likely source population in order to test for connectivity among populations in the NWHI and MHI. The samples will be sequenced at 10,000 genetic loci using restriction site associated DNA sequencing. We will examine connectivity of the intertidal species to compare with the subtidal organisms scored to date and determined whether coral reef species are a good predictor of intertidal species connectivity. DNA samples will be analyzed using standard techniques well-established in the field and in use daily in our lab (see attached CV). We will also compare the genetic diversity and effective population sizes among the islands.
Objective 4&5. 'Opihi reproductive characteristics and human impacts and adaptation of 'opihis:

In order to track 'opihis reproductive cycles and evaluate sex ratio, we will continue to determine the gonad index of all 'opihis and haʻukeʻuke collected in collaboration with Kim Morishige. Over the past several years, our visual identification of gonads reveal high proportions of females in the NWI, but in the MHI there is an ~50:50 ratio of females to males. We plan to observe the presence of sperm or eggs to more definitively identify sex in 2017. The 2017 cruise is slated to occur in September when gonads are large. On the ship, we will dissect the adult 'opihis to separate the gonad, the non-gonadal tissue, and the shell. For each 'opihis species on each island, 24 of the adult’s gonads will be fixed in Bouin’s Solution for 12 hours, then transferred to 70% ethanol for later histological sectioning and identification of sex; 24 will be dissected on a 200um nitex screen which allows eggs to pass through for the visual identification of sex; and 24 gonads will be frozen for later gonad-somatic tissue index calculation. The wet weight of the gonad and somatic tissue will be recorded and compared to assess reproductive state for males and females allowing us to estimate reproductive state.

Bouin’s solution, a tissue fixing agent, will be stored in plastic screw cap tubes inside of plastic containment containers (5gal buckets). 70% ethanol will be stored in plastic screw cap tubes inside of plastic containment containers (5gal buckets). Bouin’s fixative is composed of saturated aqueous picric acid, formalin, and glacial acetic acid. Waste will be disposed of at the University of Hawai‘i on O‘ahu or Texas A&M University – Corpus Christi.

'Opihi shell shape is affected strongly by selective pressures and is determined by genetic and environmental components. As populations decrease, genetic drift removes genetic diversity from the population, and it’s possible that there is less variation in shell morphologies. We will analyze the variation in the morphological characteristics of 'opihis shells in relation to the surveyed population sizes with the hypothesis that shell variation will scale with population size and human presence. The NWI provide a particularly interesting comparison with O‘ahu, because the 'opihis populations on Onu and Mokupapapa have also decreased by orders of magnitude (although it was due to sea level rise since the last ice age), but their populations crashed much longer ago (~10k ya). Three undergraduates in Chris Bird's lab at TAMUCC are working on this.

Adaptation can be assessed directly with the genetic data that is being collected. As populations decline and gene flow decreases, local adaptation and specialization is free to occur within a population. This can in turn affect connectivity because locally-adapted individuals will be less fit if they disperse to new locations. We will assess the degree of local adaptation on each island and between the NWI and the MHI using molecular tests for adaptation. All of these tests are based upon the premise that allele frequencies driven by selection have patterns that differ from those affected by genetic drift. We suspect that the degree of local adaptation, as measured by the number of genetic markers affected by local adaptation, will scale with population size and geographical distance. Here, the NWI provide a valuable comparison to
the MHI because the populations are smaller and are, at some level, a window into the future if we do not reverse the decline of ʻopihi.

We also request the ability to collect up to 5 voucher specimens should an unidentifiable or newly discovered alien invasive species be found.

NOTE: If land or marine archeological activities are involved, contact the Monument Permit Coordinator at the address on the general application form before proceeding.

9a. Collection of specimens - collecting activities (would apply to any activity): organisms or objects (List of species, if applicable, attach additional sheets if necessary):

Common name:

- Yellowfoot ʻopihi ('opihi 'āinalina)
- Blackfoot ʻopihi ('opihi makaiauli)
- Greenfoot ʻopihi ('opihi makaiauli)
- Shingle urchin (hāʻukeʻuke kaupali)
(see Appendix 1 for detailed list of samples)

Scientific name:

- Cellana sandwicensis
- Cellana exarata
- Cellana melanostoma
- Colobocentrotus atratus

& size of specimens:

Following above, see Appendix 1 for detailed list of maximum sample sizes

Collection location:

Following above, see Appendix 1 for detailed list of collection sites

☒ Whole Organism ☐ Partial Organism

9b. What will be done with the specimens after the project has ended?

Preserved samples remain the property of the Monument, and will maintained with population preserved connectivity biopsy tissue samples collected to date at HIMB, Texas A&M, and Scripps until they are used up by the study or such time as the Monument co-trustees request that they be returned to them. Taxonomic voucher specimens will be submitted for permanent inclusion in museum collections as per the voucher specimen guidelines. Specimens will be centrally housed at Texas A&M where Chris Bird can ensure their safe storage, preservation and
care. Algae samples will be shipped to Scripps for identification and then will be housed at Texas A&M. Specimens may also be shipped to HIMB for processing. DNA and RNA samples will be processed at HIMB, Texas A&M, ARQ Genomics (Austin, TX), and Simon Frasier University. Voucher specimens will be subsampled for genetic analysis and stored frozen or in preservative prior to study.

Details of contact information for specimen transfer and analysis listed below:

9c. Will the organisms be kept alive after collection? □ Yes □ No

- General site/location for collections:

0-20m at Puhahonu, Mokupapapa, Mokumanamana, and Nihoa

- Is it an open or closed system? □ Open □ Closed
NA

- Is there an outfall? □ Yes □ No
NA

- Will these organisms be housed with other organisms? If so, what are the other organisms?
NA
• Will organisms be released?
NA

10. If applicable, how will the collected samples or specimens be transported out of the Monument?

Preserved samples (frozen in RNA later saturated salt buffer) will be transported back to Oahu aboard the vessel. Specimens will be centrally housed at Texas A&M where Chris Bird can ensure their safe storage, preservation and care. Algae samples will be shipped to Scripps for identification and then will be housed at Texas A&M. Specimens may also be shipped to HIMB for processing. DNA and RNA samples will be processed at HIMB, Texas A&M, ARQ Genomics (Austin, TX), and Simon Frasier University. Voucher specimens will be subsampled for genetic analysis and stored frozen or in preservative prior to study.

11. Describe collaborative activities to share samples, reduce duplicative sampling, or duplicative research:

All researchers working on this project have coordinated to share samples and avoid duplicate sampling. Specifically, the samples listed here and those in the accompanying permit application by Kim Morishige are explicitly the same samples and not duplicative or in addition to one another.

12a. List all specialized gear and materials to be used in this activity:

We will collect samples by hand using no specialized gear or materials beyond snorkeling gear, transect lines, data sheets, and butter knives.

12b. List all Hazardous Materials you propose to take to and use within the Monument:

Tissue preservative solution for DNA and RNA analyses is RNA later, MSDS attached. DNA extraction involves chaotropic salts, guanidine, SDS, sodium azides, and ethanol. RNA later will be double contained (plastic bottles inside of sealed buckets), we be used within Rubbermaid containment basins, and all waste will be double contained and disposed of at the University of Hawaii.

13. Describe any fixed installations and instrumentation proposed to be set in the Monument:

None

14. Provide a time line for sample analysis, data analysis, write-up and publication of information:
Surveys will be completed in the field during the expedition. Data analysis and write-up will depend on the availability of specific support for researchers post-cruise. With current levels of partial support and volunteer activities, we expect it will take roughly 1.5 years to complete the post-cruise analysis of survey data. Time to publication can be considerably longer since the turn-around time for some journals now exceeds 800 days, but results will be reported as soon as possible among the partners and to the resource management community.

Regardless of the time to publication, the results from these studies are made available to Monument managers as quickly as possible through the brown-bag luncheons, semi-annual reports, and semi-annual mini symposium during which all researchers involved in this project present the most current findings from their ongoing research to the broader management community. Findings are always provided to the Monument co-trustees almost as quickly as they become available, and made available to the greater management community within no more than 6 months of the data being collected. Finally, given the specific partnership of Hawaiian cultural practitioners, NGO community, State and Federal resource managers, and research scientists, we are confident that research results will be communicated widely.

Additionally this permit application is a partner to the Native Hawaiian Practices permit application of Kim Morishige. All samples and methodologies discussed in this permit application are directly related to both permit applications and are the same samples, not in addition to one another. This project and its group of dedicated participants will continue to bridge the gap between cultural and western research in Papahānaumokuākea Marine National Monument, and community participants will communicate our collective findings to their respective communities (Hana, Kipahulu, Kalapana, Milolii, Kalaemano, etc.) as outlined in Kim Morishige's permit application.

Tentative Cruise Itinerary

1. Depart to Nihoa a.m. (late August 2017)
2. Motor to Nihoa, arrive early afternoon, offload NIMI Researchers, depart Nihoa 6 p.m. to GP (42 hrs)
3. Motor
4. Arrive Noon GP work ½ day
5. Work GP depart 6 p.m. for FFS
6. Arrive FFS a.m. Work FFS
7. Work FFS depart p.m for MMM
8. Arrive MMM a.m. work
9. Work MMM
10. Depart a.m. for Nihoa
11. Arrive Nihoa a.m. work
12. Work, load NIMI researchers
13. Depart Nihoa a.m.
14. Arrive HNL afternoon offload

15. List all Applicants’ publications directly related to the proposed project:
21 Simion, P, CE Bird, and RJ Toonen (in prep) Comparative phylogeography of *Octopus cyanea* and *O. oliveri* in the Hawaiian Archipelago.

19 Bird, CE, M Iacchei, and RJ Toonen (in prep) Isolation, disruptive selection, and divergence within a population of broadcast-spawning limpets.

18 Bird, CE and RJ Toonen (in prep) Patterns of recent divergence and gene flow between budding lineages and species boundaries in the sibling Hawaiian limpets (*Cellana* spp.)

17 Bird, CE, MA Timmers, PE Smouse and RJ Toonen (in review) Inferring dispersal patterns with *F*_{ST} and *G*_{ST}: when is genetic distance too much information? Integrative and Comparative Biology. *Invited*

16 Bird, CE, E Franklin, RJ Toonen, & CM Smith (in review) Between wave and tide marks: a unified model of water level and vertical zonation on littoral shores.

With knowledge of the penalties for false or incomplete statements, as provided by 18 U.S.C. 1001, and for perjury, as provided by 18 U.S.C. 1621, I hereby certify to the best of my abilities under penalty of perjury of that the information I have provided on this application form is true and correct. I agree that the Co-Trustees may post this application in its entirety on the Internet. I understand that the Co-Trustees will consider deleting all information that I have identified as “confidential” prior to posting the application.

Signature
Date

SEND ONE SIGNED APPLICATION VIA MAIL TO THE MONUMENT OFFICE BELOW:

NOAA/Inouye Regional Center
NOS/ONMS/PMNM/Attn: Permit Coordinator
1845 Wasp Blvd, Building 176
Honolulu, HI 96818
FAX: (808) 455-3093

DID YOU INCLUDE THESE?
☐ Applicant CV/Resume/Biography
☐ Intended field Principal Investigator CV/Resume/Biography
☐ Electronic and Hard Copy of Application with Signature
☐ Statement of information you wish to be kept confidential
☐ Material Safety Data Sheets for Hazardous Materials
Appendix 1. Maximum total collection numbers.

2017 Collection List

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Distribution</th>
<th>Sampling</th>
<th>Nihoa</th>
<th>MMM</th>
<th>FFS</th>
<th>GP</th>
<th>Preserve Tissue For Genetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellana melanostoma</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td><1% of pop, up to 25</td>
<td>Y</td>
</tr>
<tr>
<td>Cellana exarata</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td><1% of pop, up to 25</td>
<td>Y</td>
</tr>
<tr>
<td>Cellana sandwicensis</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>Colobocentrotus atratus</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>Misc Algae</td>
<td>algae</td>
<td>various</td>
<td>Non-lethal</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000 pinches</td>
<td>es Y</td>
</tr>
</tbody>
</table>

Note: no more than 1000 pinches (using no more than the thumb, pointer and middle fingers, an area < 4cm², i.e. 2 x 2 cm) of turf algae will be collected at each site.
Papahānaumokuākea Marine National Monument
Compliance Information Sheet

1. Updated list of personnel to be covered by permit. List all personnel names and their roles here (e.g. John Doe, Diver; Jane Doe, Field Technician, Jerry Doe, Medical Assistant):
 1. Chris Bird – Chief Scientist
 2. Kanoe‘ulalani Morishige – researcher
 3. Dr. Randy Kosaki – researcher
 4. 7 other individuals TBD

2. Specific Site Location(s): (Attach copies of specific collection locations): Nihoa, Mokumanamana, Lalo/La Perouse Pinnacle at French Frigate Shoals, ‘Ōnūnui and ‘Oni‘ili‘ili/Gardner Pinnacles

3. Other permits (list and attach documentation of all other related Federal or State permits): This permit will be conducted alongside Native Hawaiian Practices Permit Number PMNM-2017-024 (Morishige)

3a. For each of the permits listed, identify any permit violations or any permit that was suspended, amended, modified or revoked for cause. Explain the circumstances surrounding the violation or permit suspension, amendment, modification or revocation.
N/A

4. Funding sources (Attach copies of your budget, specific to proposed activities under this permit and include funding sources. See instructions for more information): This trip is fully supported by NOAA / NOS / Office of National Marine Sanctuaries, Papahanaumokuakea Marine National Monument and the Texas A&M.

5. Time frame:
Activity start: September 2017
Activity completion: Ongoing

Dates actively inside the Monument:
From: September 11, 2017 (tentative)
To: September 26, 2017 (tentative)
Describe any limiting factors in declaring specific dates of the proposed activity at the time of application: we are exploring the possibility of conducting surveys on Niihau. This would reduce the time in the monument.

Personnel schedule in the Monument: A complete itinerary is forthcoming. The project is aiming to spend 1-3 days at each of the aforementioned sites (Nihoa, Mokumanamana, Lalo/French Frigate Shoals, and ‘Onūnui, ‘Onūiki/ Gardner Pinnacles) depending on weather conditions.

6. Indicate (with attached documentation) what insurance policies, bonding coverage, and/or financial resources are in place to pay for or reimburse the Monument trustees for the necessary search and rescue, evacuation, and/or removal of any or all persons covered by the permit from the Monument: The project is fully supported by the Monument. The federal government is self-insured. In addition, the cruise participants will carry emergency evacuation insurance (e.g., DAN insurance or something comparable).

7. Check the appropriate box to indicate how personnel will enter the Monument:

☐ Vessel
☐ Aircraft

Province Vessel and Aircraft information: RV Searcher, Captain: Jon Littenberg

8. The certifications/inspections (below) must be completed prior to departure for vessels (and associated tenders) entering the Monument. Fill in scheduled date (attach documentation):

☐ Rodent free, Date:
☐ Tender vessel, Date:
☐ Ballast water, Date:
☐ Gear/equipment, Date:
☐ Hull inspection, Date:

9. Vessel information (NOTE: if you are traveling aboard a National Oceanic and Atmospheric Administration vessel, skip this question):
Vessel name: MV Searcher
Vessel owner: The Medical Foundation for the Study of the Environment
Captain's name: Jonathan Littenberg
IMO#: 8981884
Vessel ID#: 1103056
Flag: U.S.
Vessel type: Steel Trawler
Call sign: WDA6100
Embarkation port: HONOLULU
Last port vessel will have been at prior to this embarkation: Kewalo Basin, Honolulu, HI
Length: 96 FT
Gross tonnage: 105
Total ballast water capacity volume (m3): N/A
Total number of ballast water tanks on ship: N/A
Total fuel capacity: 9,600 GALLONS
Total number of fuel tanks on ship: 6
Marine Sanitation Device: YES, Headhunter
Type: TYPE II MSD

Explain in detail how you will comply with the regulations regarding discharge in the Monument. Describe in detail. If applicable, attach schematics of the vessel's discharge and treatment systems:
All materials and fluids shall be properly stored in holding tanks while the vessel is in Monument waters and will be properly disposed of upon our exit from the Monument.

Other fuel/hazardous materials to be carried on board and amounts:
Approximately 30 gallons of unleaded fuel in jerry cans for use in the skiffs.

Provide proof of a National Oceanic and Atmospheric Administration (NOAA) Office of Law Enforcement-approved Vessel Monitoring System (VMS). Provide the name and contact information of the contractor responsible for installing the VMS system. Also describe VMS unit name and type:
VMS Monitoring System - Thrane & Thrane Sailor TT-3606XP

VMS Email: 436998398@c.xantic.net
Inmarsat ID#: 4tt092e62b15

* Individuals MUST ENSURE that a type-approved VMS unit is installed and that its automatic position reports are being properly received by the NOAA OLE system prior to the issuance of a permit. To make sure your VMS is properly configured for the NOAA OLE system, please contact NOAA OLE at (808) 203-2503 or (808) 203-2500.

* PERMITS WILL NOT BE ISSUED TO INDIVIDUALS ENTERING THE MONUMENT VIA VESSEL UNTIL NOAA OLE HAS CONTACTED THE MONUMENT PERMIT COORDINATOR WITH A ‘POSITIVE CHECK’ READING.
10. Tender information:

On what workboats (tenders) will personnel, gear and materials be transported within the Monument? List the number of tenders/skiffs aboard and specific types of motors:

Two 20ft zodiac mark V inflatables, one with a 60hp ETEC and the other a 90 hp ETEC
Additional Information for Land Based Operations

11. Proposed movement of personnel, gear, materials, and, if applicable, samples:

12. Room and board requirements on island:

13. Work space needs:

DID YOU INCLUDE THESE?
☐ Map(s) or GPS point(s) of Project Location(s), if applicable
☐ Funding Proposal(s)
☐ Funding and Award Documentation, if already received
☐ Documentation of Insurance, if already received
☐ Documentation of Inspections
☐ Documentation of all required Federal and State Permits or applications for permits
TO: Division of Aquatic Resources File

THROUGH: Suzanne D. Case, Chairperson

FROM: Maria Carnevale
Papahānaumokuākea Marine National Monument

DECLARATION OF EXEMPTION FROM THE PREPARATION OF AN ENVIRONMENTAL ASSESSMENT UNDER THE AUTHORITY OF CHAPTER 343, HRS AND CHAPTER 11-200 HAR, FOR PAPAHĀNAUMOKUĀKEA MARINE NATIONAL MONUMENT RESEARCH PERMIT TO DR. CHRISTOPHER BIRD, TEXAS A&M UNIVERSITY – CORPUS CHRISTI, AND DR. ROBERT TOonen, HAWAI‘I INSTITUTE OF MARINE BIOLOGY, UNIVERSITY OF HAWAI‘I, FOR ACCESS TO STATE WATERS TO CONDUCT INTERTIDAL BIODIVERSITY ACTIVITIES UNDER PERMIT PMNM-2017-023

The following permitted activities are found to be exempted from preparation of an environmental assessment under the authority of Chapter 343, HRS and Chapter 11-200, HAR:

Project Title: Papahānaumokuākea Marine National Monument Research Permit to Dr. Christopher Bird, Assistant Professor, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Research Professor, Hawai‘i Institute of Marine Biology, University of Hawai‘i, for Access to State Waters to Conduct Intertidal Biodiversity Activities.

Permit Number: PMNM-2017-023

Project Description:
The research permit currently grants entry and allows the activities described below to occur in the Papahānaumokuākea Marine National Monument, including the State waters of the Northwestern Hawaiian Islands (NWHI) from September 1, 2017 – August 31, 2018.

The application proposes to conduct annual intertidal monitoring, near-shore surveys, and collecting limited biological samples within the intertidal zone at Nihoa, Mokumanamana, Lalo/French Frigate Shoals (specifically La Perouse Pinnacle), and ‘Ōnūnui and ‘Ontūkī/Gardner Pinnacles. Surveys include biodiversity mapping, species presence/absence, and relative abundances within and among sites across the emergent islands. Select ‘opīhi and hā‘u‘uke‘uke will be harvested to examine the reproductive state and patterns of population.
connectivity in the intertidal zone. Post-cruise studies include sequencing of genomic DNA from muscle tissue in order to assess connectivity and stock structure. The project integrates widely accepted ecological survey techniques with Hawaiian observation methods (Native Hawaiian practices permit number PMNM-2017-024). Standardized survey protocols were developed collaboratively by contemporary marine scientists and Hawaiian practitioners. The permittees and up to ten project personnel are authorized to enter the Monument aboard Motor Vessel (MV) Searcher and conduct activities on a research cruise scheduled for early September.

Collections List

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Distribution</th>
<th>Sampling</th>
<th>Nihoa</th>
<th>MMM</th>
<th>FFS</th>
<th>GP</th>
<th>Preserve Tissue For Genetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellana melanostoma</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td><1% of pop, up to 25</td>
<td>Y</td>
<td><1% of pop, up to 144</td>
</tr>
<tr>
<td>Cellana exarata</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td><1% of pop, up to 25</td>
<td>Y</td>
<td><1% of pop, up to 144</td>
</tr>
<tr>
<td>Cellana sandwicensis</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>Colobocentrotus atratus</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Misc Algae</td>
<td>algae</td>
<td>various</td>
<td>Non-lethal</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000 pinch</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: no more than 1000 pinches (using no more than the thumb, pointer and middle fingers, an area < 4cm², i.e. 2 x 2 cm) of turf algae will be collected at each site.

To safeguard Monument resources the applicant would abide by the following PMNM Best Management Practices (BMPs) while conducting the aforementioned activities within the PMNM: Best Management Practices for Boat Operations and Diving Activities (BMP #004); General Storage and Transport Protocols for Collected Samples (BMP #006); Marine Wildlife Viewing Guidelines (BMP #010); and Disease and Introduced Species Prevention Protocol for Permitted Activities in the Marine Environment (BMP #011).

The proposed activities are in direct support of the Monument Management Plan’s priority management needs 3.1 – Understanding and Interpreting the NWHI (through action plan 3.1.1
Marine Conservation Science). This action plan specifies to “measure connectivity and genetic diversity of key species to enhance management decisions” (Activity MCS-1.5, PMNM MMP Vol 1, p. 123). Activities to support marine conservation science, including biodiversity and genetic diversity surveys such as those to be carried out by the permittee, are also addressed in the Monument Management Plan (MMP) Environmental Assessment (EA) (Finding of No Significant Impact (FONSI), December 2008). This EA summarizes that connectivity and genetic studies of key species would be helpful in forecasting, preparing, and mediating potential threats to populations (PMNM MMP Vol 2, p. 171). Identification of biodiversity and genetic diversity of invertebrates in the NWHI, such as those proposed, would enhance this understanding.

Consulted Parties:
The permit amendment was sent out for review and comment to the following scientific and cultural entities: Hawai‘i Division of Aquatic Resources, Hawai‘i Division of Forestry and Wildlife, Pahānāauamokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the permit application was posted on the Monument Web site on May 24, 2017 giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument’s Public Notification Policy.

Exemption Determination:
After reviewing HAR § 11-200-8, including the criteria used to determine significance under HAR § 11-200-12, DLNR has concluded that the activities under this permit would have minimal or no significant effect on the environment and that issuance of the permit is categorically exempt from the requirement to prepare an environmental assessment based on the following analysis:

1. All activities associated with this permit; including transect monitoring in intertidal and near-shore regions, tissue biopsy sampling, and subsequent genetic and taxonomic study of invertebrates and macroalgae; have been evaluated as a single action. As a preliminary matter, multiple or phased actions, such as when a group of actions are part of a larger undertaking, or when an individual project is precedent to or represents a commitment to a larger project, must be grouped together and evaluated as a single action. HAR § 11-200-7. This permit may involve an activity that is precedent to a later planned activity, i.e. the continuation of near-shore biodiversity monitoring, sampling, and associated genetic studies; the categorical exemption determination here will treat all planned activities as a single action.

2. The Exemption Class for Experimental Management with no Serious or Major Environmental Disturbance Appears to Apply. Chapter 343, HRS, and § 11-200-8, HAR, provide for a list of classes of actions exempt from environmental assessment requirements. HAR § 11-200-8.A.5. exempts the class of actions which involve “basic data collection, research, experimental management, and resource evaluation activities which do not result in a serious or major disturbance to an environmental resource.” The proposed removal activities here appear to fall
squarely under the exemption class #5, exempt item #2 as described under the Exemption List for the Department of Land and Natural Resources, published on June 5, 2015. This exemption class has been interpreted to include “wildlife surveys, new transect lines, photographing, recording, and sampling”, such as those being proposed.

The Applicants would follow Monument Best Management Practice (BMP) 016 – Activities on Nihoa and BMP 006 – General Storage and Transport to minimize any impacts from activities.

3. Cumulative Impacts of Actions in the Same Place and Impacts with Respect to the Potentially Particularly Sensitive Environment Will Not be Significant. Even where a categorical exemption appears to include a proposed action, the action cannot be declared exempt if “the cumulative impact of planned successive actions in the same place, over time, is significant, or when an action that is normally insignificant in its impact on the environment may be significant in a particularly sensitive environment.” HAR § 11-200-8.B. To gauge whether a significant impact or effect is probable, an exempting agency must consider every phase of a proposed action, any expected primary and secondary consequences, the long-term and short-term effects of the action, the overall and cumulative effect of the action, and the sum effects of an action on the quality of the environment. HAR § 11-200-12. Examples of actions which commonly have a significant effect on the environment are listed under HAR § 11-200-12.

The project is currently supported by the NOAA contracted vessel, M/V SEARCHER (PMNM-2017-001). The proposed amendment would allow for the continuation of currently permitted near-shore biodiversity monitoring activities. The activities conducted under this permit are not anticipated to have significant impacts.

Past permitted projects with similar collections and techniques have shown no adverse impacts. The cumulative impacts of this proposed amendment, in conjunction with another proposed permit amendment (Morishige: PMNM-2017-024) are also considered. Morishige proposes to conduct Native Hawaiian environmental monitoring of ‘ōpili and intertidal ecosystems. The activities, while differing in their approach to understanding this habitat, are the result of collaborations between scientists and cultural practitioners who share the same goal of adding to the total knowledge base for his region. As such, there would be no duplicative sampling of resources or organisms. No associated cumulative impacts are anticipated between activities from the M/V SEARCHER and other vessels in the area.

Since no significant cumulative impacts or significant impacts with respect to any particularly sensitive aspect of the project area are anticipated, the categorical exemptions identified above should remain applicable.

4. Overall Impacts will Probably be Minimal and Insignificant Any foreseeable impacts from the proposed activity will probably be minimal, and further mitigated by general and specific conditions attached to the permit. Specifically, all conservation and management activities covered by this permit will be carried out with strict safeguards for the natural, historic, and
cultural resources of the Monument as required by Presidential Proclamation 8031, other applicable law and agency policies and standard operating procedures.

Conclusion. Upon consideration of the permit to be approved by the Board of Land and Natural Resources, the potential effects of the above listed project as provided by Chapter 343, HRS and Chapter 11-200 HAR, have been determined to be of probable minimal or no significant effect on the environment and exempt from the preparation of an environmental assessment.